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Abstract 10 

Computational asymmetric catalysis has seen an impressive rise in the last twenty years, thanks to 11 
advancements in algorithm and method development for predicting catalyst enantioselectivity. These 12 
methods/algorithms describe reactions that can be categorized into two groups: reactions where 1) 13 
knowledge of the mechanism is not required and where leveraging experimental data to establish 14 
correlations between reaction descriptors and enantioselectivity is imperative, and 2) the mechanism (or 15 
transition state (TS) for the enantioselective step) is known and used to determine catalyst stereoselectivity 16 
by modeling the diastereomeric TSs. Although these methods have reached an important level of 17 
proficiency for enantioselectivity prediction, this field remains largely obscured for experimental chemists. 18 
In this review, we aim to shed light on models, methods, and applications used in asymmetric synthesis, 19 
with accessible language suited for experimental chemists. Our hope is that these methods will ultimately 20 
be adopted by synthetic chemists for the design of novel catalysts. 21 
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Introduction 23 

Asymmetric Catalysis. The field of asymmetric catalysis has revolutionized organic synthesis in the last 24 
50 years. Catalysts have been developed to introduce stereogenic centers into molecules primarily through 25 
the formation of new C-C bonds and reduction of unsaturated bonds (e.g., carbonyls, alkenes). These chiral 26 
catalysts can take many forms, including transition metal complexes, organocatalysts, and biocatalysts 27 
(Figure 1). With transition metal complexes, the reaction is often catalyzed by the metal itself while 28 
stereochemistry is introduced in the form of metal ligands (e.g., chiral phosphines). In organocatalysis and 29 
biocatalysis, small organic molecules and enzymes function as both catalysts and chiral directing groups. 30 
The latter two forms of asymmetric catalysts have been seen as very promising alternatives to transition 31 
metal catalysts, due to their reduced costs and toxicity. In fact, the potential impact of these alternatives 32 
was recently recognized when the Nobel Prize in Chemistry was awarded to Frances Arnold (2018, directed 33 
evolution of enzymes), then Benjamin List and David MacMillan (2020, asymmetric organocatalysis), after 34 
Barry Sharpless, Ryoji Noyori and William Knowles shared the Nobel Prize in 2001 for asymmetric transition 35 
metal catalyzed reactions.  36 

 37 
Figure 1. The three main asymmetric catalysis fields. 38 

Developing new catalysts. The relatively simple mechanisms of organocatalyzed reactions are a significant 39 
advantage for their development and optimization. However, the use of these catalysts has been hampered 40 
by their lower stereoselectivities and the need for higher loading. Alternatively, development of transition 41 
metal catalysts is facing complex mechanisms often involving multiple possible transition states (TSs), 42 
metal coordinations, additives, and ligands. As a result, the very tedious “trial-and-error” approach is still 43 
commonly used. To address environmental concerns, catalysts based on greener and cheaper metals 44 
(bismuth, iron, copper) have been developed, yet the most used transition metal catalysts are built around 45 
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palladium, rhodium, and other toxic and expensive metals. Thus, despite tremendous progress in the field 46 
of small molecule catalysis, development of new chiral catalysts remains quite challenging and often calls 47 
for stepwise optimization. This is often a time-consuming, labour-intensive process. It requires the 48 
synthesis and evaluation of multiple novel ligands/catalysts, in an iterative process that is often pursued in 49 
an empirical fashion with little guidance other than simple models and intuition. Computational methods 50 
guiding the design of new catalysts are sought after and should address this major issue. 51 

Computational methods for catalyst design and discovery. As an analogy, over the past decades, docking-52 
based virtual screening has found extensive use and acceptance as a design tool in medicinal chemistry.1 53 
The low computational demands of these methods and user-friendly interfaces removed hurdles towards 54 
their widespread adoption. In contrast, computational tools that could improve the process of chemical 55 
reaction development remain underutilized as predictive/design methods. The power of quantum 56 
mechanics (QM) calculations, particularly density functional theory (DFT), is primarily used in a 57 
retrospective, post-hoc fashion for understanding reaction mechanisms and for rationalizing observed 58 
selectivities, rather than in the prediction/design of new catalysts. In fact, the computational cost 59 
associated with ab initio QM or DFT methods, let alone the required expert knowledge, makes them 60 
unsuitable for the screening of large libraries of potential catalysts. However, major efforts are currently 61 
ongoing to develop computational tools to assist organic chemists, and integration into organic chemistry 62 
laboratories is imminent.2  63 

We believe that the successes of virtual screening in medicinal chemistry should be adaptable to reaction 64 
prediction, with the challenge being the availability of computationally inexpensive, rapid, and accurate 65 
methods for predicting stereoselectivities associated with complex TS structures and energies. 66 

State-of-the-art approaches. In recent years, computer-assisted synthesis has gained significant 67 
momentum and several computational methods (most commonly machine learning (ML) methods and 68 
statistical models) applied to organic synthesis problems have been reported. For example, computer-69 
aided synthesis planning has advanced rapidly and can propose reaction mapping3 and realistic 70 
retrosynthesis2, 4-6 (e.g., Chematica/Synthia7, 8 and AIZynthFinder9), can predict yields,10-12 catalyst 71 
inhibition,13 regioselectivity,14 and chemical reactivity.15 In practice, these predictive trained methods have 72 
been successfully used to design new catalysts16 and predict the stereochemical outcome of asymmetric 73 
reactions.17 For the latter, ML techniques are advantageous over QM and molecular mechanics (MM) for 74 
two reasons: speed (orders of magnitude faster than QM) and their application to reactions with unclear or 75 
complex mechanisms (ML models developed from catalyst structures only).18 However, training ML models 76 
requires a significant amount of experimental data for training19 and can hardly be applied to new reactions, 77 
as emphasized by Norrby in a viewpoint.20 Reaction/chemical mapping is more general; for example, 78 
physicochemical and QM descriptors of over 300,000 monodentate phosphine ligands have been added to 79 
a database named Kraken,21 which will certainly be particularly useful for new reactions relying on 80 
phosphine ligands. However, despite all these successful developments, much is left to be done in the field, 81 
including the use of these methods in prospective studies. 82 

In this review we will describe the development and application of computational methods for the design 83 
of asymmetric catalysts with a particular focus on organocatalysis and transition metal catalysis. For more 84 
information about biocatalysis (primarily enzymes), the readers are referred to the excellent overviews of 85 
this field by Bell et al.22 and Pyser et al.23 Thus, while computational methods for biocatalysis have been 86 
developed,24 these will not be discussed herein.  87 

In the context of computational asymmetric catalysis, an overarching goal of the computational methods 88 
is the prediction of enantioselectivity of asymmetric reactions, enabling computational reaction 89 
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optimization (i.e., optimal catalysts, substrates, ligands, and conditions). Different methodologies for 90 
achieving these goals exist, and they can be divided in two main categories: 1) methods requiring sufficient 91 
knowledge on the reaction mechanism (primarily QM and MM-based methods) and 2) data-driven methods 92 
(primarily databases and ML methods). Irrespective of category, the overall principles are similar and 93 
involve data collection, identification of meaningful patterns, parameters or features, model building and 94 
testing, followed by model refinement (Figure 2).  95 

96 
Figure 2. Overall workflow for A) ML methods and B) QM/MM methods. 97 

Data. 98 

Developing datasets. The first step in any modeling project is often data collection from the scientific 99 
literature (or generating data in the wet lab). Since representative systems are selected and modeled based 100 
on these data (ML) and/or used to test the method (QM, MM), data curation is essential, as literature data 101 
may be riddled with issues (e.g., misassigned stereocenters, incomplete experimental data, reproducibility 102 
issues). This process is a challenging task that may be prone to human error. Thus, model or method 103 
development and/or evaluation require the availability of consistent and reliable experimental 104 
enantioselectivities. The type and amount of data required to develop a predictive model depends on the 105 
approach used to model the reaction (evaluation on small sets or training on large sets) - Box 1.  106 

Below, we list several guidelines that we believe to be key when developing a robust dataset.  107 

1) For most methods, it is assumed that the set of substrates and catalysts collected follow a similar (if 108 
not identical) mechanism. If more than one competing mechanism is to be considered, substrates and/or 109 
catalysts favoring alternative mechanisms should be sufficiently represented. For each mechanism, one 110 
should also assume that the enantioselectivity is affected by the same factors.  111 

2) In the context of catalyst design using ML methods, the model is more likely transferable to new sets of 112 
catalysts and substrates when trained on datasets with larger chemical diversity. If a component is kept 113 
constant (e.g., all the reactions in the dataset are applied to the same substrate), then the model will not be 114 
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trained to understand the impact of this component (e.g., not applicable to the search for ideal substrates 115 
for a given catalyst or prediction of the substrate scope of an asymmetric reaction).  116 

3) Training a model or testing a method requires not only information on highly selective catalysts, but also 117 
on poorly selective catalysts. For optimal accuracy, ML models should be trained to correlate “good” 118 
features (e.g., chemical groups) to high enantioselectivity, as well as “bad” features to poor 119 
enantioselectivity, while QM and MM methods must be evaluated for their ability to distinguish good from 120 
poorly stereoselective catalysts.  121 

4) TS-based methods derive the enantioselectivity from the energy difference of the diastereomeric TSs, 122 
requiring some experimental knowledge of the mechanism. More specifically, the stereoselectivity 123 
determining step (or steps) must be known, and at the very least, a good hypothesis for the TS structure 124 
must be available. If not, a separate investigation of the mechanism must be carried out, which can be quite 125 
time-consuming. 126 

5) In general, the larger (and more diverse) the dataset is, the more information ML models may learn. 127 
However, building a large dataset should be done with care as adding data may also results in loss of 128 
diversity and introduction of biases. For example, overrepresenting a class of catalysts may result in the 129 
model learning (or even memorizing) mostly about this chemical series (e.g., phenyl better than methyl at 130 
a given position on a ring), rather than learning general rules (e.g., steric effects). This can result in 131 
significant biases of the model and poor accuracy in the search for novel catalysts. At this point, it is 132 
important to note that information following all these criteria is rarely available in a form that can be used 133 
immediately (such as a text files or formatted tables). For QM and MM methods, the size of the set is not 134 
as relevant, but the diversity should still be a focus of the data collection, as these methods must be able 135 
to capture various effects experienced by various catalysts (e.g., hydrogen bonds, cation-π interactions). In 136 
practice, should all this information be available (several catalysts from different classes already 137 
developed), one may question the need for a model to design novel catalysts for this reaction. Thus, the 138 
transferability of the method to other reactions may be investigated (see Applications section). In the case 139 
several catalysts are already available but none providing the level of stereoselectivity targeted, an ML 140 
model may be required. However, one may question the ability of a model trained on poor to good catalysts 141 
to identify excellent catalysts (e.g., based on a different mechanism, on an interaction not experienced by 142 
other catalysts). An important aspect is that the model would be as general as the data set is: if the data 143 
set contains little variability, the model would likely fail to predict an out of set example. 144 

6) Depending on the method used, additional information may be needed. For example, in the case of MM, 145 
relevant force fields (FFs, Box 1) are necessary (e.g., for transition metals). This will be discussed further 146 
under the Descriptors section. 147 

7) In practice, ML models are trained on a first set (referred to as training set) and tested on a second 148 
distinct set (testing set), while hyperparameters may be optimized using a third set (validation set). While 149 
simple random splitting is still often used, the similarity between these sets must be monitored and 150 
minimized. If the model memorizes input data (“CH3COOH: pKa 4.75”) rather than learning to predict a 151 
property (e.g., “electronic effects make acetic acid acidic, with a pKa of 4.75”), the model tends to be poorly 152 
predictive (e.g., “CF3COOH looks like CH3COOH and is predicted to have a pKa of 4.75”, as opposed to “the 153 
fluorine inductive effect reduces the pKa to 0.2”). If similar compounds are kept in the testing set, 154 
memorization would still yield a good prediction (“C2H5COOH looks like CH3COOH and is predicted to have a 155 
pKa 4.75”). This would lead to an overestimation of the real accuracy of the model.  156 
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Available datasets. When MM or QM methods are used, developers often rely on sets of a few dozens of 157 
systems to test their methods. However, as more data-intensive ML-based methods become more 158 
prevalent, and the need for datasets arises, a few curated datasets have been reported and made available. 159 
While these datasets contain information about catalysts/ligands and computed descriptors, the reaction-160 
related information still needs to be manually collected. 161 

We have built a non-exhaustive collection of available datasets (see Supporting Information for a detailed 162 
breakdown) which may be useful for method developers. We expand on a selection of datasets below: 163 

1. Kraken. This database, curated by Gensch et al.,21 contains ~300,000 virtual monodentate 164 
organophosphorous (III) ligands for asymmetric catalysis. These ligands were combinatorially 165 
enumerated in silico using a set of 1,558 experimental ligands (including commercially available 166 
compounds) and 576 unique, diverse substituents. For the set of 1,558 ligands, physicochemical 167 
descriptors were calculated on conformer ensembles using QM methods. These descriptors were 168 
then used as input for ML models trained to predict the physicochemical profiles of the entire virtual 169 
library of 300,000 ligands.  170 

2. OSCAR. This dataset of organocatalysts assembled by Gallarati et al.25 is available online (see 171 
Supporting Information) and contains 4,000 catalysts collected either from literature or the 172 
Cambridge Structural Database (CSD), along with combinatorially enriched sets for carbene 173 
catalysts (over 8,000), and non-covalent dual-hydrogen-bond donor catalysts (ca. 1.5 million). All 174 
catalysts have QM-computed stereoelectronic descriptors and DFT-optimized structures available.  175 

3. VIRTUAL CHEMIST. Upon the publication of the VIRTUAL CHEMIST platform for asymmetric catalysis, 176 
Burai-Patrascu et al.26 made available the data collected for the platform validation. These data 177 
include experimental conditions and %ee (experimental and computed) for over 350 reactions 178 
across 7 reaction classes, involving both transition metal and organocatalysis. The data are 179 
available in table format (see Supporting Information in reference 26) and on the research group 180 
website (http://www.moitessier-group.ca/) for structures. 181 

 182 
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 184 Box 1. A closer look at MM, QM, and ML. 
MM. In MM, the molecules are somewhat represented as charged points (atoms) connected by springs (bonds) and interacting 

by other means (e.g., angles, torsions, van der Waals, electrostatic) in a 3-dimensional Cartesian space. Because MM does not 

consider electrons or nuclei, atoms (and the interactions between them) must be parametrized a priori. These parameters may be 

obtained either experimentally (e.g., van der Waals radius of an atom) or from high level QM calculations (e.g., atomic charge, 

force constants) and stored in lists termed force fields (FFs). Importantly, in MM, atoms in different chemical environments are 

distinguished by introducing the concept of atom types (i.e., an oxygen atom in water vs. in a carbonyl group would have different 

atom types), each bearing specific bonding and non-bonding parameters. It is thus important to define the correct atom type for 

a system under scrutiny, as the total energy of the system is calculated as a sum of contributions from both bonded and non-

bonded terms. Due to the size of the chemical space - >1060 small organic molecules - the number of possible atom types is 

virtually extremely large.89 To make the development of FFs tractable, the number of atom types is limited yet must be accurately 

assigned (together with the corresponding parameters) to each atom of any molecule. On the one hand, although the problem of 

accurately atom typing every molecule seems problematic, significant efforts have been made to exhaustively assign atom types 

to a large number of small molecules.90 On the other hand, others have proposed approaches discarding atom types altogether.91, 

92 Thus, the accuracy of MM calculations is strongly impacted by the choice of an FF and the assignment of atom types. 

QM. In contrast to MM, QM methods consider both electrons and nuclei. The orbitals required to calculate electronic terms are 

described by basis sets. Many different types of basis sets have been developed, and their usage depends on the system under 

scrutiny (i.e., metal complexes, organic molecules, etc.). As a rule of thumb, the larger the basis set, the more computationally 

expensive the simulations. The explicit treatment of electrons significantly increases the computational cost compared to MM, 

due to the resource-intensive computations of electronic integrals. Depending on the desired level of accuracy, significant speed-

ups are possible, either through elegant algorithms for computing electronic integrals (see the ORCA SHARK integral engine93), 

lower-cost semi-empirical (SE) QM methods where some integrals are neglected (e.g., PM6,94 GFN2-XTB95), composite methods 

such as HF-3c/PBEh-3c, or DFT. By far the most popular method is DFT, which has seen a tremendous uptake from organic 

chemists. Most often employed to rationalize reaction mechanisms, DFT has more recently been used to try and explain the 

reactivity of different types of chemicals (through the conceptual DFT – cDFT – framework). Higher accuracy algorithms such as 

Møller–Plesset (MP) or coupled cluster (CC) are generally reserved for advanced theoretical work and are not commonly employed 

in routine organic chemistry simulations. Overall, the accuracy of the calculations is highly dependent on the choice of method 

(e.g., MP2, DFT, SE) and basis sets. 

ML. ML methods differ significantly from both MM and QM. ML algorithms (and the more interpretable statistical models) aim at 

finding and quantifying patterns in vast amounts of data for predicting a given outcome. In chemistry, this outcome can come in 

the form of a single number (e.g., pKa, solubility, enantioselectivity), while the data can be in the form of structural data, reaction 

data, etc. As a major advantage, ML algorithms are orders of magnitude faster than both MM and QM. In contrast to both QM and 

MM, most ML models are “black box”, meaning that the way in which an algorithm arrives at a prediction is unknown, although 

explainable artificial intelligence (AI) is emerging. There are multiple flavours of ML: supervised, unsupervised, and reinforcement, 

each with their own advantages and disadvantages. For example, supervised learning requires labelled input and output training 

data (e.g., catalyst A provides an enantioselectivity of 45 %ee), whereas unsupervised learning deals with raw data. In 

reinforcement learning, a feedback loop is employed so that the model can learn from its environment and maximize its correct 

predictions. Irrespective of flavour or model, the key ingredients for a predictive ML model are data quality and quantity. 
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Descriptors. 185 

Encoding catalysts, substrates and/or TS structures. There are numerous methods through which 186 
molecular complexes and associated information (e.g., solvent, temperature, counter ions) can be 187 
represented numerically. Since enantioselectivity is affected by multiple factors, these representations 188 
usually include a combination of steric, electronic, and geometric information - Box 2.27, 28 189 

In TS-based methods molecules can be represented in several ways, depending on the approach. In MM 190 
methods, molecules are represented by Cartesian coordinates, atom types and/or FF parameters (Box 1). 191 
The challenge is to optimize TS structures when most FFs have been developed for ground structures. To 192 
solve this, specific FFs have been developed (i.e., ReaxFF), while other methods rely on a combination of 193 
ground state reactants and products (i.e., empirical valence bond (EVB)),29 multi configurational molecular 194 
mechanics (MCMM),30and SEAM31). Although these methods are available to the scientific community at 195 
large, they still require expertise in computational chemistry, scripting, and/or computer environments to 196 
be truly usable in chemistry laboratories. In this context, another two approaches, ACE and Q2MM, were 197 
implemented into user friendly platforms (VIRTUAL CHEMIST and CatVS, Box 3). 198 

In QM methods, molecules are more accurately described than in MM through the usage of atomic and 199 
molecular orbitals to describe atoms in molecules (Box 1). In terms of computational cost and time 200 
requirements, QM calculations are orders of magnitude more costly than MM. However, the major 201 
advantages of QM over MM when it comes to predicting TS structures are 1) the ability to optimize 202 
structures without the need for specific parameters (assuming all the necessary elements - in particular 203 
transition metals - are included in the basis set, see Box 1) and 2) obtaining accurate energies and 204 
geometries that describe the bond breaking/forming process. While some QM methods (i.e., ab initio: 205 
Hartree-Fock or post-Hartree-Fock, DFT) are highly accurate, they can be used effectively for catalyst design 206 
primarily in a post-hoc manner and on a limited number of systems.32 Alternatively, SEQM methods, 207 
although less accurate than the former, are significantly faster and can be envisioned as a useful tool in 208 
prospectively screening libraries of hundreds of potential catalysts due to their relatively low computational 209 
cost. However, the accuracy of SEQM in transition metal catalysis is yet to be demonstrated.33  210 
 211 
In ML-based approaches, the information is usually represented by descriptors (also referred to as 212 
features). Different molecular representations exist (e.g., graph, simplified molecular-input line-entry 213 
system (SMILES)) and are linked with different molecular descriptors.34 Among those are system 214 
descriptors (temperature, concentration, etc.), steric descriptors35 (e.g., Sterimol parameters, average steric 215 
occupancy (ASO), %buried volume), electronic descriptors (e.g., Natural Bond Orbital (NBO)- charges, 216 
polarizability, Frontier Molecular Orbital (FMO)-gap), and geometric descriptors (e.g., bond lengths, dihedral 217 
angles). The latter are often obtained from QM calculations (see Box 2).36 218 

Selection of descriptors and their computation. In TS-based models, descriptors are often chosen to 219 
describe the steric and electronic effects governing the reaction. It is important to note here that these 220 
descriptors generally have chemical meaning. For example, in both QM and MM, electronic descriptors such 221 
as atomic charges and dipole moments may be used to understand catalyst/ligand reactivity.37, 38 222 
Additionally, more advanced QM descriptors such as local and global reactivity parameters (obtainable in 223 
the cDFT framework - Box 1, see Supporting Information for detailed list of parameters), have often been 224 
used to rationalize the reactivity and selectivity of various chemical series in numerous reaction classes.39 225 

In the case of statistical or machine learning models, thousands of descriptors may be computed and used 226 
for building the model, especially with the advent of specialized software for computing descriptors.40, 41 227 
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However, without carefully choosing only the most important descriptors that significantly contribute to the 228 
prediction, the model is bound to contain a large amount of noise. This affects the accuracy of the 229 
predictions. Indeed, different methods to select descriptors42, 43 (either supervised or unsupervised) have 230 
been developed to address this exact issue. These techniques (for a complete breakdown with examples 231 
see Supporting Information) include filtering methods (selection based on statistical methods like the chi-232 
squared test), wrapper methods (selection based on a predictive model to generate the best descriptor 233 
combinations), embedded methods (selection is made by learning the importance of each feature during 234 
model training), hybrid methods (combination of filtering and wrapper methods), and dimensionality 235 
reduction techniques (selection of features after dimensionality reduction of the data).44 Perhaps the most 236 
widespread method is principal component analysis (PCA), a technique that reduces data dimensions to 237 
fewer components while retaining essential information about its diversity. This allows for simpler 238 
visualization, although interpretation might not always be straightforward.45  239 

If one of the goals is not only to develop a predictive model, but also to have chemically interpretable 240 
descriptors that can shed light on the mechanism (statistical models), then the descriptor selection 241 
requires additional attention. First, chemical knowledge may be used when selecting these. For example, if 242 
properties profoundly influencing the reaction outcome have been identified experimentally, descriptors of 243 
these properties may be considered. In this case, the ML or statistical model will eventually quantify the 244 
impact of these properties. Unfortunately, irrelevant descriptors may still coincidentally correlate with the 245 
property the model aims to predict, leading to poorly predicting models. Generally, the assumption is that 246 
the different descriptors are independent of each other (as in, the change of one will not influence the 247 
other). However, a counter example can be seen in the work of Werth et al.46 on bifunctional hydrogen bond 248 
donor (BHD) catalysts, where the NBO charge of the catalyst was indirectly correlated with the pKa value 249 
via the LUMO energy and a separate steric parameter.  250 

How the descriptors are computed is another fundamental aspect. Many descriptors are conformation-251 
dependent: descriptors computed only for a single conformer may not adequately represent more flexible 252 
ligands. Should a Boltzmann population average be used instead, a conformational search (hence time) 253 
must be added to the computation. A significant advantage of some available databases (e.g., Kraken and 254 
Oscar described above) is their computed descriptors, which may be used by other model developers. 255 

Number of descriptors. With the help of numerous cheminformatics tools40, 47, 48 thousands of descriptors 256 
can be computed for each model, although the final version of the model will ideally contain less than 10. 257 
While more descriptors are expected to provide a more complete representation of a reaction, they may 258 
also lead to overfitting, a common issue when developing ML or statistical models. As an indication of 259 
overfitting, the model performs well on the training set but poorly on the testing set, hence the need for 260 
significantly dissimilar training and testing sets to detect overtraining. Moreover, not all the descriptors will 261 
have a significant enough influence on the accuracy of the model and will add unnecessary noise. In 262 
general, the simpler the model (i.e., the fewer descriptors), the easier (and faster) it is to train and often the 263 
better (more generalizable) and interpretable the model will be. In practice, many descriptor combinations 264 
are evaluated for model training, and the most predictive set of descriptors is chosen for the final version 265 
of the model. However, a careful evaluation of the relevance of these descriptors should be carried out. 266 

  267 
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 268 

 269 

 270 

Box 2. Different types of descriptors/methods are used to describe unique atomic and molecular properties. 
Steric parameters. Steric effects play an important role in catalyst reactivity and selectivity. In the context of asymmetric catalysis, 

a catalyst may have different substituents, with each substituent taking up a different volume of the space around the reactive 

part of the catalyst, influencing the shape, stereoinduction, and reactivity of the catalyst. To account for these effects, descriptors 

representing the steric character of the molecule and its substituents have been developed. An important aspect of some steric 

parameters is that they are conformation dependent, making the selection of the conformation impactful. In practice, chemists 

often rely on C2 symmetrical catalysts (e.g., BINAP) to reduce the conformational space (e.g., the number of possible 

conformations, the number of different faces of nucleophilic attack), which in turn simplifies their optimization. Depending on the 

system, these descriptors may be calculated for the lowest energy conformer, the catalytically relevant conformer, or as a 

Boltzmann-weighted conformation average. Mentioned in text: Sterimol parameters, ASO, %buried volume. 

Geometric parameters. In addition to sterics, one can compute descriptors providing information on the 3D shape (geometry) of 

the molecule. The geometry of a catalyst affects the selectivity and rate of catalyzed reactions; therefore, the selection of the 

conformation is critical. In addition to overall shapes, geometric parameters may also contain information such as bond lengths 

or bond-angle and torsion values. Mentioned in text: cone angles. 

Electronic parameters. These descriptors aim to represent the electronic properties of the molecule, often of a reactive centre 

(e.g., the atoms participating in the reaction) or of a ligand (e.g., a phosphine ligand modulating the reactivity of metal centers). In 

organic chemistry, electronic properties describe information such as ability to donate or accept electrons (Lewis basicity and 

acidity, respectively), nucleophilicity and electrophilicity, hyperconjugation, and more. Unlike steric and geometric parameters, 

electronic parameters are often less influenced by conformation, and they can either be derived from a single (optimized) 

conformation or as a Boltzmann-weighted conformational average. Most electronic parameters describe a fragment of the 

molecule, such as a substituent or reactive atom, rather than the entire molecule. Mentioned in text:  NBO charges, FMO gap. 

Empirical parameters. Descriptors do not always have to be computed theoretically. A variety of empirical descriptors can be used 

in model development, such as nuclear magnetic resonance (NMR) chemical shifts, NMR 31P tensors, and infrared (IR) spectrum 

frequencies and vibrations.  

Interaction Fields. Comparative molecular field analysis (CoMFA). A method developed for ligand 3D-QSAR studies in drug 

discovery, which has since been implemented in asymmetric catalysis modeling.96 The method aims to correlate reaction 

outcomes to molecular fields described by the steric and electronic properties of a molecule. To achieve this, molecules are first 

aligned and then placed in a three-dimensional energy grid. A probe atom is then added at strategic points on this grid and the 

interaction energy (Van der Waals and electrostatic) between the molecules and the probe atom is calculated at each grid point. 

These energies are the descriptors that input into regression models, most often partial least squares (PLS), which correlate 

catalytic activity/enantioselectivity with the computed descriptors.97, 98 

Comparative molecular similarity indices analysis (CoMSIA). CoMSIA is a 3D-QSAR method developed as a natural extension of 

CoMFA by including molecular similarity in the computation of the molecular fields. In addition to the steric and electronic 

parameters captured by CoMFA, CoMSIA also includes a hydrophobicity term. The calculation of descriptors is then performed in 

a similar manner to CoMFA. 
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Models. 271 

Unknown mechanism/stereoselective step (statistical and ML models). Modeling enantioselectivity for 272 
reactions and catalysts with unknown mechanisms relies on quantitative structure-selectivity relationships 273 
(QSSR), where statistical models can be used to correlate enantioselectivity to the structure of the catalyst 274 
and reaction components.49-51 In addition to these, the field has evolved to also incorporate ML methods 275 
for the development of predictive models.52, 53 While sometimes used interchangeably in the scientific 276 
literature, statistical and ML models are in fact distinct. Statistical models are derived from the whole data 277 
(where statistical relevance is measured), while ML models are trained and tested on separate sets. 278 
Additionally, statistical models are often more interpretable than ML models. 279 

Depending on the desired outcome, different methods can be used to relate the catalyst (and substrate, in 280 
some cases) structure to enantioselectivity. For example, Sigman and co-workers have been developing 281 
statistical models based on linear free energy relationships (LFER), where they aim to achieve both an 282 
increase in prediction accuracy as well as an intuitive understanding of the potential mechanism.51, 54 This 283 
type of model aims to find a linear correlation between a variable and free energy, which in asymmetric 284 
catalysis is often the energy difference between the diastereomeric TSs (ΔΔG‡). Since stereoselectivity is 285 
dependent on multiple variables, the model would usually be a multivariate linear regression (MLR). The 286 
input would be the numerical representations of the reaction components (descriptors), and the output 287 
would be the free energy difference.52, 55 These models have been successfully applied on several metal 288 
catalyzed reactions such as the Pd-catalyzed enantioselective aryl-carbonylation of sulfonimidamides,56 289 
Pd-catalyzed Hayashi-Heck reaction,57 Negishi coupling,58 and different Pd- and Ni-catalyzed cross-290 
coupling reactions.59 Additionally, they have been applied to organocatalyzed reactions including the 291 
Mannich reaction,43 chiral phosphoric acid catalyzed nucleophilic addition to iminiums,17, 60, 61 HBD 292 
catalyzed addition of nucleophiles to nitro alkenes,46 and others.54, 55 293 

A different type of model used successfully in asymmetric catalysis is support vector regression (SVR). 294 
With such an ML algorithm, the data may be correlated to the energy difference (enantioselectivity). In SVR 295 
the data points are correlated by a linear line, or a higher dimension curve, within a predetermined margin. 296 
The goal of the model is to identify the line that fits most data points which falls within a predetermined 297 
margin (prediction error).62-64 Such models have been successfully applied to organocatalyzed reactions 298 
such as the chiral phosphoric acid catalyzed thiol-nucleophiles addition to imines.65 299 

The major difference between MLR and SVR is that SVR does not have an underlying assumption of a linear 300 
relationship between the data points (descriptors) and the outcome (enantioselectivity), and therefore, can 301 
be more suitable for modeling complex reactions. On the other hand, MLR can be more informative for the 302 
interpretation of the influence of each descriptor (e.g., catalyst structure, solvent, temperature), as the 303 
coefficients also contribute to their weight of influence. An SVR model is used for predicting an outcome, 304 
and the model itself, often used as a black box, is not easily interpreted. Each model has its strengths and 305 
weaknesses, and they are used based on the main goals of the modeling project as well as the existing 306 
data. It is worth noting that other regression models such as kernel ridge and partial least squares (PLS, 307 
also referred to as projection to latent structures) have also been used.63, 65-67  308 

Once a predictive model has been developed and tested, it should then be adopted by organic chemists. As 309 
the field remains in its infancy, most published ML models and methods are only made available in the form 310 
of scripts and methodologies. However, there is no available user-friendly package that can be used or 311 
models that can easily be trained for novel reactions by organic chemists with minimal expertise in 312 
computer science, although this may soon change.68  313 
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Using knowledge of potential TS structures (mechanism-based approach). When a hypothesis exists for 314 
the diastereomeric TSs of the stereoselective step, these TSs may be modeled and used directly to extract 315 
the energy difference between the diastereomeric TSs (ΔΔG‡), and consequently to compute selectivity. 316 
Although many methods to model TSs exist, this review is not meant to be exhaustive and will focus on the 317 
most recent and advanced methods available, as well as their applications to stereoselectivity predictions. 318 
For more detailed information on TS modeling for the prediction of enantioselectivity, we refer the readers 319 
to previous reviews.69-71 320 

Calculating the stereoselectivity from the energy difference ΔΔG‡ assumes that the reaction is under Curtin-321 
Hammett control (Figure 3). Simply put, the product ratio (e.g., R:S) reflects the energy difference between 322 
the two competing and irreversible diastereomeric TSs (i.e., ΔΔG‡). 323 

 324 
Figure 3. Curtin-Hammett principle in the context of asymmetric catalysis. C: catalyst, S: substrate, P: product, either 325 
R or S enantiomer. S+C(S) and S+C(R) are the catalyst substrate complexes leading to either the S or the R product, 326 
respectively. 327 

Since the difference in ΔΔG‡ between a moderately selective catalyst (~80 %ee) and an excellent catalyst 328 
(>97 %ee) is about 1 kcal/mol, there is a requirement for the methods to be accurate enough to be able to 329 
distinguish between them. Hence, a prediction error within 1 kcal/mol is targeted. While high level 330 
calculations may fulfill this criterion, an objective is to obtain predictions quicker than experimental data 331 
and using less expensive equipment. Unfortunately, the most accurate methods for modelling TSs (e.g., 332 
MP2, DFT) are demanding in both computational resources and time. It follows that they can hardly 333 
compete with high throughput experimentation which provides true data (not predictions) in a time-efficient 334 
manner. As a result, these high-level calculation methods are primarily used to investigate reactions post 335 
facto rather than for designing novel catalysts.72 Thus, faster alternative methods are necessary. 336 

The energy difference can be calculated from single, lowest lying conformers for each diastereomeric TS 337 
identified using a conformational search algorithm.73 Alternatively, multiple thermally accessible 338 
conformations, and their Boltzmann population distribution, can be used to obtain the energy difference. In 339 
both cases, the challenge of TS structure-based approaches is to identify and optimize all potential 340 
diastereomeric TSs of the reaction under investigation. In practice, the simplicity of the Curtin-Hammet 341 
principle is overshadowed by the number of possible TS conformations, or reactions for which multiple 342 
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steps could be rate-determining, or for which multiple competing mechanisms leading to opposite 343 
enantiomeric products exist.74 For these methods to be user-friendly, an automated conformational search 344 
algorithm is needed.  345 

Automated conformational sampling of TSs lies at the heart of tools like VIRTUAL CHEMIST/ACE, 346 
CatVS/Q2MM, QChASM/AARON (Quantum Chemistry Automation and Structure Manipulation/An 347 
Automated Reaction Optimizer for New catalysts),75, 76 or the chemical steering wheel.77 VIRTUAL 348 
CHEMIST/ACE, developed in our research group, is a self-contained, graphics user interface (GUI)-based 349 
asymmetric catalyst design platform.26 Designed with a chemist’s needs in mind, the underlying MM 350 
methodology has been thoroughly tested on seven widespread metal and organocatalyzed reactions, with 351 
an overall accuracy of ~ 1 kcal/mol (Box 3). To note, VIRTUAL CHEMIST was also applied to several scenarios 352 
that an experimental chemist might face in his project: one-by-one catalyst design, screening a library of 353 
catalysts, catalyst lead optimization through analogue search (detailed in the Evaluation of the Models, 354 
Methods, and Applications section), and identifying the substrate scope of a known catalyst, with 355 
demonstrated advantages over traditional asymmetric catalyst design.  356 

A similar asymmetric catalyst design platform is CatVS/Q2MM (Box 3), primarily focused on 357 
organometallic catalysts. Like VIRTUAL CHEMIST/ACE, CatVS/Q2MM is an MM-based method and was first 358 
benchmarked on known metal-catalyzed reactions (see Box 3), followed by its application in a “real-world” 359 
scenario, which yielded stereoselective ligands for the Rh-catalysed asymmetric hydrogenation of 360 
enamides (discussed in more detail in the Evaluation of the Models, Methods, and Applications section). 361 
Unlike VIRTUAL CHEMIST, the free version of CatVS does not include an interface and the calculations must 362 
be run from the command line environment. 363 

Apart from VIRTUAL CHEMIST and CatVS, another virtual platform for catalyst design is QChASM/AARON 364 
(Box 3). Contrary to both VIRTUAL CHEMIST and CatVS, QChASM/AARON is an interface to various open-365 
source tools for structural manipulation, TS search and optimization, as well as free energy calculations for 366 
%ee determination. While VIRTUAL CHEMIST and CatVS are primarily based on MM, the geometry optimization 367 
and energy calculations available through the QChASM/AARON interface are based on QM methods (either 368 
SEQM or DFT) accessible through software such as Gaussian,78 Psi4,79  or ORCA.80 QChASM employs a GUI 369 
plugin for the Chimera visualizer,81 which benefits experimental chemists with little to no expertise in 370 
command line environments.  371 

  372 
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 373 

Evaluation of the Models, Methods, and Applications 374 

This section is not meant to be exhaustive but, rather, to illustrate different uses of these methods.  375 

Catalyst design. The use of computers for asymmetric catalyst design has been a very promising field for 376 
two decades. For example, as early as 2003, Kozlowski and co-workers developed a model based on 377 
interaction fields (see Box 2) for dialkylzinc addition to aldehydes catalyzed by β-amino alcohols and 378 
applied it to identify novel catalysts.82 However, unexpectedly, twenty years later, while more validated 379 
methods are now available to the organic chemistry community, the applications to new catalysts design 380 
by groups other than the developers are still scarce. 381 

A representative example of catalyst design is the application of CatVS to the investigation and discovery 382 
of novel catalysts.20 TSFFs for several reactions including asymmetric dihydroxylation and rhodium-383 
catalyzed asymmetric hydrogenation had previously been developed using Q2MM.83 When Q2MM was 384 
integrated into CatVS, real-world case studies were carried out. Prediction of the (DHQD)2PHAL-catalyzed 385 
dihydroxylation of a dozen substrates revealed a mean unsigned error of about 0.6 kcal/mol, while the 386 
screening of rhodium ligands for Rh-catalyzed asymmetric hydrogenation of enamides was also 387 

Box 3. Computational platforms for asymmetric catalyst design. 
Asymmetric Catalyst Evaluation (ACE). ACE is an MM-based software that predicts the stereochemical outcome of asymmetric 

reactions by modeling the relevant TSs of ligand/substrate/catalyst systems. The stereoinducing step for these reactions must 

be known a priori. Part of the larger VIRTUAL CHEMIST platform for asymmetric catalyst design, ACE is built on two fundamental 

organic chemistry principles: 1) the Hammond-Leffler postulate and 2) the Curtin-Hammett principle. The TSs are built in 

accordance with principle 1) (i.e., the TS is most similar to the species to which it is closest in energy, either reactants or products, 

hence is a linear combination of reactant and product structures), while the enantiomeric excess is calculated according to 

principle 2) (i.e., the %ee is determined according to the difference in energies between diastereomeric TSs). The preferred 

stereoisomers are determined through a genetic algorithm that efficiently samples the conformational space around the 

ligand/substrate/catalyst system. ACE has been successfully tested on seven organo- and metal-catalyzed reactions commonly 

employed in asymmetric synthesis: Diels-Alder cycloaddition (with chiral auxiliaries and organocatalysts), Aldol reaction, Shi 

epoxidation, OsO4-based dihydroxylation of alkenes, ZnEt2-addition to aldehydes, and Rh-catalyzed hydrogenation of enamides, 

achieving accuracies of ~ 1 kcal/mol compared to experimental values.26 

Quantum-guided molecular mechanics (Q2MM). Q2MM is an MM-based methodology that uses automated FF parametrization 

to describe TSs and predict the outcome of stereochemical reactions. Similar to ACE, Q2MM is part of a larger catalyst design 

platform called CatVS. To date, CatVS/Q2MM has been primarily employed for organometallic catalysis, with the tested reactions 

involving Rh-catalyzed hydrogenation of enamides, OsO4 dihydroxylation of alkenes, ZnEt2-addition to aldehydes, Pd-catalyzed 

allylation, asymmetric redox-relay Heck reaction, and Ru-catalyzed hydrogenation of ketones.83, 99, 100 The FFs generated by Q2MM 

are reaction-specific and are known as TSFFs. Similar to ACE, the stereoinducing step must be known a priori. However, in contrast 

to ACE, Q2MM relies on reference data for a training set of model TSs that is subjected to QM calculations to determine the 

necessary parameters for FF parametrization. The uniqueness of Q2MM relies on the usage of the QM-derived Hessian matrix 

(i.e., the variations in energy with respect to geometry changes) to fit TSFF force constants for bonded parameters. Once the TSFF 

has been generated and validated for a reaction, Monte Carlo (MC) conformational searches are employed to find the relevant TSs 

and stereoisomers. The %ee’s are calculated by Boltzmann-averaging the relative energies of the identified conformations. Q2MM 

has been tested on four metal-catalyzed reactions, achieving correlation coefficients between 0.8-0.9 between predicted and 

experimental data. 

An Automated Reaction Optimizer for New catalysts (AARON). In contrast to both ACE and Q2MM, AARON is an open-source 

framework that interfaces various tools for structural manipulation, TS searches, and energy calculations. However, like ACE and 

Q2MM, AARON is part of a larger toolkit named QChASM. Designed with ease-of-use in mind, AARON uses a library of TS 

templates to construct TSs of novel ligand/substrate/catalyst systems, followed by TS optimization at a desired level of theory 

(semiempirical methods or DFT). Once the TSs have been located, conformational sampling is performed using a rule-based 

methodology that accounts for the torsional preferences of each substituent. These conformers are then subjected to 

thermochemistry calculations to obtain free energies, which are Boltzmann-averaged over the populations of conformers leading 

to specific enantiomers to predict the %ee. Representative applications of AARON include Pd-catalyzed Heck allenylation, Rh-

catalyzed hydrogenation of enamides, and the Lewis-base promoted propargylation of aromatic aldehydes. 
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performed. Remarkably, CatVS/Q2MM was able to distinguish between highly stereoselective and poorly 388 
stereoselective ligands. For one substrate, the four most stereoselective ligands were among the top 5 389 
predictions. Interestingly, the use of implicit solvent was not found to improve the accuracy, in line with 390 
what was observed with ACE.73 391 

Stereoselectivity and catalytic activity optimization. A key aspect of reaction optimization is tuning the 392 
enantioselectivity without compromising reactivity. This is especially important in the synthesis of active 393 
pharmaceutical ingredients (APIs), as the final product has strict purity requirements. For this reason, high 394 
yields of the desired product with low catalyst loading are of significance. An interesting application of this 395 
concept has been developed by Dotson et al.,57 who designed a computational workflow to fine-tune 396 
enantioselectivity while simultaneously accounting for catalyst/ligand reactivity in two metal-catalyzed 397 
reactions: 1) Pd-catalyzed Hayashi-Heck and 2) Rh-catalyzed alkene hydroformylation. These reactions use 398 
chiral bisphosphine ligands and are pharmaceutically relevant due to their use in the synthesis of a transient 399 
receptor potential ankyrin 1 (TRPA1) antagonist (Figure 4A, Compound 20).84  400 

The Dotson workflow began with assembling a set of over 550 chiral bisphosphine ligands, for which steric, 401 
electronic, and geometric descriptors were calculated with QM. For each reaction, a subset of ligands was 402 
selected for experiments to determine the regio-, enantioselectivity, and reaction yields/conversion. The 403 
latter was used to discriminate between reactive and unreactive complexes using two classification 404 
algorithms: a) a single-node decision tree for reaction 1)55 and b) a logistic regression classification 405 
algorithm for reaction 2). Consequently, for each reaction, the descriptors and associated experimental 406 
data of the reactive complexes were used to train a reaction/metal-agnostic MLR model capable of 407 
correlating input data to regio- and enantioselectivity. To verify whether the workflow can be used to 408 
prospectively screen for high conversion/high enantioselectivity ligands, the last step involved a virtual 409 
screen on the database of ligands not involved in training of the classification or MLR models. Applying the 410 
developed classification and MLR models on this database led to the identification of several ligands with 411 
excellent experimental conversion and enantioselectivity (Figure 4A). 412 

 413 
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 414 
Figure 4. A) Dotson workflow. B) Rinehart workflow. 415 
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Similar to Dotson et al., Rinehart et al. developed a model to predict enantioselectivity, with a focus on the 416 
chiral phosphoric acid (CPA) catalyzed thiol nucleophilic addition to imines.63, 65 The goals of this work were 417 
to 1) describe the components of the reactions using descriptors that are agnostic to the mechanism and 418 
2) develop a predictive SVR model without an assumption of a shared mechanism between the different 419 
data points. The final model related the catalyst structure to its function (enantioselectivity), in any reaction 420 
catalyzed by the input catalyst scaffold. 421 

For this reason, the descriptors of choice were ASO for the portrayal of steric information, and ESPmax for 422 
the electronic information.19, 63, 85 These descriptors are more abstract than the ones commonly used when 423 
building an MLR model (e.g., NBO charges, cone angles). However, the emphasis of this work is on 424 
descriptors that have been previously shown to work well,85 as opposed to exploring a wide range of 425 
descriptors that relate to the reaction mechanism. Therefore, the choice of an SVR model was also 426 
appropriate. As mentioned in the section Models, the descriptors appearing in the final SVR model cannot 427 
generally be used to gain insights into the reaction mechanism and the factors that influence 428 
enantioselectivity. Thus, there is no underlying assumption of a shared mechanism/stereoselective step. 429 
Once the descriptor library was ready, the next step in the workflow was the use of an algorithm to divide 430 
the dataset into training and testing sets, as the more diverse the data the model is trained on, the more 431 
likely it is to be transferable to new data points. The training set, termed a universal training set (UTS), 432 
represents the variability of the chemical space of the full library.66  433 

With a library of 1,075 unique reactions consisting of 43 chiral phosphoric acids, 5 thiol nucleophiles, and 434 
5 imine electrophiles (25 possible products) the bulk of the work consisted of developing and testing 435 
different descriptor combinations (steric and electronic) with different models, as well as developing the 436 
algorithm for training set selection. Eventually the best performing model and descriptors (SVR with ASO 437 
and ESPMAX) were chosen. Interestingly, Rinehart et al demonstrated the ability of the model to predict highly 438 
enantioselective catalysts, even when the training set consists of data points of 80 %ee or less. This is a 439 
significant achievement, as most asymmetric catalyst developments start with only lower selectivity 440 
catalysts. 441 

The last representative example we shall discuss in this sub-section was described by our research group 442 
during the validation of VIRTUAL CHEMIST.26 In this example, we replicated in silico the excellent experimental 443 
study by Gerosa et al.86 that aimed to identify selective chiral pyrrolidines as organocatalysts for the Diels-444 
Alder cycloaddition. In this report, 22 catalysts were synthesized and tested for their ability to catalyze the 445 
Diels-Alder cycloaddition between (E)-cinnamaldehyde and cyclopentadiene. The preparation of these 446 
potential levoglucosenone-derived organocatalysts required complex synthesis, separation, and 447 
characterization of stereoisomers. We developed a workflow using the modular workflow interface in 448 
VIRTUAL CHEMIST to simulate the entire process including the 1) parallel synthesis of a small library (ca. 449 
500+) of these organocatalysts, including the ones tested by Gerosa et al. and 2) evaluation of the induced 450 
stereoselectivities. We demonstrated that VIRTUAL CHEMIST not only reproduced the process successfully 451 
within just a few days, but accurately identified the most stereoselective catalysts determined 452 
experimentally. 453 

Guiding asymmetric synthesis. An important aspect about model development is its transferability to out-454 
of-set reaction components, and most importantly the application of the model for a synthesis project. The 455 
work by Betinol et al.,60 exemplifies this scenario, by demonstrating how previously developed statistical 456 
models can be extrapolated to structurally diverse substrates. Four goals were set at the onset of this 457 
research project: 1) application of an existing model to the synthesis of complex scaffolds; 2) application 458 
to the synthesis of a natural product; 3) preferred catalyst for a given reaction; 4) preferred route (reaction 459 
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type) for the synthesis of a given product. For Goal #1 Betinol et al. investigated the CPA catalyzed 460 
nucleophilic addition to iminiums.17, 61 The model was tested on three reported reactions for the 461 
functionalization of indoles (as relevant scaffolds for biological compounds) that are catalyzed by CPAs. 462 
Importantly, these three reactions are not represented in the training set. Nonetheless, the model was able 463 
to predict the enantioselectivity with excellent accuracies (average errors between 0.29-0.54 kcal/mol). 464 
Next, for Goal #2 Betinol et al. tested a model designed for secondary amine catalyzed reactions,87 and 465 
demonstrated the transferability of their model to new reactions with more complicated conditions that 466 
were not represented in their training set. 467 

 468 
Figure 5. Betinol and co-workers’ work on the application of existing models to different scenarios. 469 

With both models successfully extrapolated to more complex reactions, Betinol et al. moved on to goals #3 470 
and #4. Selecting the optimal catalyst for a given reaction (Goal #3) was tested on the asymmetric 471 
epoxidation of cinnamaldehyde, while selecting the optimal catalyst to synthesize a product (Goal #4) was 472 
evaluated on the synthesis of diols via two different pathways. The results of both studies were highly 473 
encouraging, with predictions being within 1 %ee of experimental results. 474 
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Conclusions and Perspectives 475 

With the advancement of methods and algorithms for predicting catalyst enantioselectivities, 476 
computational asymmetric catalysis is a ripe area for further research. In general, the different approaches 477 
used to predict these enantioselectivities are broadly distinguished as ones where the mechanism is 478 
unknown (statistical models and ML), and ones where TS information for the enantioselective step is 479 
(partially) known (QM, MM). Regrettably, the field still requires some understanding of the underlying 480 
computational methods and theory before being adopted integrally by experimentalists. Consequently, 481 
practical applications of these methods are yet to come. This situation leads most organic chemistry 482 
laboratories to continue with employing the conventional, albeit laborious and time-intensive technique of 483 
stepwise optimization. As computational methods continue to evolve and their accessibility improves, we 484 
envision a future where these tools will be completely integrated in the toolbox of experimentalists, and 485 
where the trained models or platforms will be able to improve the discovery rate and unveil new insights in 486 
asymmetric catalysis. 487 

With the help of high-throughput experimentation (HTE) for asymmetric catalysis, reproducibility and 488 
reliability of data will increase and facilitate the development and integration of predictive computational 489 
tools. Automated HTE systems have played a crucial role in accelerating catalyst screening processes, 490 
generating vast datasets for diverse reaction conditions.88 Integrating computational models, as we have 491 
described throughout this review, alongside high-throughput screening will not only help overcome 492 
limitations related to the number of variables that can be tested (temperature, solvent etc.), but will also 493 
contribute to the generalization and robustness of the models developed on datasets gathered under the 494 
same experimental conditions. This intersection of automated experimental and computational 495 
approaches can then enhance the global efficiency of asymmetric catalysis research, leading to more 496 
accurate catalyst design strategies and predictive models.  497 

Supporting Information 498 

Commonly computed descriptors in the conceptual DFT framework (Table S1). Examples of methods to 499 
selected features for training ML models (Table S2). A list of available datasets for asymmetric catalysis, 500 
curated from the literature (Excel format). 501 

Acknowledgements 502 

We thank NSERC (Discovery programme) for financial support. 503 

Author contributions 504 

SP, MBP, and NM devised the structure of the review. SP collected, curated, sorted, and categorized the 505 
references. SP, JG, MBP, NM curated the datasets. SP led the writing of the review (including creating the 506 
figures), while JG, MBP and NM contributed to the writing of this manuscript. 507 

ORCID 508 

Sharon Pinus – 0000-0001-9771-3098 509 
Jerome Genzling – 0009-0007-4728-1478 510 
Mihai Burai-Patrascu – 0000-0001-9289-7887 511 
Nicolas Moitessier – 0000-0001-6933-2079 512 

https://doi.org/10.26434/chemrxiv-2023-t29k7 ORCID: https://orcid.org/0000-0001-6933-2079 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-t29k7
https://orcid.org/0000-0001-6933-2079
https://creativecommons.org/licenses/by/4.0/


20 
 

Conflict of Interest 513 

VIRTUAL CHEMIST is distributed by Molecular Forecaster (free of charge for academic research) co-founded 514 
by NM. MBP is a senior scientist at Molecular Forecaster. 515 

References 516 

(1) Moitessier, N.; Pottel, J.; Therrien, E.; Englebienne, P.; Liu, Z.; Tomberg, A.; Corbeil, C. R. Medicinal 517 
Chemistry Projects Requiring Imaginative Structure-Based Drug Design Methods. Accounts of Chemical 518 
Research 2016, 49 (9), 1646-1657. DOI: 10.1021/acs.accounts.6b00185. 519 
(2) Shen, Y.; Borowski, J. E.; Hardy, M. A.; Sarpong, R.; Doyle, A. G.; Cernak, T. Automation and computer-520 
assisted planning for chemical synthesis. Nature Reviews Methods Primers 2021, 1 (1). DOI: 521 
10.1038/s43586-021-00022-5. 522 
(3) Schwaller, P.; Probst, D.; Vaucher, A. C.; Nair, V. H.; Kreutter, D.; Laino, T.; Reymond, J.-L. Mapping the 523 
space of chemical reactions using attention-based neural networks. Nature machine intelligence 2021, 3 524 
(2), 144-152. 525 
(4) Coley, C. W.; Green, W. H.; Jensen, K. F. Machine Learning in Computer-Aided Synthesis Planning. 526 
Accounts of Chemical Research 2018, 51 (5), 1281-1289. DOI: 10.1021/acs.accounts.8b00087. 527 
(5) Molga, K.; Szymkuć, S.; Grzybowski, B. A. Chemist Ex Machina: Advanced Synthesis Planning by 528 
Computers. Accounts of Chemical Research 2021, 54 (5), 1094-1106. DOI: 10.1021/acs.accounts.0c00714. 529 
(6) Schwaller, P.; Petraglia, R.; Zullo, V.; Nair, V. H.; Haeuselmann, R. A.; Pisoni, R.; Bekas, C.; Iuliano, A.; Laino, 530 
T. Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration 531 
strategy. Chemical Science 2020, 11 (12), 3316-3325, 10.1039/C9SC05704H. DOI: 10.1039/C9SC05704H. 532 
(7) Klucznik, T.; Mikulak-Klucznik, B.; McCormack, M. P.; Lima, H.; Szymkuć, S.; Bhowmick, M.; Molga, K.; 533 
Zhou, Y.; Rickershauser, L.; Gajewska, E. P.; et al. Efficient Syntheses of Diverse, Medicinally Relevant Targets 534 
Planned by Computer and Executed in the Laboratory. Chem 2018, 4 (3), 522-532. DOI: 535 
https://doi.org/10.1016/j.chempr.2018.02.002. 536 
(8) Mikulak-Klucznik, B.; Gołębiowska, P.; Bayly, A. A.; Popik, O.; Klucznik, T.; Szymkuć, S.; Gajewska, E. P.; 537 
Dittwald, P.; Staszewska-Krajewska, O.; Beker, W.; et al. Computational planning of the synthesis of complex 538 
natural products. Nature 2020, 588 (7836), 83-88. DOI: 10.1038/s41586-020-2855-y. 539 
(9) Genheden, S. E., O.; Bjerrum, E. J. A Quick Policy to Filter Reactions Based on Feasibility in AI-Guided 540 
Retrosynthetic Planning. ChemRxiv. This content is a preprint and has not been peer-reviewed. 2020. DOI: 541 
https://doi.org/10.26434/chemrxiv.13280495.v1. 542 
(10) Żurański, A. M.; Martinez Alvarado, J. I.; Shields, B. J.; Doyle, A. G. Predicting Reaction Yields via 543 
Supervised Learning. Accounts of Chemical Research 2021, 54 (8), 1856-1865. DOI: 544 
10.1021/acs.accounts.0c00770. 545 
(11) Schwaller, P.; Vaucher, A. C.; Laino, T.; Reymond, J.-L. Prediction of chemical reaction yields using deep 546 
learning. Machine Learning: Science and Technology 2021, 2 (1), 015016. DOI: 10.1088/2632-2153/abc81d. 547 
(12) Anstine, D. M.; Isayev, O. Generative Models as an Emerging Paradigm in the Chemical Sciences. 548 
Journal of the American Chemical Society 2023, 145 (16), 8736-8750. DOI: 10.1021/jacs.2c13467. 549 
(13) Ahneman, D. T.; Estrada, J. G.; Lin, S.; Dreher, S. D.; Doyle, A. G. Predicting reaction performance in C–550 
N cross-coupling using machine learning. Science 2018, 360 (6385), 186-190. DOI: 551 
10.1126/science.aar5169. 552 
(14) Guan, Y.; Coley, C. W.; Wu, H.; Ranasinghe, D.; Heid, E.; Struble, T. J.; Pattanaik, L.; Green, W. H.; Jensen, 553 
K. F. Regio-selectivity prediction with a machine-learned reaction representation and on-the-fly quantum 554 
mechanical descriptors. Chemical Science 2021, 12 (6), 2198-2208, 10.1039/D0SC04823B. DOI: 555 
10.1039/D0SC04823B. 556 
(15) Jorner, K.; Tomberg, A.; Bauer, C.; Sköld, C.; Norrby, P.-O. Organic reactivity from mechanism to machine 557 
learning. Nature Reviews Chemistry 2021, 5 (4), 240-255. DOI: 10.1038/s41570-021-00260-x. 558 
(16) Zhao, S.; Gensch, T.; Murray, B.; Niemeyer, Z. L.; Sigman, M. S.; Biscoe, M. R. Enantiodivergent Pd-559 
catalyzed C–C bond formation enabled through ligand parameterization. Science 2018, 362 (6415), 670-560 
674. DOI: 10.1126/science.aat2299  561 

https://doi.org/10.26434/chemrxiv-2023-t29k7 ORCID: https://orcid.org/0000-0001-6933-2079 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.1016/j.chempr.2018.02.002
https://doi.org/10.26434/chemrxiv.13280495.v1
https://doi.org/10.26434/chemrxiv-2023-t29k7
https://orcid.org/0000-0001-6933-2079
https://creativecommons.org/licenses/by/4.0/


21 
 

(17) Reid, J. P.; Sigman, M. S. Holistic prediction of enantioselectivity in asymmetric catalysis. Nature 2019, 562 
571 (7765), 343-348. DOI: 10.1038/s41586-019-1384-z. 563 
(18) Reid, J. P.; Sigman, M. S. Comparing quantitative prediction methods for the discovery of small-564 
molecule chiral catalysts. Nature Reviews Chemistry 2018, 2 (10), 290-305. DOI: 10.1038/s41570-018-0040-565 
8. 566 
(19) Zahrt, A. F.; Henle, J. J.; Rose, B. T.; Wang, Y.; Darrow, W. T.; Denmark, S. E. Prediction of higher-selectivity 567 
catalysts by computer-driven workflow and machine learning. Science 2019, 363 (6424), eaau5631. DOI: 568 
10.1126/science.aau5631. 569 
(20) Rosales, A. R.; Wahlers, J.; Limé, E.; Meadows, R. E.; Leslie, K. W.; Savin, R.; Bell, F.; Hansen, E.; Helquist, 570 
P.; Munday, R. H.; et al. Rapid virtual screening of enantioselective catalysts using CatVS. Nature Catalysis 571 
2018, 2 (1), 41-45. DOI: 10.1038/s41929-018-0193-3. 572 
(21) Gensch, T.; dos Passos Gomes, G.; Friederich, P.; Peters, E.; Gaudin, T.; Pollice, R.; Jorner, K.; Nigam, A.; 573 
Lindner-D’Addario, M.; Sigman, M. S.; et al. A Comprehensive Discovery Platform for Organophosphorus 574 
Ligands for Catalysis. Journal of the American Chemical Society 2022, 144 (3), 1205-1217. DOI: 575 
10.1021/jacs.1c09718. 576 
(22) Bell, E. L.; Finnigan, W.; France, S. P.; Green, A. P.; Hayes, M. A.; Hepworth, L. J.; Lovelock, S. L.; Niikura, 577 
H.; Osuna, S.; Romero, E.; et al. Biocatalysis. Nature Reviews Methods Primers 2021, 1 (1), 46. DOI: 578 
10.1038/s43586-021-00044-z. 579 
(23) Pyser, J. B.; Chakrabarty, S.; Romero, E. O.; Narayan, A. R. H. State-of-the-Art Biocatalysis. ACS Central 580 
Science 2021, 7 (7), 1105-1116. DOI: 10.1021/acscentsci.1c00273. 581 
(24) Finnigan, W.; Hepworth, L. J.; Flitsch, S. L.; Turner, N. J. RetroBioCat as a computer-aided synthesis 582 
planning tool for biocatalytic reactions and cascades. Nature Catalysis 2021, 4 (2), 98-104. DOI: 583 
10.1038/s41929-020-00556-z. 584 
(25) Gallarati, S.; van Gerwen, P.; Laplaza, R.; Vela, S.; Fabrizio, A.; Corminboeuf, C. OSCAR: an extensive 585 
repository of chemically and functionally diverse organocatalysts. Chemical Science 2022, 13 (46), 13782-586 
13794, 10.1039/D2SC04251G. DOI: 10.1039/D2SC04251G. 587 
(26) Burai Patrascu, M.; Pottel, J.; Pinus, S.; Bezanson, M.; Norrby, P. O.; Moitessier, N. From desktop to 588 
benchtop with automated computational workflows for computer-aided design in asymmetric catalysis. 589 
Nat. Catal. 2020, 3 (7), 574-584, Article. DOI: 10.1038/s41929-020-0468-3. 590 
(27) Gallegos, L. C.; Luchini, G.; St. John, P. C.; Kim, S.; Paton, R. S. Importance of Engineered and Learned 591 
Molecular Representations in Predicting Organic Reactivity, Selectivity, and Chemical Properties. Accounts 592 
of Chemical Research 2021, 54 (4), 827-836. DOI: 10.1021/acs.accounts.0c00745. 593 
(28) Brethomé, A. V.; Fletcher, S. P.; Paton, R. S. Conformational Effects on Physical-Organic Descriptors: 594 
The Case of Sterimol Steric Parameters. ACS Catalysis 2019, 9 (3), 2313-2323. DOI: 595 
10.1021/acscatal.8b04043. 596 
(29) Warshel, A.; Weiss, R. M. An empirical valence bond approach for comparing reactions in solutions and 597 
in enzymes. Journal of the American Chemical Society 1980, 102 (20), 6218-6226. 598 
(30) Kim, Y.; Corchado, J. C.; Villà, J.; Xing, J.; Truhlar, D. G. Multiconfiguration molecular mechanics 599 
algorithm for potential energy surfaces of chemical reactions. The Journal of Chemical Physics 2000, 112 600 
(6), 2718-2735. DOI: 10.1063/1.480846. 601 
(31) Jensen, F. Locating minima on seams of intersecting potential energy surfaces. An application to 602 
transition structure modeling. Journal of the American Chemical Society 1992, 114 (5), 1596-1603. 603 
(32) Pairault, N.; Zhu, H.; Jansen, D.; Huber, A.; Daniliuc, C. G.; Grimme, S.; Niemeyer, J. Heterobifunctional 604 
Rotaxanes for Asymmetric Catalysis. Angewandte Chemie International Edition 2020, 59 (13), 5102-5107. 605 
DOI: https://doi.org/10.1002/anie.201913781  606 
(33) Minenkov, Y.; Sharapa, D. I.; Cavallo, L. Application of Semiempirical Methods to Transition Metal 607 
Complexes: Fast Results but Hard-to-Predict Accuracy. Journal of Chemical Theory and Computation 2018, 608 
14 (7), 3428-3439. DOI: 10.1021/acs.jctc.8b00018. 609 
(34) Gallarati, S.; Laplaza, R.; Corminboeuf, C. Harvesting the fragment-based nature of bifunctional 610 
organocatalysts to enhance their activity. Organic Chemistry Frontiers 2022, 9 (15), 4041-4051, 611 
10.1039/D2QO00550F. DOI: 10.1039/D2QO00550F. 612 
(35) Harper, K. C.; Bess, E. N.; Sigman, M. S. Multidimensional steric parameters in the analysis of 613 
asymmetric catalytic reactions. Nature Chemistry 2012, 4 (5), 366-374. DOI: 10.1038/nchem.1297. 614 

https://doi.org/10.26434/chemrxiv-2023-t29k7 ORCID: https://orcid.org/0000-0001-6933-2079 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.1002/anie.201913781
https://doi.org/10.26434/chemrxiv-2023-t29k7
https://orcid.org/0000-0001-6933-2079
https://creativecommons.org/licenses/by/4.0/


22 
 

(36) Metsänen, T. T.; Lexa, K. W.; Santiago, C. B.; Chung, C. K.; Xu, Y.; Liu, Z.; Humphrey, G. R.; Ruck, R. T.; 615 
Sherer, E. C.; Sigman, M. S. Combining traditional 2D and modern physical organic-derived descriptors to 616 
predict enhanced enantioselectivity for the key aza-Michael conjugate addition in the synthesis of 617 
Prevymis™ (letermovir). Chemical Science 2018, 9 (34), 6922-6927, 10.1039/C8SC02089B. DOI: 618 
10.1039/C8SC02089B. 619 
(37) Maji, R.; Mallojjala, S. C.; Wheeler, S. E. Electrostatic Interactions in Asymmetric Organocatalysis. 620 
Accounts of Chemical Research 2023, 56 (14), 1990-2000. DOI: 10.1021/acs.accounts.3c00198. 621 
(38) Wang, S.; Jiang, J. Interpretable Catalysis Models Using Machine Learning with Spectroscopic 622 
Descriptors. ACS Catalysis 2023, 13 (11), 7428-7436. DOI: 10.1021/acscatal.3c00611. 623 
(39) Liu, S. Conceptual density functional theory: Towards a new chemical reactivity theory; John Wiley & 624 
Sons, 2022. 625 
(40) Yap, C. W. PaDEL-descriptor: An open source software to calculate molecular descriptors and 626 
fingerprints. Journal of Computational Chemistry 2011, 32 (7), 1466-1474. DOI: 627 
https://doi.org/10.1002/jcc.21707. 628 
(41) Open-Source Cheminformatics Software. https://www.rdkit.org/. 629 
(42) See, X. Y.; Wen, X.; Wheeler, T. A.; Klein, C. K.; Goodpaster, J. D.; Reiner, B. R.; Tonks, I. A. Iterative 630 
Supervised Principal Component Analysis Driven Ligand Design for Regioselective Ti-Catalyzed Pyrrole 631 
Synthesis. ACS Catalysis 2020, 10 (22), 13504-13517. DOI: 10.1021/acscatal.0c03939. 632 
(43) Betinol, I. O.; Lai, J.; Thakur, S.; Reid, J. P. A Data-Driven Workflow for Assigning and Predicting 633 
Generality in Asymmetric Catalysis. Journal of the American Chemical Society 2023, 145 (23), 12870-12883. 634 
DOI: 10.1021/jacs.3c03989. 635 
(44) Pudjihartono, N.; Fadason, T.; Kempa-Liehr, A. W.; O'Sullivan, J. M. A Review of Feature Selection 636 
Methods for Machine Learning-Based Disease Risk Prediction. Frontiers in Bioinformatics 2022, 2, Review. 637 
DOI: 10.3389/fbinf.2022.927312. 638 
(45) Bro, R.; Smilde, A. K. Principal component analysis. Analytical Methods 2014, 6 (9), 2812-2831, 639 
10.1039/C3AY41907J. DOI: 10.1039/C3AY41907J. 640 
(46) Werth, J.; Sigman, M. S. Connecting and Analyzing Enantioselective Bifunctional Hydrogen Bond Donor 641 
Catalysis Using Data Science Tools. Journal of the American Chemical Society 2020, 142 (38), 16382-16391. 642 
DOI: 10.1021/jacs.0c06905. 643 
(47) Tetko, I. V.; Gasteiger, J.; Todeschini, R.; Mauri, A.; Livingstone, D.; Ertl, P.; Palyulin, V. A.; Radchenko, E. 644 
V.; Zefirov, N. S.; Makarenko, A. S.; et al. Virtual Computational Chemistry Laboratory – Design and 645 
Description. Journal of Computer-Aided Molecular Design 2005, 19 (6), 453-463. DOI: 10.1007/s10822-005-646 
8694-y. 647 
(48) Moriwaki, H.; Tian, Y.-S.; Kawashita, N.; Takagi, T. Mordred: a molecular descriptor calculator. Journal 648 
of Cheminformatics 2018, 10 (1), 4. DOI: 10.1186/s13321-018-0258-y. 649 
(49) Zahrt, A. F.; Athavale, S. V.; Denmark, S. E. Quantitative Structure-Selectivity Relationships in 650 
Enantioselective Catalysis: Past, Present, and Future. Chem Rev 2020, 120 (3), 1620-1689. DOI: 651 
10.1021/acs.chemrev.9b00425. 652 
(50) Hopfinger, A. J.; Wang, S.; Tokarski, J. S.; Jin, B.; Albuquerque, M.; Madhav, P. J.; Duraiswami, C. 653 
Construction of 3D-QSAR Models Using the 4D-QSAR Analysis Formalism. Journal of the American 654 
Chemical Society 1997, 119 (43), 10509-10524. DOI: 10.1021/ja9718937. 655 
(51) Williams, W. L.; Zeng, L.; Gensch, T.; Sigman, M. S.; Doyle, A. G.; Anslyn, E. V. The Evolution of Data-656 
Driven Modeling in Organic Chemistry. ACS Central Science 2021, 7 (10), 1622-1637. DOI: 657 
10.1021/acscentsci.1c00535. 658 
(52) Sigman, M. S.; Harper, K. C.; Bess, E. N.; Milo, A. The Development of Multidimensional Analysis Tools 659 
for Asymmetric Catalysis and Beyond. Accounts of Chemical Research 2016, 49 (6), 1292-1301. DOI: 660 
10.1021/acs.accounts.6b00194. 661 
(53) Zahrt, A. F.; Henle, J. J.; Denmark, S. E. Cautionary Guidelines for Machine Learning Studies with 662 
Combinatorial Datasets. ACS Combinatorial Science 2020, 22 (11), 586-591. DOI: 663 
10.1021/acscombsci.0c00118. 664 
(54) Crawford, J. M.; Kingston, C.; Toste, F. D.; Sigman, M. S. Data Science Meets Physical Organic 665 
Chemistry. Accounts of Chemical Research 2021, 54 (16), 3136-3148. DOI: 10.1021/acs.accounts.1c00285. 666 

https://doi.org/10.26434/chemrxiv-2023-t29k7 ORCID: https://orcid.org/0000-0001-6933-2079 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.1002/jcc.21707
https://www.rdkit.org/
https://doi.org/10.26434/chemrxiv-2023-t29k7
https://orcid.org/0000-0001-6933-2079
https://creativecommons.org/licenses/by/4.0/


23 
 

(55) Santiago, C. B.; Guo, J.-Y.; Sigman, M. S. Predictive and mechanistic multivariate linear regression 667 
models for reaction development. Chemical Science 2018, 9 (9), 2398-2412, 10.1039/C7SC04679K. DOI: 668 
10.1039/C7SC04679K. 669 
(56) van Dijk, L.; Haas, B. C.; Lim, N.-K.; Clagg, K.; Dotson, J. J.; Treacy, S. M.; Piechowicz, K. A.; Roytman, V. 670 
A.; Zhang, H.; Toste, F. D.; et al. Data Science-Enabled Palladium-Catalyzed Enantioselective Aryl-671 
Carbonylation of Sulfonimidamides. Journal of the American Chemical Society 2023, 145 (38), 20959-20967. 672 
DOI: 10.1021/jacs.3c06674. 673 
(57) Dotson, J. J.; van Dijk, L.; Timmerman, J. C.; Grosslight, S.; Walroth, R. C.; Gosselin, F.; Püntener, K.; 674 
Mack, K. A.; Sigman, M. S. Data-Driven Multi-Objective Optimization Tactics for Catalytic Asymmetric 675 
Reactions Using Bisphosphine Ligands. Journal of the American Chemical Society 2023, 145 (1), 110-121. 676 
DOI: 10.1021/jacs.2c08513. 677 
(58) Xu, J.; Grosslight, S.; Mack, K. A.; Nguyen, S. C.; Clagg, K.; Lim, N.-K.; Timmerman, J. C.; Shen, J.; White, 678 
N. A.; Sirois, L. E.; et al. Atroposelective Negishi Coupling Optimization Guided by Multivariate Linear 679 
Regression Analysis: Asymmetric Synthesis of KRAS G12C Covalent Inhibitor GDC-6036. Journal of the 680 
American Chemical Society 2022. DOI: 10.1021/jacs.2c09917. 681 
(59) Newman-Stonebraker, S. H.; Smith, S. R.; Borowski, J. E.; Peters, E.; Gensch, T.; Johnson, H. C.; Sigman, 682 
M. S.; Doyle, A. G. Univariate classification of phosphine ligation state and reactivity in cross-coupling 683 
catalysis. Science 2021, 374 (6565), 301-308. DOI: 10.1126/science.abj4213. 684 
(60) Betinol, I. O.; Kuang, Y.; Reid, J. P. Guiding Target Synthesis with Statistical Modeling Tools: A Case 685 
Study in Organocatalysis. Organic Letters 2022, 24 (7), 1429-1433. DOI: 10.1021/acs.orglett.1c04134. 686 
(61) Shoja, A.; Zhai, J.; Reid, J. P. Comprehensive Stereochemical Models for Selectivity Prediction in 687 
Diverse Chiral Phosphate-Catalyzed Reaction Space. ACS Catalysis 2021, 11 (19), 11897-11905. DOI: 688 
10.1021/acscatal.1c03520. 689 
(62) Liu, X. H.; Song, H. Y.; Ma, X. H.; Lear, M. J.; Chen, Y. Z. Virtual screening prediction of new potential 690 
organocatalysts for direct aldol reactions. Journal of Molecular Catalysis A: Chemical 2010, 319 (1), 114-691 
118. DOI: 10.1016/j.molcata.2009.12.008. 692 
(63) Henle, J. J.; Zahrt, A. F.; Rose, B. T.; Darrow, W. T.; Wang, Y.; Denmark, S. E. Development of a Computer-693 
Guided Workflow for Catalyst Optimization. Descriptor Validation, Subset Selection, and Training Set 694 
Analysis. Journal of the American Chemical Society 2020, 142 (26), 11578-11592. DOI: 695 
10.1021/jacs.0c04715. 696 
(64) Rinehart, N. I.; Zahrt, A. F.; Denmark, S. E. Leveraging Machine Learning for Enantioselective Catalysis: 697 
From Dream to Reality. Chimia (Aarau) 2021, 75 (7), 592-597. DOI: 10.2533/chimia.2021.592. 698 
(65) Rinehart, N. I.; Zahrt, A. F.; Henle, J. J.; Denmark, S. E. Dreams, False Starts, Dead Ends, and Redemption: 699 
A Chronicle of the Evolution of a Chemoinformatic Workflow for the Optimization of Enantioselective 700 
Catalysts. Accounts of Chemical Research 2021, 54 (9), 2041-2054. DOI: 10.1021/acs.accounts.0c00826. 701 
(66) Zahrt, A. F.; Rose, B. T.; Darrow, W. T.; Henle, J. J.; Denmark, S. E. Computational methods for training 702 
set selection and error assessment applied to catalyst design: guidelines for deciding which reactions to 703 
run first and which to run next. Reaction Chemistry & Engineering 2021, 6 (4), 694-708, DOI: 704 
10.1039/D1RE00013F. 705 
(67) Lipkowitz, K. B.; Pradhan, M. Computational Studies of Chiral Catalysts:  A Comparative Molecular Field 706 
Analysis of an Asymmetric Diels−Alder Reaction with Catalysts Containing Bisoxazoline or 707 
Phosphinooxazoline Ligands. The Journal of Organic Chemistry 2003, 68 (12), 4648-4656. DOI: 708 
10.1021/jo0267697. 709 
(68) Dalmau, D. A. R., J. V. ROBERT: Bridging the Gap between Machine Learning and Chemistry. ChemRxiv 710 
2023. This content is a preprint and has not been peer-reviewed. 2023. 711 
(69) Peng, Q.; Duarte, F.; Paton, R. S. Computing organic stereoselectivity - from concepts to quantitative 712 
calculations and predictions. Chem Soc Rev 2016, 45 (22), 6093-6107. DOI: 10.1039/c6cs00573j. 713 
(70) Pottel, J.; Moitessier, N. Efficient Transition State Modeling Using Molecular Mechanics Force Fields 714 
for the Everyday Chemist. In Reviews in Computational Chemistry, Reviews in Computational Chemistry, 715 
2016; pp 152-185. 716 
(71) Maloney, M. P.; Stenfors, B. A.; Helquist, P.; Norrby, P.-O.; Wiest, O. Interplay of Computation and 717 
Experiment in Enantioselective Catalysis: Rationalization, Prediction, and─Correction? ACS Catalysis 2023, 718 
13 (21), 14285-14299. DOI: 10.1021/acscatal.3c03921. 719 

https://doi.org/10.26434/chemrxiv-2023-t29k7 ORCID: https://orcid.org/0000-0001-6933-2079 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-t29k7
https://orcid.org/0000-0001-6933-2079
https://creativecommons.org/licenses/by/4.0/


24 
 

(72) Bolitho, Elizabeth M.; Coverdale, J. P. C.; Wolny, J. A.; Schünemann, V.; Sadler, P. J. Density functional 720 
theory investigation of Ru(ii) and Os(ii) asymmetric transfer hydrogenation catalysts. Faraday Discussions 721 
2022, 234 (0), 264-283, 10.1039/D1FD00075F. DOI: 10.1039/D1FD00075F. 722 
(73) Weill, N.; Corbeil, C. R.; De Schutter, J. W.; Moitessier, N. Toward a computational tool predicting the 723 
stereochemical outcome of asymmetric reactions: Development of the molecular mechanics-based 724 
program ACE and application to asymmetric epoxidation reactions. Journal of Computational Chemistry 725 
2011, 32 (13), 2878-2889, https://doi.org/10.1002/jcc.21869. 726 
(74) Verdolino, V.; Forbes, A.; Helquist, P.; Norrby, P.-O.; Wiest, O. On the mechanism of the rhodium catalyzed 727 
acrylamide hydrogenation. Journal of Molecular Catalysis A: Chemical 2010, 324 (1), 9-14. DOI: 728 
https://doi.org/10.1016/j.molcata.2010.02.026. 729 
(75) Ingman, V. M.; Schaefer, A. J.; Andreola, L. R.; Wheeler, S. E. QChASM: Quantum chemistry automation 730 
and structure manipulation. WIREs Computational Molecular Science 2021, 11 (4), e1510. DOI: 731 
https://doi.org/10.1002/wcms.1510. 732 
(76) Guan, Y.; Ingman, V. M.; Rooks, B. J.; Wheeler, S. E. AARON: An Automated Reaction Optimizer for New 733 
Catalysts. Journal of Chemical Theory and Computation 2018, 14 (10), 5249-5261. DOI: 734 
10.1021/acs.jctc.8b00578. 735 
(77) Steiner, M. R., Markus. Navigating chemical reaction space with a steering wheel. arXiv. This article is 736 
a preprint and has not been peer reviewed 2023. DOI: https://doi.org/10.48550/arXiv.2308.16499. 737 
(78) Gaussian 16 Rev. C.01; Wallingford, CT, 2016. 738 
(79) Smith, D. G. A.; Burns, L. A.; Simmonett, A. C.; Parrish, R. M.; Schieber, M. C.; Galvelis, R.; Kraus, P.; Kruse, 739 
H.; Remigio, R. D.; Alenaizan, A.; et al. Psi4 1.4: Open-source software for high-throughput quantum 740 
chemistry. The Journal of Chemical Physics 2020, 152 (18). DOI: 10.1063/5.0006002. 741 
(80) Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. The 742 
Journal of Chemical Physics 2020, 152 (22), 224108. DOI: 10.1063/5.0004608. 743 
(81) Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C. and Ferrin, T.E. 744 
(2004) UCSF Chimera—A Visualization System for Exploratory Research and Analysis. Journal of 745 
Computational Chemistry, 25, 1605-1612. 746 
https://doi.org/10.1002/jcc.20084. 747 
(82) Kozlowski, M. C.; Dixon, S. L.; Panda, M.; Lauri, G. Quantum Mechanical Models Correlating Structure 748 
with Selectivity:  Predicting the Enantioselectivity of β-Amino Alcohol Catalysts in Aldehyde Alkylation. 749 
Journal of the American Chemical Society 2003, 125 (22), 6614-6615. DOI: 10.1021/ja0293195. 750 
(83) Hansen, E.; Rosales, A. R.; Tutkowski, B.; Norrby, P.-O.; Wiest, O. Prediction of Stereochemistry using 751 
Q2MM. Accounts of Chemical Research 2016, 49 (5), 996-1005. DOI: 10.1021/acs.accounts.6b00037. 752 
(84) Terrett, J. A.; Chen, H.; Shore, D. G.; Villemure, E.; Larouche-Gauthier, R.; Déry, M.; Beaumier, F.; 753 
Constantineau-Forget, L.; Grand-Maître, C.; Lépissier, L.; et al. Tetrahydrofuran-Based Transient Receptor 754 
Potential Ankyrin 1 (TRPA1) Antagonists: Ligand-Based Discovery, Activity in a Rodent Asthma Model, and 755 
Mechanism-of-Action via Cryogenic Electron Microscopy. Journal of Medicinal Chemistry 2021, 64 (7), 3843-756 
3869. DOI: 10.1021/acs.jmedchem.0c02023. 757 
(85) Zahrt, A. F.; Denmark, S. E. Evaluating continuous chirality measure as a 3D descriptor in 758 
chemoinformatics applied to asymmetric catalysis. Tetrahedron 2019, 75 (13), 1841-1851. DOI: 759 
https://doi.org/10.1016/j.tet.2019.02.007. 760 
(86) Gerosa, G. G.; Spanevello, R. A.; Suárez, A. G.; Sarotti, A. M. Joint Experimental, in Silico, and NMR 761 
Studies toward the Rational Design of Iminium-Based Organocatalyst Derived from Renewable Sources. J 762 
Org Chem 2015, 80 (15), 7626-7634. DOI: 10.1021/acs.joc.5b01214. 763 
(87) Kuang, Y.; Lai, J.; Reid, J. P. Transferrable selectivity profiles enable prediction in synergistic catalyst 764 
space. Chemical Science 2023, 14 (7), 1885-1895, 10.1039/D2SC05974F. DOI: 10.1039/D2SC05974F. 765 
(88) Isbrandt, E. S.; Sullivan, R. J.; Newman, S. G. High Throughput Strategies for the Discovery and 766 
Optimization of Catalytic Reactions. Angewandte Chemie International Edition 2019, 58 (22), 7180-7191. 767 
DOI: https://doi.org/10.1002/anie.201812534. 768 
(89) Kirkpatrick, P.; Ellis, C. Chemical space. Nature 2004, 432 (7019), 823-823. DOI: 10.1038/432823a. 769 
(90) Lu, C.; Wu, C.; Ghoreishi, D.; Chen, W.; Wang, L.; Damm, W.; Ross, G. A.; Dahlgren, M. K.; Russell, E.; Von 770 
Bargen, C. D.; et al. OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. 771 
Journal of Chemical Theory and Computation 2021, 17 (7), 4291-4300. DOI: 10.1021/acs.jctc.1c00302. 772 

https://doi.org/10.26434/chemrxiv-2023-t29k7 ORCID: https://orcid.org/0000-0001-6933-2079 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.1002/jcc.21869
https://doi.org/10.1016/j.molcata.2010.02.026
https://doi.org/10.1002/wcms.1510
https://doi.org/10.48550/arXiv.2308.16499
https://doi.org/10.1016/j.tet.2019.02.007
https://doi.org/10.1002/anie.201812534
https://doi.org/10.26434/chemrxiv-2023-t29k7
https://orcid.org/0000-0001-6933-2079
https://creativecommons.org/licenses/by/4.0/


25 
 

(91) Qiu, Y.; Smith, D. G. A.; Boothroyd, S.; Jang, H.; Hahn, D. F.; Wagner, J.; Bannan, C. C.; Gokey, T.; Lim, V. 773 
T.; Stern, C. D.; et al. Development and Benchmarking of Open Force Field v1.0.0—the Parsley Small-774 
Molecule Force Field. Journal of Chemical Theory and Computation 2021, 17 (10), 6262-6280. DOI: 775 
10.1021/acs.jctc.1c00571. 776 
(92) Wei, W.; Champion, C.; Barigye, S. J.; Liu, Z.; Labute, P.; Moitessier, N. Use of Extended-Hückel 777 
Descriptors for Rapid and Accurate Predictions of Conjugated Torsional Energy Barriers. Journal of 778 
Chemical Information and Modeling 2020, 60 (7), 3534-3545. DOI: 10.1021/acs.jcim.0c00440. 779 
(93) Neese, F. The SHARK integral generation and digestion system. Journal of Computational Chemistry 780 
2023, 44 (3), 381-396. DOI: https://doi.org/10.1002/jcc.26942. 781 
(94) Stewart, J. J. P. Optimization of parameters for semiempirical methods V: Modification of NDDO 782 
approximations and application to 70 elements. Journal of Molecular Modeling 2007, 13 (12), 1173-1213. 783 
DOI: 10.1007/s00894-007-0233-4. 784 
(95) Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An Accurate and Broadly Parametrized Self-785 
Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent 786 
Dispersion Contributions. Journal of Chemical Theory and Computation 2019, 15 (3), 1652-1671. DOI: 787 
10.1021/acs.jctc.8b01176. 788 
(96) Yamaguchi, S.; Nishimura, T.; Hibe, Y.; Nagai, M.; Sato, H.; Johnston, I. Regularized regression analysis 789 
of digitized molecular structures in organic reactions for quantification of steric effects. Journal of 790 
Computational Chemistry 2017, 38 (21), 1825-1833. DOI: https://doi.org/10.1002/jcc.24791. 791 
(97) Cramer, R. D.; Patterson, D. E.; Bunce, J. D. Comparative molecular field analysis (CoMFA). 1. Effect of 792 
shape on binding of steroids to carrier proteins. Journal of the American Chemical Society 1988, 110 (18), 793 
5959-5967. DOI: 10.1021/ja00226a005. 794 
(98) Lipkowitz, K. B.; Kozlowski, M. C. Understanding Stereoinduction in Catalysis via Computer: New Tools 795 
for Asymmetric Synthesis. Synlett 2003, 10, 1547–1565. 796 
(99) Rosales, A. R.; Quinn, T. R.; Wahlers, J.; Tomberg, A.; Zhang, X.; Helquist, P.; Wiest, O.; Norrby, P.-O. 797 
Application of Q2MM to predictions in stereoselective synthesis. Chemical Communications 2018, 54 (60), 798 
8294-8311, 10.1039/C8CC03695K. DOI: 10.1039/C8CC03695K. 799 
(100) Rosales, A. R.; Ross, S. P.; Helquist, P.; Norrby, P.-O.; Sigman, M. S.; Wiest, O. Transition State Force 800 
Field for the Asymmetric Redox-Relay Heck Reaction. Journal of the American Chemical Society 2020, 142 801 
(21), 9700-9707. DOI: 10.1021/jacs.0c01979. 802 

 803 

https://doi.org/10.26434/chemrxiv-2023-t29k7 ORCID: https://orcid.org/0000-0001-6933-2079 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.1002/jcc.26942
https://doi.org/10.1002/jcc.24791
https://doi.org/10.26434/chemrxiv-2023-t29k7
https://orcid.org/0000-0001-6933-2079
https://creativecommons.org/licenses/by/4.0/

