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Abstract

Time-dependent density functional theory (TD-DFT) is the most widely-used electronic structure method
for excited states, due to a favorable combination of low cost and (in many contexts) semi-quantitative
accuracy. This Perspective describes various ways in which excited states from TD-DFT calculations can
be visualized and analyzed, both qualitatively and quantitatively. This includes not just orbitals and
densities but also well-defined statistical measures of electron–hole separation and of Frenkel-type exciton
delocalization. Emphasis is placed on mathematical connections between methods that have often been
discussed separately. Particular attention is paid to charge-transfer diagnostics, which provide indicators
to diagnose when TD-DFT may not be trustworthy due to its categorical failure to describe long-range
electron transfer. Measures of exciton size and charge separation that are directly connected to the
underlying transition density are recommended over more ad hoc metrics for quantifying charge-transfer
character.
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1 Introduction

Amongst various formulations of density functional theory (DFT) for electronic excited states,1 by far
the most widely used is linear-response DFT.1–5 For historical reasons,6 that formulation is commonly
known as “time-dependent” (TD-)DFT,1,5–8 despite the absence of time in its static, frequency-domain
formulation. The latter formalism has a pleasing familiarity for chemists, as it can be cast as an eigenvalue
problem in a space of singly-substituted Slater determinants, analogous to the method of configuration
interaction with single substitutions (CIS)9 but incorporating dynamical electron correlation. In favorable
contexts, including the electronic spectroscopy of many medium-sized organic molecules, TD-DFT achieves
a mean accuracy of ∼ 0.3 eV for vertical excitation energies,1,10 which is often sufficient for solution-phase
spectroscopy. At the same time, TD-DFT’s formal scaling and computational cost are comparable to ground-
state DFT,7,11 meaning that it is often the only ab initio method for excited states that can address large
chemical systems. These considerations have made TD-DFT into the de facto workhorse of computational
electronic spectroscopy.

The present work provides an overview of visualization methods for linear-response TD-DFT, going
beyond molecular orbitals (MOs) and aiming to describe (and potentially quantify) how charge is rearranged
upon electronic excitation. Both density-based and orbital-based visualization tools are considered, as are
certain atomic partitions of the density change upon excitation,

∆ρ(r) = ρexc(r) − ρ0(r) . (1.1)

These can be used to characterize the nature of an excited state, in both qualitative and quantitative
terms. Although many of these analysis and visualization methods have been around for a long time, only
occassionally have the connections between them been discussed,1,12–18 and often in a general form for
correlated wave functions with arbitrary levels of excitation.14–18 This obscures certain simplifications that
are possible for CIS- and TD-DFT-type wave functions, where the particle–hole picture is clear and explicit.
The present work is limited to those particular ansätze, with an emphasis on connections between different
visualization tools that exist in the literature.

Especially relevant are a variety of charge-transfer (CT) metrics.18–23 These can be used as prognosti-
cators of (potentially catastrophic1,24–28) problems with conventional TD-DFT’s description of long-range
CT.29 The practical effect is that TD-DFT significantly underestimates excitation energies for states having
significant CT character,1,9,30–32 including Rydberg states.30,33 Significant progress has been made recently
towards correcting this behavior,34–36 via long-range corrected (LRC) density functionals,37–39 yet it remains
important to possess a means to diagnose problematic cases.

The remainder of this work is organized as follows. Section 2 provides a brief introduction to the formalism
of linear-response TD-DFT and also introduces some visualization tools based on the density matrix, which
are more incisive than simply plotting ∆ρ(r) in real space. Orbital-based visualization tools, which remain
the most popular means for qualitative characterization of an excited state, are introduced in Section 3. To
quantify charge rearrangement during excitation, it is useful to introduce an atomic partition of ∆ρ(r) that
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can be made into a metric for CT but can also assist in understanding states that are delocalized across more
than one chromophore. These tools are introduced in Section 4, and then Section 5 introduces additional
ways to quantify exciton delocalization that have a direct connection to the underlying wave function or
transition density. Finally, the CT problem in TD-DFT calculations is described in Section 6 along with a
discussion of various metrics that can be used to indicate when (and for which excited states) this becomes
an issue.

2 Theoretical Background

We begin with a brief recapitulation of the linear-response TD-DFT formalism (Section 2.1), then introduce
densities and density matrices for ground and excited states (Section 2.2). Attachment and detachment
densities,40 which are important tools for excited-state visualization, are introduced in Section 2.3.

2.1 Linear-response TDDFT

Mathematical derivations of linear-response TD-DFT, starting from an explicitly time-dependent theory
of a perturbed Kohn-Sham ground state, can be found elsewhere;1–5 see Ref. 1 for a pedagogical version.
The linear-response formalism is what is most often implied by “TD-DFT”, as it is (by far) the most
common form. An explicitly time-dependent or “real-time” formalism also exists,1,41–43 which can be used
to describe attosecond electron dynamics in an external electric field.44–51 For excitation energies and most
molecular electronic spectroscopy applications, however, the real-time method is much less efficient.11 Real-
time methods are not considered here, and visualization tools are somewhat different for that approach.52–57

Starting from the ground-state solution of the Kohn-Sham eigenvalue problem,58

F̂ψr = εrψr , (2.1)

the basic equation of the linear-response formalism is
(

A B

B∗ A∗

)(
x(n)

y(n)

)

= ωn

(
1 0

0 −1

)(
x(n)

y(n)

)

. (2.2)

This is a non-Hermitian eigenvalue problem for the excitation amplitudes x(n) = (x
(n)
ia ) and de-excitation

amplitudes y(n) = (x
(n)
ia ), for the nth excited state whose vertical excitation energy is ωn. Throughout this

work, we use indices i, j, . . . to denote occupied MOs, a, b, . . . to indicate virtual (unoccupied) MOs, and
r, s, . . . to denote arbitrary MOs. Spin indices are omitted here; see Ref. 1 for a version of these equations
that includes them. The matrices A and B in Eq. (2.2) are Hessians with respect to orbital rotations.1,59

In the canonical MO basis that diagonalizes the Fock matrix F, their matrix elements are

Aia,jb = (εa − εi)δijδab +
∂Fia

∂Pjb
(2.3a)

Bia,jb =
∂Fia

∂Pbj
, (2.3b)

where P is the one-electron density matrix. Expressions for A and B in terms of electron repulsion integrals
and the exchange-correlation kernel can be found elsewhere.1,7,9 Lastly, the quantities εa − εi in Eq. (2.3a)
are differences between virtual (εa) and occupied (εi) Kohn-Sham energy levels defined by the ground-state
eigenvalue problem, Eq. (2.1). The difference εa − εi appears along the diagonal of A and constitutes
a zeroth-order approximation to an electronic excitation energy, consistent with a zeroth-order picture in
which an electronic transition consists in promotion of one electron from a single occupied MO into a single
virtual MO, ψi → ψa.

A TD-DFT calculation consists of the iterative solution of Eq. (2.2) for a certain number of excited states,
each characterized by vectors x(n) and y(n). These are subject to an unconventional normalization,

∑

ia

(x2ia − y2ia) = 1 , (2.4)
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consistent with the metric matrix in Eq. (2.2).4,60–62 For brevity, we omit the state index n in Eq. (2.4) and
subsequent expressions. Amplitudes {xia} and {yia} parameterize the transition density matrix (TDM) for
the excitation in question. As a position-space kernel, that object is4,7,61

T (r, r′) =
∑

ia

[

xia ψa(r)ψ∗
i (r′) + yia ψi(r)ψ∗

a(r′)
]

. (2.5)

It provides one possible visualization tool, usually in the form of the transition density, T (r) ≡ T (r, r).
Often, Eq. (2.2) is simplified by invoking the Tamm-Dancoff approximation (TDA),3,63 in which the

de-excitation amplitudes yia are neglected. These amplitudes arise naturally in the equation-of-motion
formalism for the one-particle density matrix,4,62 yet in molecular TD-DFT calculations they are typically
∼ 100× smaller than the largest xia. (This this may not always be the case for solids.64,65) The matrix B

is absent from the resulting TDA eigenvalue problem, which is simply

Ax = ωx . (2.6)

For historical reasons,66 the original eigenvalue problem in Eq. (2.2) is sometimes called the random phase
approximation (RPA),9 in order to distinguish it from the simpler Hermitian eigenvalue problem in Eq. (2.6).
That terminology is avoided here, however, so as not to confuse it with other methods known as RPA.66–69

Where we need to make a distinction, we refer to Eq. (2.2) as “full” TD-DFT and Eq. (2.6) as TD-DFT/
TDA.

Use of the TDA is often essential for avoiding triplet instabilities and obtaining accurate triplet excitation
energies.70–73 Triplet instabilities in the ground-state Kohn-Sham solution,74 indicating that an unrestricted
wave function would lower the energy with respect to the closed-shell solution, manifest as negative excitation
energies.75 This is common at bond-stretching geometries, where singlet and triplet states become quasi-
degenerate,76,77 but may also occur near the ground-state geometry, if the fraction of Hartree-Fock exchange
is large,78–83 or for large values of the range separation parameter in LRC functionals.70,71,84–86 Beyond
indicating an instability, solutions with negative excitation energies are not physically meaningful and can
lead to convergence failure in solving Eq. (2.2), if the iterative algorithm is predicated on the excitation
energies being positive. Invoking the TDA decouples the stability problem from the excitation energy
problem and is used in most calculations that are described here.

The TDA simplifies the structure of the transition density into a form where one can imagine a Kohn-
Sham wave function2,87 (determinant) whose form is analogous to the CIS ansatz, namely

∣
∣Ψexc

〉
=

occ∑

i

vir∑

a

xia
∣
∣Ψa

i

〉
, (2.7)

where |Ψa
i 〉 is a Slater determinant that differs from the ground state by a single substitution. Given this

form for |Ψexc〉, the real-space kernel T (r, r′) in Eq. (2.5) can be connected to its more general definition in
wave function theory,13,61 which is

T (r, r′) = N

∫

Ψ∗
0(r′, r2, . . . , rN ) Ψexc(r, r2, . . . , rN ) dr2 · · · drN (2.8)

where Ψ0(r1, . . . , rN ) is the ground-state wave function. The definition of T (r, r′) in Eq. (2.8) is valid for
correlated wave functions also.14

It has been argued that eigenvalue differences εa − εi should be good approximations to true excitation
energies in exact Kohn-Sham theory,87–90 albeit without spin coupling so there is no distinction between
excitations to different spin multiplicities. As such, one might imagine that configuration mixing in Eq. (2.7)
occurs to a lesser extent in TD-DFT as compared to CIS, and indeed this is observed to be the case.91 For
example, Figs. 1a and 1b compare amplitudes xia for S0 → S1 excitation of formaldehyde, computed using
TD-DFT/TDA with the PBE functional and also with the Hartree-Fock functional (i.e., exact exchange and
no correlation), the latter of which is equivalent to the CIS method. The TD-PBE eigenstate consists almost
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Figure 1: Bar graph of configuration mixing coefficients xia for TD-DFT/TDA calculations on the 1 1A2 state of
formaldehyde: (a) calculations using the PBE functional using active spaces containing nvirt virtual orbitals, as
implemented in a real-space (basis-set-free) electronic structure code; (b) CIS calculations using the same active
spaces; and (c) conventional CIS calculations in Gaussian basis sets. Calculated excitation energies provide a measure
of convergence with respect to active space or basis set. Adapted from Ref. 91; copyright 2015 The PCCP Owner
Societies.

exclusively of the 2b2 → 2b1 amplitude whereas for a converged CIS calculation (including all virtual orbitals),
this amplitude accounts for less than 20% of the norm of the transition eigenvector. (These calculations were
performed using a real-space electronic structure code,92 so there is not finite-basis approximation. CIS with
conventional Gaussian basis sets are shown in Fig 1c.) Truncating the virtual space leads to a more compact
expansion and a 2b2 → 2b1 coefficient in the CIS case, but has a disastrous effect on the excitation energy
(Fig 1b). This is not a useful strategy.

That said, significant configuration mixing may be an unavoidable consequence of the use of hybrid
functionals that contain some fraction of “exact” (Hartree-Fock) exchange. Because the Hartree-Fock virtual
orbitals experience an N -electron potential rather than a (N − 1)-electron potential,93 the virtual levels εa
are upshifted such that even frontier virtual orbitals are often unbound (εa > 0). These are discretized
continuum states,94 and a large number of them will need to mix together in order to generate the localized
wave function of a bound excited state. Inclusion of diffuse basis functions, which are often necessary to
obtain converged excitation energies,8 also generate significant configuration mixing as shown in Fig. 1c.

Configuration mixing muddies the picture of electron and hole, thus it is desirable to have alternative ways
of visualizing an excitation besides simply plotting each of the MOs whose amplitudes xia are significant.
To that end, we next introduce excited-state electron densities that can be used to visualize an excitation in
real space.

2.2 Densities and density matrices

Within TD-DFT, the density matrix for an excited state can be expressed as

Pexc = P0 + ∆Pelec + ∆Phole + Z . (2.9)

Here, P0 is the ground-state density matrix and

∆P = ∆Pelec + ∆Phole (2.10)

is the (unrelaxed) difference density matrix. Lastly, Z is the so-called Z-vector contribution that accounts
for orbital relaxation in the excited state.7,82,95 The “particle” (or electron) and “hole” components of ∆P
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are available from the TD-DFT response vectors:82,95–97

∆Pelec = 1
2

[

(x + y)†(x + y) + (x− y)†(x− y)
]

(2.11a)

∆Phole = − 1
2

[

(x + y)(x + y)† + (x− y)(x− y)†
]

. (2.11b)

These formulas correct thosse written down intuitively in previous work,98 which include the (x+y)†(x+y)
term of Eq. (2.11) but not the (x − y)†(x − y) term. Expressions for the matrix elements in the MO basis
can be simplified to afford96

(∆Pelec)ab =
∑

i

(x∗iaxib + y∗iayib) (2.12a)

(∆Phole)ij = −
∑

a

(xiax
∗
ja + yiay

∗
ja) . (2.12b)

These quantities are normalized such that

tr(∆Pelec) = 1 = − tr(∆Phole) . (2.13)

Although we have not been explicit about spin indices, the spin-orbital indices (i, a, etc.) could be limited
to either α or β spin, e.g., to obtain a spin density matrix for either the particle (∆Pelec

α − ∆Pelec
β ) or hole

(∆Phole
α − ∆Phole

β ).
Whereas ∆P in Eq. (2.9) is available from x and y alone, calculation of Z requires solution of the coupled-

perturbed equations that are associated with the TD-DFT excited-state gradient.82,97 The density matrix
Pexc that includes Z is known as the “relaxed” density matrix, whereas

Punrlx = P0 + ∆P (2.14)

is the unrelaxed density matrix.
As the notation implies, the quantities ∆Pelec and ∆Phole can be conceptualized as separate densities

for the excited electron and the hole that it leaves behind in the occupied space. More precisely, this is true
of the real-space densities ∆ρelec(r) and ∆ρhole(r) that are encoded by these density matrices. Unlike the
difference density

∆ρ(r) = ∆ρelec(r) + ∆ρhole(r) , (2.15)

which has both positive and negative regions in space, ∆ρelec(r) ≥ 0 everywhere, and ∆ρhole(r) ≤ 0.
Sometimes it is more informative to visualize these two quantities separately. It is therefore suggested that
∆ρelec(r) should be called the particle density and ∆ρhole(r) the hole density. (These terms are sometimes
used differently,14 but our usage is consistent with the idea of ∆Phole as the density matrix for the hole.60)
An example is depicted in Fig. 2, where the particle and hole densities can be visually superimposed by the
reader to suggest the difference density, which is also shown. The Z-vector contribution is omitted in this
example, making these unrelaxed densities.

The molecule in Fig. 2 is a polyfluorene oligomer with a single keto defect (fluorenone) as one of the
terminal monomer units.99 It provides an example of how particle and hole densities are useful for interpreting
excited states that are strongly mixed in the canonical MO basis, meaning there are numerous amplitudes xia
that are similar in magnitude. In this particular example, each of the valence MOs is completely delocalized
along the length of the oligomer, which is not atypical for π-conjugated chromophores. Nevertheless, it is
obvious from the densities in Fig. 2 that the excited state in question is localized as a result of the defect.
This is not obvious within the canonical MO basis, however, wherein the transition density consists of a
roughly equal mixture of four different ψi → ψa excitations as shown in Fig. 3a. Localization arises from
phase interference in a coherent superposition of four terms, but this would be essentially impossible to
discern by inspecting the relevant MOs alone.
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(a) particle (attachment) density

(b) hole (detachment) density

(c) difference density

(d) transition density

Figure 2: Unrelaxed densities for (a) the particle (∆ρelec) and (b) the hole (∆ρhole), along with (c) their sum ∆ρ
[Eq. (2.15)] and (d) the transition density T (r). The excitation in question is the lowest dipole-allowed transition
(S0 → S2) of a five-unit, fluorenone-terminated polyfluorene whose leftmost fluorene unit contains a carbonyl defect.
TD-DFT/TDA calculations were performed at the CAM-B3LYP/3-21G* level. Adapted from Ref. 1; copyright 2023
Elsevier.

(a) canonical molecular orbitals

20%

HOMO–4

HOMO–3

HOMO–2

HOMO–1

LUMO

26%

21%

20%

(b) natural transition orbitals

96%

Figure 3: Transition density for the fluorenone-terminated polyfluorene oligomer that is also depicted in Fig. 2, viewed
here in two different representations: (a) the canonical MO representation, with weights x2ia given as percentages,
and (b) the NTO representation, with weight λ2

1 that is also given as a percentage. TD-DFT/TDA calculations were
performed at the CAM-B3LYP/3-21G* level. Adapted from Ref. 1; copyright 2023 Elsevier.
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2.3 Attachment and detachment densities

For CIS and TD-DFT calculations, the particle and hole densities defined in Section 2.2 coincide precisely
with the attachment density and the detachment density, respectively, quantities that were originally defined
in a manner that is not be limited to single-excitation theories.40 This definition sheds additional light on
the nature of ∆Pelec and ∆Phole in TD-DFT, and is the topic of this section First, let us diagonalize a
difference density matrix ∆P and express the result in the form

U†(∆P)U =

(
a 0

0 d

)

, (2.16)

where the nonzero blocks a and d are diagonal matrices that contain the positive and the negative eigenvalues
of ∆P, respectively. Density matrices affording the attachment and detachment densities are then defined
as12,13,40

∆Pattach = U

(
a 0

0 0

)

U† (2.17a)

and

∆Pdetach = U

(
0 0

0 d

)

U† . (2.17b)

Note that ∆Pattach is positive semidefinite and ∆Pdetach is negative semidefinite.
The procedure above could be followed for any difference density matrix, including the relaxed one

from a TD-DFT calculation or one that is obtained from a correlated wave function. In the special case
that ∆P is the unrelaxed difference density matrix from a TD-DFT calculation [Eq. (2.10)], it follows that
∆Pattach ≡ ∆Pelec and ∆Pdetach ≡ ∆Phole. Although this equivalence has been noted before,1,13 it does
not seem to be widely appreciated. It arises from a unique feature of single-excitation theories, namely,
a direct correspondence between CI coefficients and matrix elements of the TDM.14,61,62,100 For example,
xia = 〈Ψexc|â†aâi|Ψ0〉 in the CIS case.

Considering the specific case of ∆P in Eq. (2.10), qualitative insight into the nature of an excited state
can often be gleaned by analyzing its particle and hole components ∆Pelec and ∆Phole, but it must be
borne in mind that electron/hole separation does not survive the contribution from orbital relaxation, i.e.,
from Z in Eq. (2.9). Nonzero matrix elements Zia = Zai introduce occupied–virtual coupling, in contrast
to the occupied–occupied and virtual–virtual terms that define the unrelaxed difference density [Eq. (2.12)].
However, one may construct the relaxed difference density,

∆Prlx = Pexc −P0 = ∆P + Z , (2.18)

and substitute this for ∆P in Eq. (2.16). This defines attachment and detachment components of the relaxed
density and recovers a particle/hole picture that includes includes orbital relaxation.

Relaxation effects can be especially significant for states with CT character, as demonstrated in Fig. 4 for
the case of a donor–acceptor complex consisting of naphthalene and tetracyanoquinone. Unrelaxed particle
and hole densities (on the left in Fig. 4) suggest that the S1 state of the complex has almost perfect CT
character, with the excited electron localized on the acceptor (tetracyanoquinone) and the hole localized on
the donor (naphthalene). A dipole moment change of ∆µ = 14.9 D upon excitation underscores this CT
character. However, both of the relaxed densities (on the right in Fig. 4) are delocalized over both monomers.
The change in dipole moment (∆µ = 10.9 D) is substantially reduced although still quite large. Note that
the excitation energy is precisely the same regardless of which densities are used to visualize the transition
in question, as is the ground-state dipole moment of 1.3 D, however the excited-state dipole moment changes
significantly when computed using the relaxed density matrix for the excited state.

This example underscores the fact that using ∆Prlx rather than ∆P can have a significant effect on
excited-state properties,95,101,106 especially for states with a high degree of CT character.95 The relaxed
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Figure 4: Relaxed and unrelaxed detachment densities (upper images, in orange) and attachment densities (lower
images, in magenta) for the S0 → S1 excitation of a donor–acceptor complex between naphthalene and tetra-
cyanoquinone, computed at the TD-ωB97X-D/6-31G* level within the TDA. All densities are plotted using 90%
isoprobability contours. Unrelaxed densities (on the left), which are equal to ∆ρelec(r) and ∆ρhole(r) in Eq. (2.15),
consist of donor and acceptor densities localized on naphthalene and tetracyanoquinone, respectively. Relaxed den-
sities (on the right) are delocalized over both molecules although the state maintains significant CT character as
evidenced by the dipole moment change upon excitation, ∆µ.

Table 1: Excitation energies and excited-state dipole moments compared to experiment.a

Molecule & Method
∆E µ (D)b

(eV) unrelaxed relaxed
formaldehyde (1A2)

TD-BLYP 3.82 −0.05 −1.34
TD-B3LYP 3.98 −0.22 −1.40
TD-BH&HLYP 4.08 −0.39 −1.40
TD-HF 4.39 −0.60 −1.26
CASSCF(12,10) −1.29
experiment 4.07c −1.56 ± 0.07d

p-nitroaniline (1CT)

TD-BLYP 3.61 23.57 11.71
TD-B3LYP 4.07 20.81 12.40
TD-BH&HLYP 4.63 16.81 12.43
TD-HF 4.89 11.53 10.71
CASSCF(12,12) 16.35
experiment 4.24e 13.35f

aData from Ref. 101 except where indicated. bSign convention set

by the ground-state dipole moment. cRef. 102. dRef. 103.
eRef. 104. fRef. 105.
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dipole moment, for example, which is the correct dipole moment for the excited state according to linear
response theory, is computed as µrlx

x = tr(µxPexc) for the x component, and its unrelaxed analog is µunrlx
x =

tr(µxPunrlx). In Table 1, these two quantities are juxtaposed for the first excited state of formaldehyde
(1A2), and for an excited state of p-nitroaniline that is characterized by excitation from the highest occupied
MO (HOMO) to the lowest unoccupied MO (LUMO) that transfers charge from the amino group to the
nitro group. Even for the comparatively benign case of formaldehyde, use of the relaxed density alters the
total dipole moment by more than 1 D for several different density functionals, bringing it much closer
to experiment. The contrast is more dramatic for p-nitroaniline, where 1CT state exhibits a large dipole
moment (µ ≈ 13 D),105,107 and one might therefore expect significant orbital relaxation effects. Unrelaxed
densities overestimate this dipole moment by more than a factor of two in some cases, although the effect
decreases as the fraction of exact exchange is increased. (Relaxed and unrelaxed dipole moments differ by
more than a factor of two for formaldehyde as well,101,106 but the dipole moment is much smaller.)

Although relaxed densities are required for reliable and quantitative excited-state property calculations,
there is much qualitative information to be gleaned from the unrelaxed density. The CT nature of the donor
→ acceptor transition in the naphthalene:tetracyanoquinone dimer (Fig. 4), for example, comes through in
both the relaxed and unrelaxed dipole moments, even if orbital relaxation serves to delocalize both particle
and hole across both monomers. Other examples considered below will neglect the Z-vector contribution,
which is adequate for a quick survey of the nature of the predicted excited states.

3 Natural Transition Orbitals

Densities reveal how overall charge is moved about upon excitation but they sacrifice the phase (sign)
information that is contained in the orbitals, which might have been helpful for understanding the character
of an excited state. If the number of significant amplitudes xia is small, then the canonical Kohn-Sham
MOs are a good way to visualize the state in question but often this is not the case, especially when hybrid
functionals are employed. A quantity that does contain phase information is the transition density T (r, r′)
that is defined in Eqs. (2.5) and (2.8), which can be plotted in three-dimensional space by setting r = r′. This
quantity, however, cannot be interpreted directly in terms of the movement of charge in the same way that
the particle, hole, and difference densities can be. For example, consider the transition density T (r) ≡ T (r, r)
for the fluorenone-terminated polyfluorene oligomer that was considered above (Fig. 2d). Although its nodal
structure contains elements of the nodal structures of both ∆ρelec and ∆ρhole, T (r) is clearly distinct from the
difference density. What can be gleaned from T (r) is the nature of the transition moment for the excitation
in question, which must lie along the long axis of the molecule because the negative and positive lobes of T (r)
approximately cancel along the short axis. Clearly, the result of the fluorenone defect is that this particular
excited state is a property of the terminal monomer (fluorenone), not a property of the whole polymer. This
fact is not obvious from the canonical MOs that participate in the transition, which are shown in Fig. 3a.
The natural transition orbitals (NTOs),108 which are introduced below, will help to recover an electron/hole
picture within a representation that contains phase information.

3.1 Theory

Starting from ∆Pelec and ∆Phole defined in Eq. (2.12), phase information can be restored (in a manner that
maximally preserves the qualitative characteristics of these densities) by using their eigenvectors to define a
change-of-basis for the MOs. The transformation Uo that diagonalizes ∆Pelec defines a transformation of
the canonical occupied MOs that we express as

U†
o(∆Pelec)Uo =








λ21 0 0 · · ·
0 λ22 0 · · ·

. . . 0
0 · · · 0 λ2N








︸ ︷︷ ︸

Λ2

. (3.1)
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The nocc×nocc diagonal matrix Λ2 contains the eigenvalues of ∆Pelec. (It is the square of a diagonal matrix
Λ that will be used in Section 3.2, where we will discover that the values λi have their own significance.)
Eigenvalues of ∆Pelec are strictly non-negative, which we indicate by writing them as λ2i , and they are
normalized such that

∑

i λ
2
i = 1 [Eq. (2.13)]. In similar fashion, we introduce a matrix Uv that diagonalizes

∆Phole:

U†
v(∆Phole)Uv =

(
−Λ2 0

0 0

)

. (3.2)

This defines a transformation of the canonical virtual MOs. For single-excitation wave functions, the matrices
∆Pelec and ∆Phole have the same eigenvalues, up to a sign,99,108 so Λ2 is the same matrix nocc × nocc in
both Eqs. (3.1) and (3.2). (Extra zeros in the latter are needed to dimension the matrices consistently.)

The matrix Uo transforms the canonical occupied MOs into a set of “hole” orbitals that we will call
{ψhole

i (r)}, while Uv transforms the canonical virtual MOs into a corresponding set of “particle” (or “elec-
tron”) orbitals {ψelec

i (r)} where i = 1, . . . , nocc in both cases, because even for the virtual orbital trans-
formation in eq. (3.2) there are only nocc nonzero eigenvalues. These transformed orbitals are the NTOs
for the hole and for the excited electron, respectively. These are useful analysis tools because they reduce
the 2noccnvirt excitation amplitudes xia and yia into just nocc unique amplitudes, as will be discussed fur-
ther in Section 3.2. For now, we simply note that the particle and hole densities are diagonal in the NTO
representation, which in real space means

∆ρelec(r) =

nocc∑

i=1

λ2i
∣
∣ψelec

i (r)
∣
∣
2

(3.3a)

∆ρhole(r) = −
nocc∑

i=1

λ2i
∣
∣ψhole

i (r)
∣
∣
2
. (3.3b)

Examples of NTOs are provided in Sections 3.3 and 3.4.
The name NTOs was first suggested by Martin in 2003,108 but this form of analysis was actually in-

troduced much earlier by Luzanov and co-workers.109,110 It has since be rediscovered (and expressed in
the notation used above) by others.100,108,111 The terminology for these orbitals reflects the sense in which
“natural” is used in quantum chemistry to mean eigenfunctions of a density matrix.112–114 Just as natural
orbitals are eigenfunctions of P (even in the case of a correlated wave function),112 with eigenvalues that
constitute natural occupation numbers, the NTOs diagonalize the TDM. Within a single-excitation model,
this is equivalent to diagonalizing the difference density matrix ∆P, although that equivalence is lost in the
case of a correlated wave function. (In that case, one must distinguish between NTOs that diagonalize the
TDM and natural difference orbitals that diagonalize the difference density matrix.14,15) Similarly, natural
ionization orbitals diagonalize the difference density obtained upon electron removal.115 None of these quan-
tities should be confused with natural bond orbitals or any of the other “natural” concepts introduced by
Weinhold and co-workers.116–118

3.2 Interpretation

The transformations in Eqs. (3.1) and (3.2) fully defines the NTOs in TTDFT, but an equivalent and
illustrative definition is possible. Keeping to the TDA case for simplicity, we considder x to be a rectangular
matrix of dimension nocc × nvirt. Hole and particle NTOs are defined by separate unitary transformations
of the occupied and virtual MOs (Uo and Uv, respectively), and an equivalent definition of these two
transformations involves a singular value decomposition (SVD) of x:

U†
o xUv =

(
Λ 0

0 0

)

. (3.4)

Here, Λ is the nocc × nocc matrix of singular values λi, but is the same matrix that appears (as Λ2) in
eqs. (3.1) and (3.2). According to Eq. (3.4), the matrices Uo and Uv contain the left and right singular
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vectors of x, respectively, but they are identical to the eponymous transformations defined as eigenvectors
of ∆Phole and ∆Pelec.

As compared to the definitions in Section 3.1, the construction in Eq. (3.4) demonstrates more clearly
why no more than nocc of the singular values are non-zero, and that eigenvalues of ∆Phole and ∆Pelec occur
in pairs.108 From yet another point of view, Eq. (3.4) is a special case of a corresponding orbitals trans-
formation,119–121 which selects a subset of virtual orbitals in one-to-one correspondence with the occupied
orbitals, diagonalizing the TDM in the process.

If ∆Phole is dominated by a single NTO, it follows that so is ∆Pelec, which is a consequence of the
correspondence between amplitudes xia and elements of the one-particle density matrix that was discussed
in Section 2.3. As a result, for single-excitation theories (only), the NTOs are equivalent to excited-state
natural orbitals.100 For CIS wave functions, the corresponding eigenvalues in the natural orbital basis (natural
occupation numbers) can be specified in terms of the singular values of the transition amplitudes:100

nr =







1 − λ2r, 1 ≤ r ≤ N

λ2r, N < r ≤ 2N

0, r > 2N

. (3.5)

The values nr = 1−λ2r represent the hole that is created and nr = λ2r correspond to the excited electron, which
demonstrates why ∆Pelec and ∆Phole have the same eigenvalues up to a sign. Redundant orbitals (nr = 0)
have been eliminated by the SVD in Eq. (3.4). Although the direct connection between the excitation
amplitudes, transition density, and one-electron density matrix for the excited state is a unique feature of
the single-excitation ansatz, the concept of attachment and detachment densities as eigenfunctions of ∆P,
separable based on the sign of the eigenvalues in Eqs. (2.16) and (2.17), is generalizable to wave functions
of arbitrary complexity. The individual eigenfunctions of ∆P, which are the NDOs,14 then generalize the
concept of NTOs for many-body theories, without the need to introduce “correlated NTOs”.122

Notice also that the TDM is diagonal in the NTO basis:

T (r, r′) =

nocc∑

i

λi ψ
elec
i (r)

[
ψhole
i (r′)

]∗
. (3.6)

This constitutes another proof that the transformation to NTOs distills a given excitation into the smallest
possible number of occupied/virtual orbital pairs. In a well-defined sense, the NTO basis is the best choice
for conceptualizing excited states in terms of a one-electron promotion from an occupied MO into a virtual
MO. Note that the NTOs are state-specific, so this optimal basis changes from one excited state to the next.
(State-averaged NTOs have been suggested as a compact basis for correlated wave function expansions.14)
In Eqs. (3.1) and (3.2), we have written the eigenvalues of ∆Pelec and ∆Phole as λ2r in order to emphasize
the correspondence with x2ia in the canonical MO basis, whereas the singular values λr in Eq. (3.4) are the
amplitudes themselves, rotated into the NTO basis.

For chemists, there exists a temptation to designate the orbitals comprising the first NTO pair (having
the largest singular values λi) as “HONTO” and “LUNTO”,123–145 in analogy to HOMO and LUMO. (The
terms “HOTO” and “LUTO” have also been used occassionally.99,146) This seems to be especially prevalent
in the literature on thermally-activated delayed fluorescence (TADF) emitters.132–145 As even some who use
this terminology have acknowledged,125 this usage is incorrect insofar as “highest” and “lowest” are typically
used in the context of the aufbau principle, whereas orbital energies are undefined in the NTO basis because
the Fock matrix is not diagonal. As such, it makes no sense to discuss the energies of NTOs, and this makes
the “HONTO” and “LUNTO” terminology especially confusing when discussed alongside HOMO/LUMO
energy gaps, as is often done in the TADF literature. In this author’s view, the terms “HONTO/LUNTO”
should be avoided, so that visual descriptions of NTOs are kept separate from arguments based on one-
electron energy levels. In discussing the NTO pairs with the largest singular values, a more appropriate term
is principle transition orbitals, or perhaps principle NTOs (pNTOs). The full set of NTOs can be labeled
pNTO, pNTO − 1, pNTO − 2, . . ., in order of decreasing singular values λ1 > λ2 > λ3 > · · · . That is the
nomenclature used herein.
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(a) (b) (c)

Figure 5: Orbitals participating in the lowest titanium K-edge transition in Ti16O32H2, computed using TD-DFT/
TDA (PBE0/def2-ma-SVP): (a) the principle electron NTO ψelec

1 (r), for which λ2
1 = 1.00, and (b) two canonical

virtual MOs ψa(r), for which x
2
ia = 0.19 and 0.09. Isosurfaces plotted here encapsulate 85% of the probability density

|ψ(r)|2.

3.3 Examples

Equation (3.3) demonstrates how the NTOs extract the most important contributions to the particle and hole
densities, or in other words the most significant contributions to the unrelaxed attachment and detachment
densities. In the case where there is only one significant singular value (λ21 ≈ 1), then |ψelec

1 (r)|2 and
|ψelec

1 (r)|2 are equivalent to the particle and hole densities ∆ρelec(r) and ∆ρhole(r), respectively, or in other
words they are equivalent to unrelaxed attachment and detachment densities. This connection does not seem
to be widely appreciated.

In some cases the use of densities may be more convenient, especially in the opposite limit where several
singular values are significant, a situation that is discussed in Section 3.4. On the other hand, the NTOs
preserve phase information that is lost upon squaring the orbitals, and that information may be useful in
some situations, e.g., to distinguish nπ∗ from ππ∗ in cases of significant orbital mixing, or to reveal the
π → π∗ in a case with complicated nodal structure, as in the example of Fig. 3b, to which we return below.

For a very different example, we turn to x-ray spectroscopy at the titanium K-edge. Calculations on a
Ti16O32H2 cluster11 were performed at the PBE0/def2-ma-SVP level where the basis set is an augmented
one,147 intended to describe any nascent band structure. The K-edge consists of transitions from Ti(1s)
to valence virtual orbitals at almost 5,000 eV, and to access core-level excitations these calculations invoke
the core/valence separation approximation.148 Here, one omits amplitudes xia unless ψi corresponds to a
core orbital of interest, meaning Ti(1s) in the present example, while retaining the full virtual space. The
principle particle NTO in this example exhibits just one nonzero singular value (λ21 = 1.00) and is depicted
in Fig. 5a, where its Ti(3d) character is evident along with some admixture of O(2p). The hole NTO is
not shown but corresponds to the Ti(1s) on a nearby atom, meaning that the asymmetry of the cluster has
localized this Ti(1s) → Ti(3d) pre-edge feature to one end of the Ti16O32H2 cluster.

In the canonical MO basis, the same transition is completely scrambled and essentially uninterpretable.
Two of the relevant canonical virtual orbitals are shown in Figs. 5b and 5c but there are 17 distinct amplitudes
with |xia| ≥ 0.1, the largest of which contributes only 19% of the norm of the transition eigenvector. and all of
which collectively contribute only 85%. Note that Fig. 5 indicates the fraction of |ψ(r)|2 that is encapsulated
within each isosurface, which is necessary in order to make meaningful side-by-side comparisons of orbital
localization or size. Isoprobability surfaces are be readily computed,149 given volumetric data on a grid (e.g.,
in the format of a “cube” file),94 and this functionality is available in some visualization programs.150

It is thus conceivable that x is characterized by just one singular value with λ21 ≈ 1. In such cases,
the principle NTO pair can be used to distill the picture into one that involves just one occupied and one
virtual orbital, without loss of information. Such is also the case in the S0 → S2 transition of the fluoronone-
terminated polyfluorene that is shown in Fig. 3, for which λ21 = 0.96. In contrast to the simple picture
in the NTO basis, in the canonical MO basis four different amplitudes xia contribute significantly to the
same transition. The latter are highly delocalized in the occupied space and form a localized hole only upon
coherent superposition, whereas the localization is immediately evident in the NTO basis. Higher-lying
states of polyfluorenes do involve a larger number of significant NTO pairs,124 which is not unusual. Since
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1e1g 2e1g 1e2u 2e2u

HOMO–1 HOMO LUMO LUMO+1

Figure 6: Frontier MOs for benzene (B3LYP/6-31G* level). The two occupied orbitals are degenerate, as are the two
virtual orbitals.

NTOs are the optimal particle/hole basis, the presence of more than one significant singular value λi is a
signature of unresolvable multideterminant character in the excited-state wave function, which cannot simply
be rotated away by unitary change of basis.14,15,100 The next section considers this in more detail.

3.4 Static correlation

The presence of more than one significant λi in the SVD of x+y can be driven by symmetry-induced orbital
degeneracies. Such is the case for benzene, whose frontier MOs (Fig. 6) consist of a pair of degenerate e1g
orbitals (HOMO and HOMO − 1) along with a pair of degenerate e2u orbitals (LUMO and LUMO + 1). In
small basis sets, there is essentially no difference between the canonical MOs and the NTOs for the low-
lying excited states and they can be used interchangeably in the following discussion. Four singly-excited
determinants can be constructed from the four aforementioned orbitals, and together these make up the first
four singlet excited states of benzene. These states are:

|S1(B2u)〉 =
(∣
∣Ψ

1e
2u

1e
1g

〉
+
∣
∣Ψ

2e
2u

2e
1g

〉)
/
√

2 (3.7a)

|S2(B1u)〉 =
(∣
∣Ψ

1e
2u

1e
1g

〉
−
∣
∣Ψ

2e
2u

2e
1g

〉)
/
√

2 (3.7b)

|S3(E1u)〉 =
(∣
∣Ψ

1e
2u

2e
1g

〉
+
∣
∣Ψ

2e
2u

1e
1g

〉)
/
√

2 (3.7c)

|S3
′(E1u)〉 =

(∣
∣Ψ

1e
2u

2e
1g

〉
−
∣
∣Ψ

2e
2u

1e
1g

〉)
/
√

2 . (3.7d)

States S1 and S2 are optically dark in one-photon spectroscopy but S3 is dipole-allowed and doubly-
degenerate.152 Calculations at the TD-B3LYP/6-31G* level conform to this simple four-orbital model with
> 99% fidelity, and though the TD-DFT results might at first seem complex, in the sense that there is no
excited state that is primarily HOMO(2e1g) → LUMO(1e2u) in nature, given the symmetry of the system
there is little else that these states could have been. Symmetry here is a parlor trick that makes the situation
seem more complicated than it really is, leading to unresolvable multiconfigurational character. wherein a
minimum of four orbitals and two determinants is required to describe the low-lying excited states, even
within the single-excitation ansätze of CIS and TD-DFT.

A more interesting example, which is not driven by symmetry, is the keto-defect polyfluorene oligomer
whose S0 → S2 transition was considered in Figs. 2 and 3 and whose S0 → S3 transition is depicted in
Fig. 7a. There is interest in these molecules for fabrication of organic light-emitting devices,153–158 as this
is one of the few classes of materials that can span the whole range of visible wavelengths at low operating
voltage,153 and also one of the few classes of materials with good emission properties for blue light.154 These
properties arise from highly delocalized excited states of the π system that may exhibit large polarizabilities
and hyperpolarizabilities, giving rise to nonlinear optical properties.159 In the present example, such states
are accessed at higher excitation energies such as ω = 4.5 eV for S0 → S3. The oscillator strength for this
delocalized transition (f = 4.5) is about 25 times greater than that of the defect-localized S0 → S2 excitation.

For S0 → S3, even the principle NTOs are delocalized over the length of the molecule (Fig. 7a), meaning
that this is genuine delocalization and is not an artifact of the representation. The principle NTO pair
accounts for only 67% of the transition density, with a second NTO pair contributing another 20%. Irreducible
mixing of more than one NTO pair is a signature of static correlation in the excited state.14,15,100 (Note
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(a) 

54%

40%

(b) 

20% pNTO – 1

67% pNTO

(c) 

46%

19%

16%pNTO

pNTO – 1

pNTO

pNTO – 1

pNTO – 2

Figure 7: NTOs for transitions that exhibit significant static correlation in the excited state: (a) S0 → S3 excitation
(ω = 4.5 eV, f = 4.5) of a five-unit polyfluorene polymer with a keto defect (as in Figs. 2 and 3), computed using
TD-DFT/TDA at the CAM-B3LYP/3-21G* level; (b) S0 → S1 excitation (ω = 2.8 eV, f = 0.4) of a 1,3,5-triazene
derivative,133 computed at the ωB97X-D/6-31+G* level; and (c) S0 → S2 excitation of a 20-unit MEH-PPV polymer,
computed at the ωB97X-D/6-31G* level. Panel (c) is adapted from Ref. 151; copyright 2014 American Chemical
Society.

that there is no contradiction with the use of a single-determinant formalism for the ground state, because
the CIS wave function ansatz is multideterminantal.) From another point of view, the presence of more
than one significant singular value in the TDM indicates that the natural orbitals of the ground state differ
significantly from those in the excited state.100 A close examination of the NTOs in Fig. 7a reveals that
ψhole
1 (r) and ψhole

2 (r) are out of phase with one another, on the left end of the molecule, but evolve across
its length such that they are in phase on the right end of the molecule. The same is true of ψelec

1 (r) and
ψelec
2 (r), which suggests that the excited state in question can only properly be described using a minimum

of two determinants. This would not be obvious from attachment/detachment density analysis.
Formal analysis suggests that static correlation, manifesting as more than one significant NTO pair, may

occur in cases where a molecule consists of what amounts to two weakly-interacting chromophores,160 even
if these are but different chemical moieties within the same molecule. An example is the molecule shown
in Fig. 7b that consists of three identical ligands connected to a central 1,3,5-triazene moiety in a propeller
motif, wherein each ligand may be considered a distinct chromophore. (This and other triazene derivatives
have been investigated133 in the context of optoelectronic applications such as triplet-triplet annihilation
and TADF.161–165) Canonical MOs for this molecule are not shown but are mostly delocalized over all three
ligands, nevertheless the NTOs for the S0 → S1 transition are delocalized over just two of the three ligands
(Fig. 7b). Although this could be inferred also from the particle and hole densities, what those densities
cannot reveal is the role of static correlation: this excited state is evidently an irreducible combination of two
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Figure 8: Energy profiles along the electrocyclic ring-opening coordinate of oxirane (CH2CH2O), illustrating changes
in the dominant NTO pairs at different points along the reaction coordinate. (a) Near the S2/S3 intersection at
θ = 62◦, the hole remains consistent on both states as the system passes through the conical intersection, whereas the
excited electron switches its character abruptly, from 3pz to σ∗. (b) Where the electronic states are well-separated
(e.g., for θ = 65◦), the dominant NTOs remain qualitatively consistent as the system moves along the potential
surface. Adapted from Ref. 166; copyright 2015 the PCCP Owner Societies.

particle/hole pairs. Another example with multiple chromophores within the same molecule is the poly[2-
methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV) polymer that is shown in Fig. 7c.151 Here,
breaks in the conjugation divide the polymer into several effective intramolecular chromophores, yet electronic
coupling between them is sufficient to maintain coherence of the exciton across these gaps in conjugation.

The close connection between significant NTO pairs and static correlation suggests that the NTOs can
be used to infer electron configurations, and in particular to detect changes in electron configuration across
a potential energy surface. (In fact, a more descriptive name for the NTOs might be natural electron
configurations.167) Consider the electrocylic ring-opening of oxirane (C2H4O), a prototypical reaction for
which the Woodward-Hoffmann rules were developed.168,169 Potential energy curves along the C–C–O bond
angle of the ring are plotted in Fig. 8 and isosurface plots of the principle NTO pair are provided at various
points, for transitions to S2 and S3.166 The reaction involves a conical intersection between these two excited
states, at an angle θCCO ≈ 62◦, and the the nonadiabatic transition that occurs there is accompanied by
an abrupt switch in the qualitative nature of ψelec

1 (r), as shown in Fig. 8a. On the other hand, ψhole
1 (r)

remains qualitatively unchanged as the system passes through the intersection. By means of these NTOs,
one may assign the diabatic character of either state: for θCCO < 62◦, the S2 state is n→ σ∗ and the S3 state
is n → 3pz, whereas this character is reversed for θCCO > 62◦. Away from any near-degeneracy between
Born-Oppenheimer potential surfaces, no such abrupt change is seen in the nature of the dominant NTOs,
as illustrated in Fig. 8b.

4 Atomic Partitions

Orbitals and densities introduced above provide convenient tool to visualize excited states in real space. The
present section describes tools that attempt to quantify charge rearrangement in ∆ρ(r), by partitioning the
density change into atomic contributions.

4.1 Mulliken analysis

Consider the 1CT state of p-nitroaniline whose dipole moment change is listed in Table 1. Although the
HOMO is nominally located on the amino group and the LUMO on the nitro group, both orbitals extend
over a significant portion of this small molecule, thus the CT nature of the state in question may not be
immediately obvious. A Mulliken-style170–172 partition of ∆Pelec and ∆Phole might help to quantify the
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nature and extent of the charge rearrangement. In this approach, the charge that is transferred to atom A
by electronic excitation is defined as

∆qelecA =
∑

µ∈A

(S∆Pelec)µµ , (4.1)

where S is the atomic orbital (AO) overlap matrix. Simultaneously, atom A may lose some charge if it
contributes to the hole, and that quantity of charge is defined as

∆qholeA =
∑

µ∈A

(S∆Phole)µµ . (4.2)

Other common atomic partitions of a density matrix can be applied equally well, to obtain Löwdin charges,93

for example. These decompositions are subject to the same variability with respect to the choice of AO basis
set that characterizes ground-state Mulliken or Löwdin atomic charges, and are intended only to aid qual-
itative understanding. For reproducing electrostatic properties (such as dipole moments) of electronically-
excited states, charges derived from the molecular electrostatic potential are much more reliable.20

4.2 Charge-transfer numbers

A different sort of atomic partition are the CT numbers that were first suggested by Luzanov and co-
workers.60,109,110,173–175 Like the difference charges ∆qelecA and ∆qholeA , these quantities attempt to identify
and quantify charge flow upon electronic excitation, based on atomic indices. For atoms or groups of atoms
A and B, one might intuitively define an A→ B charge transfer number according to60,175

lA→B =
∑

µ∈A

∑

ν∈B

(x2µν + y2µν) (4.3)

where
xµν =

∑

ia

cµi xia cνa (4.4)

is a transition amplitude expressed in the AO basis,175 also known as a pseudo-density for the excita-
tion.176,177 (The quantity yµν is defined analogously.) The idea is that squared amplitudes x2µν and y2µν
are associated with probabilities for transfer of charge from µ ∈ A to ν ∈ B. However, the formula in
Eq. (4.3) accounts neither for the normalization condition in Eq. (2.4), nor for the fact that the AOs are not
orthogonal. This may not be an issue when lA→B is used to analyze semi-empirical calculations,174,178–184

where the inherent minimal basis might be assumed to be orthonormal, but the same formula has been put
forward for all-electron TD-DFT calculations in arbitrary basis sets.60,175 Normalization could be enforced
in a straightforward fashion,185

l̃A→B =
lA→B

∑

λσ(x2λσ + y2λσ)
. (4.5)

However, failure to account for the AO overlap matrix leads to significant discrepancies in CT numbers
computed in small versus large basis sets.185

For this reason, an alternative definition due to Plasser et al. is preferable,14,186 as it accounts for
nonorthogonality of the AO basis functions. This definition starts from the normalization condition

∫
∣
∣T (r, r′)

∣
∣
2
dr dr′ = 1 . (4.6)

Rewriting this in terms of S∆P, as in Eqs. (4.1) and (4.2), suggests an atomic partition analogous to Mayer’s
bond-order matrix, M.187,188 For a closed-shell system, that quantity has matrix elements

MAB =
∑

µ∈A

∑

ν∈B

(PS)µν(SP)µν (4.7)
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and partitions (SP)µν into contributions µ ∈ A and ν ∈ B. A change-in-bond-order matrix (∆M) can then
be obtained by swapping S∆P for SP in Eq. (4.7):

(∆M)AB =
∑

µ∈A

∑

ν∈B

[(∆P)S]µν [S(∆P)]µν . (4.8)

The quantity ∆MAB can then be taken as an alternative definition of a CT number,186 a convention that
has since been adopted by others.185,189–191 Alternatively, one might exploit trace invariance in tr(∆M) =
∑

A,B(∆M)AB to partition the summand in Eq. (4.8) in the spirit of a symmetric (Löwdin) orthogonalization

of ∆P,93,192–194 meaning two factors of S1/2(∆P)S1/2 as opposed to separate factors of (∆P)S and S(∆P)
that in Eq. (4.8).23 This leads to a definition

ΩA→B =
∑

µ∈A

∑

ν∈B

[S1/2(∆P)S1/2]2µν (4.9)

to quantify the flow of charge from A to B, which amounts to a Löwdin-style partition of ∆P.23 The quantity
ΩA→B is a CT index in the spirit of lA→B but corrected to take proper account of the nonorthogonal AO
basis set. A Mulliken-style partition has also been formulated,14 in the spirit of Eq. (4.8), however Löwdin
populations are generally more stable and free of negative population artifacts.23,172 That said, the value of
ΩA→B certainly depends on the choice of AO basis set, just like any Löwdin population analysis.172

The method based on Eq. (4.9) has been called fragment transition density analysis,185,189,195 because in
the case of a correlated wave function one could imagine using the TDM in place of ∆P. For TD-DFT there
is no distinction, although one could substitute ∆Prlx in place of ∆P, thereby using the relaxed density to
understand charge flow. In view of the discussion in Section 2.3, this is probably the better approach for
quantitative analysis of CT states.

The CT indices ΩA→B satisfy the normalization condition

∑

A,B

ΩA→B = 1 (4.10)

for single-excitation wave functions. (The normalization condition is more complicated for other types of
wave functions.14) An expression analogous to Eq. (4.10) has been suggested for lA→B ,175 yet this claim
seems suspicious for all-electron TD-DFT calculations in nonorthogonal basis sets. Several other concepts
introduced by Luzanov et al.60,175 in the context of the CT indices lA→B would seem to be rigorously valid
only when the alternative definition ΩA→B is used instead. These include a gross excitation localization
index (GLI),60,175

GLIA = ΩA→A + CTA (4.11)

where

CTA =
1

2

∑

B 6=A

(ΩA→B + ΩB→A) . (4.12)

The quantity CTA is a measure of charge that is shifted around in ways that involve atom A, such that

NCT =
∑

A

CTA (4.13)

is a measure of the total CT character of the excited state in question.186 It follows that

∑

A

GLIA = 1 , (4.14)

which suggests that GLIA provides an atomic or functional group partition of the excited electron. As such,
it is also possible to use the quantities ΩA→B to define the size of an exciton, although we postpone that
discussion until Section 4.5.
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Figure 9: CT numbers l̃A→B for selected atoms (given here in percentages, in black, at the arrows) and gross excitation
localization indices GLIA (on the left, at the brackets) for the color-coded fragments A, for the lowest excitations of
the DMABN molecules. Calculations were performed at the TD-B3LYP/aug-cc-pVDZ level. Adapted from Ref. 60;
copyright 2010 John Wiley and Sons.

4.3 Example: DMABN molecule

Examples illustrating the use of CT numbers ΩA→B in complicated cases of photochemical reactions involving
transition metal complexes have been considered in Ref. 23. Here, we consider a relatively simple example, 4-
(dimethylamino)benzonitrile (DMABN), which has something of a history within TD-DFT. Its spectroscopy
which consists primarily of the usual 1La and 1Lb states,98,196–198 often discussed in the context of polycyclic
aromatic hydrocarbons (PAHs).17,199–203 Setting aside detailed symmetry considerations, these two states
have roughly perpendicular transition moments (along axes “a” and “b”). The former is primarily a HOMO
→ LUMO excitation, with significant ionic character in PAHs, while 1Lb is a mixture of (HOMO − 1) →
LUMO and HOMO → (LUMO + 1).204 TD-DFT calculations often afford an unbalanced treatment of these
two states,98,204,205 which are quite close in energy in the case of DMABN.206

The DMABN molecule is a canonical example of the phenomenon of dual fluorescence,197,198,207–209 or the
appearance of two fluorescence bands whose intensity ratio is highly sensitive to solvent polarity.197,207–209

Other donor–π–acceptor (or “push-pull”) systems also exhibit this behavior,210–212 and examples such as
push-pull porphyrins and thiophene-based push-pull polymers have been widely studied as potential pho-
tosensitizers for solar cells.213–220 Often, TD-DFT calculations have been used in an attempt to establish
design principles.221–225 Other categories of push-pull systems may be useful as dopants to produce devices
with novel optoelectronic properties, including photoswitchable molecules,226 and molecules that exhibit
TADF without the use of heavy metals.227–229

Dual fluorescence represents an exception to Kasha’s rule,230–232 which states that emission typically
occurs in a single band originating from the lowest excited state, insofar as radiationless internal conversion
from higher-lying excited states is usually rapid and efficient. The dependence on solvent polarity has long
been been interpreted in terms of excited-state dynamics that access a twisted intramolecular CT (TICT)
state, characterized by rotation of the –N(CH3)2 group out of the phenyl plane.197,207,233–241 In this picture,
the TICT state is stabilized in polar solvents, relative to the “locally excited” (LE) or 1ππ∗ state, and is
the origin of the longer-wavelength fluorescence band. This interpretation has been questioned, however, in
both DMABN242–249 and similar donor–π–acceptor systems.250–253

What is not in dispute is that the S1 and S2 states of DMABN exhibit different degrees of CT upon
vertical excitation. In the gas phase, S1 is the LE state and S2 is the CT state, as evidenced by a dipole
moment that is ≈ 6 D larger in S2 than S1, whose dipole moment is ≈ 3 D larger than that of the ground
state.206 This interpretation is furthered by examining the CT numbers and GLIs for both states, which are
provided in Fig. 9 based on Luzanov’s definition (lA→B), normalized as percentages to sidestep issues with
the normalization of Eq. (4.3). These quantities suggest that the S0 → S1 transition is characterized by a
single large CT number corresponding to electron transfer from the amino lone pair into the phenyl ring,
yet the GLI analysis suggests that 73% of the excited electron is localized on the phenyl ring, consistent
with the idea that S1 is the ππ∗ state. For the S2 state, the CT numbers provide clear evidence of amino
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Figure 10: Principle NTO pairs pairs for the lowest dipole-allowed FE state of the benzene dimer, in a cofacial D6h

arrangement. Calculations were performed at the TD-DFT/TDA level using CAM-B3LYP/6-31G* and the orbital
isosurfaces contain 80% of the corresponding orbital densities.

→ phenyl → cyano electron transfer, with smaller fractions of the excited electron is localized on the amino
and phenyl groups as compared to S1, and a larger fraction transferred to the cyano moiety.

4.4 Frenkel excitons and charge-resonance states

New forms of complexity emerge in systems having multiple electronic chromophores that are identical or
near-identical and whose vertical excitation energies are therefore quasi-degenerate. If the electronic coupling
between chromophores is sufficiently strong, then the monomer excitations will mix and the excited-state
wave function for the aggregate system will be delocalized across more than one chromophore.254–257 Consider
the case of two identical monomers in a high-symmetry arrangement, such as a cofacial benzene dimer with
D6h symmetry, for which the pNTOs are illustrated in Fig. 10. In Section 3.4, it was discussed that a
minimum of four Slater determinants is required to describe the frontier excitations of the benzene monomer
[Eq. (3.7)], and the same is true for the dimer but the relevant pNTOs are delocalized over both monomers.

Collective excitations of electronically coupled chromophores can be conceptualized as linear combinations
of basis states |Ψ∗

1Ψ2〉 and |Ψ1Ψ∗
2〉, in which one monomer or the other is excited. These are the Frenkel

exciton (FE) states, as in the classic case of H- and J-aggregates of PAH molecules.258 In a high-symmetry
system such as the benzene dimer, the mixing coefficients are equal:

∣
∣ΨFE

±

〉
=

1√
2

(∣
∣Ψ∗

1Ψ2

〉
±
∣
∣Ψ1Ψ∗

2

〉)

. (4.15)

In a lower-symmetry example, the isolated-monomer excitations may not be exactly degenerate. In quasi-
degenerate cases the monomer-excited basis states may still mix, though perhaps not equally. A more general
expression might thus be

∣
∣ΨFE

〉
= c1

∣
∣Ψ∗

1Ψ2

〉
+ c2

∣
∣Ψ1Ψ∗

2

〉
, (4.16)

for some mixing coefficients c1 and c2.
When the chromophores are at close-contact (van der Waals) separation, there is also the possibility

of intermolecular CT, which we might represent using basis states |Ψ+
1 Ψ−

2 〉 and/or |Ψ−
1 Ψ+

2 〉. For highly
symmetric systems, these these forward and backward CT states may be degenerate, leading to the formation
charge-resonance (CR) states,

∣
∣ΨCR

±

〉
=

1√
2

(∣
∣Ψ+

1 Ψ−
2

〉
±
∣
∣Ψ−

1 Ψ+
2

〉)

, (4.17)

which are characterized by equal amounts of forward and backward CT.255,259,260 Furthermore, if the
electron-transfer process is similar in energy to the S0 → S1 monomer excitation energy then either CT
excitons or else localized CT states may further mix with FE states. This type of mixing has been widely
discussed in the theory of excimers and photoluminescence.254,255,261–263 These various scenarios are illus-
trated schematically in Fig. 11.
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Figure 11: Different representations of FE (or excitonic resonance) excited states versus CT excited states, in a
symmetric dimer whose ground-state wave function is denoted |Ψ1Ψ2〉. Adapted from Ref. 186; copyright 2012
American Chemical Society.

Interaction between various types of states that are illustrated in Fig. 11 may lead to some mixing, such
that the real picture is more muddled. An important case where both types of states are in play are π-stacked
nucleobase dimers,26,27,264–266 leading to interplay between optically-allowed FE states and optically-dark
CT states in single-stranded DNA.267–272 Low-lying excited states of tetracene and pentacene also exhibit
this type of mixing259,273–277 which is relevant to the singlet fission process.278–282 In the perylene diimide
dimer, which is a common singlet fission (SF) chromophore,283,284 there has been much discussion of solvent-
induced symmetry breaking that can convert CR states into localized CT states.285,286 Within a quantum
chemistry calculation, even low-polarity dielectric boundary conditions (ǫ = 3, as in organic thin films) can
provide sufficient polarization to break the electronic symmetry and localize the CT states.260

In cases where mixing is significant, it can be challenging to develop a conceptual picture based on detailed
calculations. Because each of the four wave functions |ΨFE

± 〉 and |ΨCR
± 〉 is delocalized over both chromophores,

FE states cannot be distinguished from CR states on the basis of particle/hole (or attachment/detachment)
densities.110 The key to differentiating them is to recognize that the CT numbers ΩA→B or lA→B contain
information about correlations between particle and hole that are averaged away in the densities ∆ρelec and
∆ρhole. This has been analyzed in terms of the cumulant of the two-particle density matrix,287 but a more
straightforward analysis is to use a 2×2 matrix (Ω or l) comprised of the quantities ΩA→B or lA→B , in which
the fragments A and B represent monomers.186 This matrix is presented in Table 2 for the delocalized states
|ΨFE

± 〉 and |ΨCR
± 〉 that appear Fig. 11, along with the four basis states that contribute to them. By means

of the matrix Ω, these states become easily distinguishable: diagonal character is associated with charge-
neutral excitations (FE states, where only ΩA→A is significant), whereas off-diagonal character indicates
charge separation. The metric NCT [Eq. (4.13)] differentiates charge-neutral excitations (both localized and
delocalized) from charge-separated ones. Note that the full matrix Ω is necessary in order to make these
distinctions; the GLI in Eq. (4.11) is insufficient.

This analysis has been idealized in the sense that it assumes orthonormal basis functions, and is intended
to demonstrate simply that the aforementioned metrics are capable of distinguishing between delocalized
states and thus providing information that ∆ρelec and ∆ρhole do not. As discussed also in Section 4.2, these
metrics rely on our ability to assign amplitudes xµν to atoms and are susceptible to all of the usual problems
with Mulliken and Löwdin charge analysis. That said, this type of analysis has been used in real calculations
to classify the excited states of π-stacked dimers of naphthalene,186 adenine,186,265 and pyridine,288 for
example.

4.5 Participation ratio

Table 2 also introduces the participation ratio (PR) as a means to distinguish between localized and delocal-
ized states. This is a measure of delocalization over sites that is used in a wide variety of contexts.14,289–292
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Table 2: Descriptors for the excimer states of a symmetric dimer.a

Stateb NCT
c PRe-h

d Ωe

|Ψ∗
1Ψ2〉 0 1

(
1 0
0 0

)

|Ψ1Ψ∗
2〉 0 1

(
0 0
0 1

)

|Ψ−
1 Ψ+

2 〉 1 1

(
0 0
1 0

)

|Ψ+
1 Ψ−

2 〉 1 1

(
0 1
0 0

)

|ΨFE
− 〉 0 2

(
1/2 0
0 1/2

)

|ΨFE
+ 〉 0 2

(
1/2 0
0 1/2

)

|ΨCR
+ 〉 1 2

(
0 1/2

1/2 0

)

|ΨCR
− 〉 1 2

(
0 1/2

1/2 0

)

aAdapted from Ref. 186. bSee Fig. 11. cEqn. (4.13).
dEqn. (4.23). eΩAB = ΩA→B [Eq. (4.9)], where A

and B refer to monomers 1 and 2.

A generic definition is

PR =

(
n∑

i=1

p2i

)−1

(4.18)

where pi is the probability of localization on site i, in a system with n possible sites. In quantum mechanics,
pi is usually the square of some coefficient that expresses the wave function as a linear combination of
localized basis functions assignable to sites, say,

|ψk〉 =

n∑

i=1

aki |φi〉 . (4.19)

The summation in Eq. (4.18) then involves the fourth power of the amplitudes aki and is often expressed as

PR(ψk) =

(∑n
i=1 a

2
ki

)2

∑n
j=1 a

4
kj

. (4.20)

We assume normalized coefficients henceforth, in which case the numerator in this expression equals unity,
as in Eq. (4.18). If pi = 1/n, indicating equal probabilities at each site, then Eq. (4.18) affords PR = n. In
general, the PR may be interpreted as the number of sites over which the wave function delocalizes, and for
that reason it has sometimes been called a collectivity index.60

The presence of a reciprocal in Eq. (4.18) seems to have led to some confusion, whereby this quantity
is sometimes called the inverse participation ratio (IPR).293–298 However, calling the quantity defined in
Eq. (4.18) a PR is consistent with the earliest examples in the literature,289,290,299,300 and perhaps more
importantly it means that the PR increases (rather than decreases) as more and more monomers participate
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in the excitation. With Eq. (4.18) taken to define the PR, then its inverse is

IPR =
n∑

i=1

p2i (4.21)

and IPR = 1/n if pi = 1/n. That is consistent with the idea of the inverse of participation by n chromophores,
and also appears to be standard notation in the literature on localization phenomena.290,291,300–304 However,
both Mukamel and co-workers,292–294 as well as Fleming and co-workers,295,305 are inconsistent in whether
Eq. (4.18) defines the PR or the IPR. In view of the arguments above, PR should be defined as in Eq. (4.18)
and its inverse, if needed, can be called 1/PR.

For TD-DFT, one might define separate PRs for the electron and the hole:186

PRelec =

[
∑

B

(∑

A

ΩA→B

)2
]−1

(4.22a)

PRhole =

[
∑

A

(∑

B

ΩA→B

)2
]−1

. (4.22b)

(Note carefully the order of the summation indices and the fact that Ω need not be symmetric, hence PRelec

and PRhole are distinct.) Combining these two quantities affords a PR for the electron–hole pair:186

PRe-h =
1

2
(PRelec + PRhole) . (4.23)

Following appropriate coordinate transformations, each of these PRs involves a summation over x4µν , as in
the general definition of Eq. (4.20). In the idealized case of the states presented in Fig. 11, one finds that the
four localized states are characterized by PRe-h = 1 and are thus distinguishable from the four delocalized
states, for which PRe-h = 2. This is indicated in Table 2.

The quantities PRelec and PRhole measure the size of the exciton in terms of the coordinates of the electron
(relec) and hole (rhole), respectively. Their average, PRe-h, thus contributes to overall exciton size along the
extracule306 (center-of-mass) coordinate, relec + rhole. A complementary metric is the coherence length of
the exciton (Lcoh),186,292 which measures exciton size in terms of the intracule coordinate,306 relec − rhole.
That quantity may be defined using the CT indices according to186

Lcoh =

[

(PRe-h)
∑

A,B

(ΩA→B)2
]−1

. (4.24)

Note how off-diagonal elements of Ω (or ∆P) characterize coherences between atoms or fragments in the
electronic excitation. A value Lcoh = 1 indicates no off-diagonal contributions to Ω, which implies either
that the excitation is localized on a single site or else that it is a superposition of localized excitations, i.e.,
a FE state.186 (Consult the schematic Ω matrices in Table 2.) The length scale over which the FE state is
delocalized is measured in the extracule coordinate and a sensible definition of a PR for this is186

PRadiag =
(
∑

A ΩA→A)2
∑

B(ΩB→B)2
. (4.25)

This has been called a “diagonal” PR,186 or sometimes a diagonal length scale,292 although the extracule
coordinate lies along the anti-diagonal direction in the matrix representation Ω. A schematic view of how
to interpret that matrix is provided in Fig. 12. As indicated in that figure, the CT indices ΩA→B (and
the two-dimensional matrix Ω formed from them) are essentially a coarse-graining of the transition density
T (relec, rhole) expressed in particle/hole coordinates. This is discussed further in Section 5.

Quantities such as the PR are often of interest in the study of conjugated polymers where they may be
used to define an effective length scale for an exciton, which need not be the same as the conjugation length
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Figure 12: Guide to interpreting of T (rhole, relec) as a two-dimensional probability distribution, or Ω as a two-
dimensional matrix, based on a similar figure in Ref. 292. (a) Schematic illustration of the coherence length Lcoh,
which measures electron–hole separation (intracule coordinate relec − rhole), and the diagonal length PRadiag that
measures overall exciton size (extracule coordinate relec+rhole), for a hypothetical excitation in a conjugated polymer.
The whole exciton should be construed a superposition of electron–hole pairs, each of which has a characteristic
separation Lcoh, whereas the superposition extends over ≈ PRadiag distinct chromophores, assuming that the indices
in ΩA→B represent chromophores. (b) schematic illustration of a two-dimensional |T (rhole, relec)|

2 plot. Heat maps of
Ω (as in Table 3) can be interpreted as two-dimensional plots with the same axes (relec, rhole). In that case, distance
is measured in units of atoms or functional groups, depending on how the molecule is partitioned, Overall size of the
exciton is limited by the size of the molecule as an upper bound, and Lcoh is then limited by PRadiag.

in the ground state. The PR also makes an appearance in certain analytic theories of exciton transport in
organic photovoltaic materials.296,297,307 For example, in a polymer with n repeat units, a simple analytic
theory predicts that the effective Huang-Rys parameter (or linear exciton–phonon coupling constant) should
be S(n) = S(1)/PR where S(1) is the Huang-Rys parameter for the monomer unit.296

An example is poly(p-phenylene vinylene) or PPV, which is the electroluminescent chromophore in one of
the first organic light-emitting diodes fashioned from a polymeric material.308–311 Excited states of a six-unit
PPV polymer [(PV)6Ph] are considered in Table 3.186 Although these states have been computed using a
many-body wave function method, they are characterized in Table 3 using the descriptors introduced above,
with indices A and B corresponding to PV monomer units. CT indices ΩA→B are arranged in the form of
a matrix Ω that is depicted as a grayscale heat map.

For the lowest few singlet excited states (including the S1 bright state), PRe-h ranges from 3.8–6.7 with
PRe-h > 5 in all but one case, indicating nearly complete delocalization. The S1, S2, and S3 states are
characterized by zero, one, and two nodes along this coordinate, respectively, and could be interpreted as
sequential states belonging to a single exciton band, with particle-in-a-box character along the center-of-
mass coordinate. The S4, S5, and S6 states (again with zero, one, and two nodes, respectively) constitute a
second exciton band. This is consistent with the idea that the intracule and extracule coordinates relec±rhole
sometimes behave as separable quasiparticle coordinates in conjugated polymers.151,312 However, Plasser and
Lischka186 question whether these should indeed be characterized as FE states, given the fairly significant co-
herence lengths (e.g., Lcoh = 3.9 for S1 and Lcoh = 5.0 for S4). These values quantify the anti-diagonal length
in the Ω heat maps and can be interpreted as electron–hole separation, measured in units of PV monomers,
and the computed values suggest that the electron and hole are well separated, unlike the conventional FE
picture of a tightly-bound electron and hole.

Evidence of static correlation in the PPV system can also be detected using the quantity

PRNTO =

(
∑

i

λ4i

)−1

(4.26)
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Table 3: Excitation energies (∆E), oscillator strengths (f), and various descriptors (PRe-h, Lcoh, PRNTO, and Ω) for
the lowest singlet excited states of (PV)6Ph.

a

S1 S2 S3 S4 S5 S6

1 1Bu 2 1Ag 2 1Bu 3 1Ag 4 1Ag 3 1Bu

∆E (eV) 3.15 3.56 4.00 4.22 4.39 4.47
f 5.66 0.00 0.61 0.00 0.00 0.02
PRe-h

b 5.53 6.32 6.69 5.14 6.30 3.80
Lcoh

c 3.90 3.38 3.03 4.98 3.04 2.20
PRNTO

d 1.59 2.14 2.99 2.39 4.00 4.16

Ωe

aCalculations performed at the ADC(2) level and reprinted from Ref. 186;

copyright 2012 American Chemical Society. bEqn. (4.23). cEqn. (4.24).
dEqn. (4.26) eΩAB = ΩA→B , monomer-based partition.

where the λi are the singular values associated with each NTO pair. The quantity PRNTO is a participation
ratio in the NTO basis; cf. Eq. (4.18). For the six-unit polymer described in Table 3, the quantity PRNTO

starts at a value of 1.6 for the S1 state and increases monotonically as one moves up the excitation manifold,
with PRNTO ≥ 4 for states S5 and S6. This means that S5 and S6 are each characterized by an average of
four significant particle/hole pairs, indicating significant static correlation.

With this in mind, it is interesting to revisit the NTOs in Fig. 7c, which correspond to an excited state of
a different polymer and where three pairs of NTOs are needed to recover 81% of the transition density. In-
terestingly, these NTOs demonstrate that the excitation delocalizes around the bent portion of the molecule,
suggesting that a purely geometric definition of broken conjugation is insufficient to understand exciton
localization in these molecules (and similarly inadequate to define the effective size of the chromophore), be-
cause other mechanisms such as dipole-dipole coupling and superexchange can drive delocalization even when
geometric distortion leads to loss of conjugation.151 With an excited-state wave function in hand, however,
an effective chromophore size can be inferred by measuring the particle–hole separation for the exciton.151

This is the anti-diagonal coordinate in the Ω plots of Table 3, for a different PPV system. This analysis
technique and other statistical measures of electron–hole correlation are described in the next section.

5 Exciton Wave Function

The concept of an “exciton” or bound particle/hole pair is ubiquitous in solid-state physics yet it can be
difficult to connect that language to the MO-based concepts that are used in quantum chemistry,16,313

since any excited state consists of an excited electron and a hole in the occupied space. A connection
can be made by identifying virtual–occupied function pairs ψa(relec)ψ

∗
i (rhole) as a quasiparticle basis. The

transition density T (r, r′) in Eq. (2.5), written in the form T (relec, rhole), is then identified as an electron/
hole “wave function” for the exciton. That said, the true excited-state wave function in a many-body
formalism is Ψexc in Eq. (2.8), which is be used to construct T (r, r′). Nevertheless, the transition density
T (relec, rhole) is often called a “wave function” in quasiparticle theories based on the two-particle Green’s
function and the Bethe-Salpeter equation.314,315 Semantics aside, this quantity facilitates examination of the
spatial correlation and separation between particle and hole. In quantum chemistry, this form of analysis was
pioneered by Mukamel, Tretiak, and Chernyak,99,292–294,316–318 and later used by others,319–323 mostly in
the context of organic photovoltaic materials and using semi-empirical CIS-type wave functions. These ideas
were subsequently formalized, and generalized to wave functions of arbitrary complexity, and to the case of
nonorthogonal basis functions, by Plasser and co-workers.14,15,18,186,324 Those authors also studied organic
photovoltaics,288,325–327 albeit using TD-DFT and correlated wave functions rather than semi-empirical
methods.
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5.1 Electron–hole correlation

If T (relec, rhole) is to serve as the excitonic wave function then it might seem that |T (relec, rhole)|2 should
be the corresponding probability density, although this analogy breaks down when one realizes that the
normalization condition in Eq. (4.6) is not generally obeyed for correlated wave functions.14,15 (This fact
has occasionally been used to quantify deviation from one-particle character.190,328,329) For single-excitation
wave functions, however, Eq. (4.6) is strictly valid and one may integrate over either r ≡ relec or r′ ≡ rhole
to obtain separate one-particle densities for the electron and the hole.14 For TD-DFT, these quantities are
the same as the particle and hole densities defined in Section 2.2. In terms of T (relec, rhole), they are

∆ρelec(relec) =

∫
∣
∣T (relec, rhole)

∣
∣
2
drhole (5.1a)

∆ρhole(rhole) =

∫
∣
∣T (relec, rhole)

∣
∣
2
drelec . (5.1b)

with ∫

∆ρelec(r) dr = 1 = −
∫

∆ρhole(r) dr , (5.2)

where the normalization is consistent with Eq. (2.13). An atomic partition provides an equivalent definition
of the CT numbers that were introduced in Section 4.2:14,195

ΩA→B =

∫

A

drhole

∫

B

drelec
∣
∣T (rhole, relec)

∣
∣
2
. (5.3)

Taking |T (relec, rhole)|2 seriously as the probability distribution for the exciton, this quantity should afford
the correlated probability of finding the hole at position rhole given the presence of the excited electron at
position relec. A schematic view of |T (relec, rhole)|2 as a two-dimensional probability distribution is presented
in Fig. 12. According to Eq. (5.3), this plot conveys the same qualitative information, in the same way, as
does a heat-map plot of Ω (e.g., in Table 3), but does so in real space whereas ΩA→B does so in atom or
functional-group space. Either way, the diagonal direction in a plot of relec versus rhole measures charge
separation, with a characteristic length scale Lcoh [Eq. (4.24)]. The anti-diagonal direction measures the
total size of the exciton, i.e., delocalization over atoms, and can be measured using PRadiag [Eq. (4.25)].

This type of analysis can be used to demonstrate how different exchange-correlation functionals may
predict qualitatively divergent behavior for excitonic states in multichromophore systems.259 In such cases,
FE states can mix with either localized CT states or delocalized CR states and the extent of mixing is
sensitive to the long-range behavior of the functional in question, especially with regard to the fraction (if
any) of Hartree-Fock exchange. The energetic position of CT and/or CR states is sensitive to this fraction,31

to a much greater extent than localized excitations such as ππ∗ or nπ∗,26 so adjusting the fraction of exact
exchange has the effect of tuning charge-separated states in or out of resonance. As an example, Fig. 13 shows
heat maps of Ω for the lowest four singlet excited states of a (pentacene)4 cluster taken from a supercell of
the crystalline material, computed using four different density functionals.259

Significant discrepancies are observed amongst different functionals in these data. Using the ωB97X-V
functional,330 for example, the states S1 to S4 are mostly CR states, which is evident from the strong
anti-diagonal character of the Ω heat maps; consult Table 2 for a guide. For example, the S1 and S4

states primarily involve mixing basis states |Ψ1Ψ+
2 Ψ−

3 Ψ4〉 and |Ψ1Ψ+
2 Ψ−

3 Ψ4〉. Range-separated hybrid (RSH)
functionals,1 including LRC-ωPBE and a screened RSH approach (sRSH-ωPBE) that respects asymptotic
behavior within a low-dielectric crystal medium,331 exhibit a much greater degree of FE character, with
amplitude along the diagonal of the Ω matrix. There is still some charge-separation character in these cases
although it is asymmetric, indicative of localized (directional) CT. In centrosymmetric systems, localized CT
is not possible due to symmetry and dipole moment changes vanish for the same reason, but Ω heat maps
can still be used to infer charge-separated character.259

To examine excitonic states in conjugated polymers of interest for organic electronics, Tretiak and co-
workers have made extensive use of atomic partitions of the TDMs from semi-empirical electronic structure

26

https://doi.org/10.26434/chemrxiv-2023-gnh1v-v2 ORCID: https://orcid.org/0000-0002-1663-2278 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-gnh1v-v2
https://orcid.org/0000-0002-1663-2278
https://creativecommons.org/licenses/by/4.0/


ωB97X-V

CAM-B3LYP

LRC-ωPBE (optimally tuned)

state 1 state 2 state 3 state 4

ΩAB

sRSH-ωPBE (optimally tuned)

state 1 state 2 state 3 state 4

Figure 13: Heat maps of the CT matrix Ω, obtained from a monomer-based partition of |T (relec, rhole)|
2, for each of

the first four singlet excited states of the (pentacene)4 model that is shown at the top. Results from four different
density functionals are shown. Darker blue color indicates larger values of ΩA→B whereas white indicates that
ΩA→B ≈ 0, and the indices A and B represent different pentacene monomers. Adapted from Ref. 259; copyright
2020 American Chemical Society.

calculations.99,292,294,316–318,332,333 (This analysis has sometimes been ported to all-electron TD-DFT cal-
culations without recognition of the need to consider the AO overlap matrix.334,335) Neglecting S or else
using an orthogonalized minimal basis, there is little distinction between lA→B in Eq. (4.3) and ΩA→B in
Eq. (4.9), if normalization is ignored for the purpose of inferring spatial correlations between particle and
hole. Tretiak and co-workers use slightly modified CT indices,292 namely

ξAA =

∣
∣
∣
∣

∑

µ∈A

(∆P)µµ

∣
∣
∣
∣

(5.4)

in place of lA→A and

ξAB =




∑

µ∈A

∑

ν∈B

[(∆P)µν ]2





1/2

for A 6= B (5.5)

in place of lA→B . When collected into a matrix ξ the diagonal and anti-diagonal axes measure electron–
hole separation (intracule coordinate) and overall exciton size (extracule coordinate), respectively. This is
analogous to the way that the Ω matrix is analyzed; see Fig. 12.

Heat maps of ξ are depicted in Fig. 14 for a 20-unit PPV oligomer,318 where indices A and B in ξAB refer
to PPV units. In these examples, the length PRadiag in the anti-diagonal direction (extracule coordinate
relec + rhole) signifies that the excitation is delocalized over essentially the entire oligomer, regardless of the
exchange-correlation functional that is employed. On the other hand, the coherence length (in the diagonal
direction), which indicates charge separation, is rather sensitive to the fraction of Hartree-Fock exchange,
as it was for (pentacene)4. For functionals with a large fraction of exact exchange, including Hartree-Fock
theory itself, Lcoh approaches a limiting value of ≈ 2 monomer units, but for semilocal functionals such as
BLYP and PBE, the coherence length approaches the length of the entire polymer. This is observed in other
conjugated polymers as well.95,325–327,336
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Figure 14: Heat maps of ξ for (PPV)20, for calculations using various density functionals. The ξ matrix is defined in
Eqs. (5.4) and (5.5) but is essentially the matrix Ω defined in Section 4.2. Equivalently, this information is a spatial
representation of the transition density T (rhole, relec), with both axes measured in units of PPV monomers. The
horizontal axis represents the hole coordinate (amplitude represents a hole located on the site in question) and the
vertical axis presents the complementary information for the excited electron. Equivalently, the heat map represents
the probability of transferring charge from the site indicated on the horizontal axis to the site indicated on the vertical
axis. Adapted from Ref. 318; copyright 2007 American Institute of Physics.
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Figure 15: Electron–hole correlation functions F(r) [Eq. (5.6)] for the first four singlet excited states of a periodic
crystal of 6,13-bis(triisopropylsilylethynyl) (TIPS) pentacene. These have been projected onto either the xy plane
(upper panels) or the xz plane (lower panels). Corresponding cuts through the crystal structure are shown at the
far right, with methyl groups have been removed from the TIPS side chains, for clarity. Reprinted from Ref. 274;
copyright 2015 John Wiley & Sons.
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5.2 Quantifying exciton size

A one-particle probability distribution that preserves certain aspects of electron–hole information is the
electron–hole correlation function,315

F(r) =

∫
∣
∣T (r + rhole, rhole)

∣
∣
2
drhole , (5.6)

representing the probability of finding the centroids of the electron and the hole separated by a vector r. The
electron–hole distance (exciton length) can then be sensibly defined as the expectation value of the vector
between their barycenters,

Re-h =
〈
‖relec − rhole‖

〉
, (5.7)

which is computable by means of F(r):

Re-h =

∫

rF(r) dr . (5.8)

(Here, r = ‖r‖.) The CT character of the excitation in question can be estimated in terms of the fraction of
an electron that is transferred (QCT), which can be defined as

QCT = 1 −
∫

r∈Vmolec

F(r) dr . (5.9)

The notation r ∈ Vmolec indicates integration of the volume occupied by a single molecule in the crystal.315

Figure 15 plots F(r) for the lowest few singlet excitons in a periodic calculation of a functionalized
pentacene derivative, which is perhaps the most widely-investigated SF material.278–282 The SF process
amounts to rapid spin-allowed conversion of a singlet excited state on one molecule into a correlated pair of
triplet excitations on two neighboring molecules,

S0
hν−→ S1

SF−−→ 1(T1T1) → T1 + T1 . (5.10)

The correlated triplet-pair or “multi-exciton” state, 1(T1T1), represents a true double excitation in electronic
structure terms.337–339 Following decoherence, SF ultimately results in two charge carriers (T1 + T1) for
the price of a single photon. This photochemical two-for-one has the potential to overcome the thermody-
namic limit on conversion efficiency for one-to-one processes.340,341 However, there are basic mechanistic
questions that are still being investigated, including the role of low-energy CT states,259,273–277 vibronic co-
herence,338,342–348 the nature of exciton/phonon couplings,349 and whether the 1(T1T1) state may represent
a trap rather than an intermediate.350

In the electron–hole correlation plots shown in Fig. 15, the origin (r = 0) corresponds to zero net
separation between electron and hole (relec = rhole), but the plots do not indicate significant probability
there. Rather, the regions of highest probability in the xy plane are those around (x = 0, y = ±1 nm),
indicative of charge separation between nearest-neighbor molecules, although the extent of F(r) indicates
delocalization over as many as three molecules.274 This leads to an exciton length of > 5 Å, as determined
by Eq. (5.8), with ≈ 50% CT charactert according to the definition in Eq. (5.9).315 In contrast, plots in
the xz plane of the crystal indicate no delocalization in the z direction, which is attributable to the large
intermolecular arising from bulky substituent groups.

The quantity T (relec, rhole) can also be used to evaluate a variety of statistical properties of the joint
electron/hole probability distribution,16,18 which are indicated schematically in Fig. 16. These measures
include root-mean-square (RMS) sizes of the electron and the hole,

σelec =
(
〈relec · relec〉 − 〈relec〉 · 〈relec〉

)1/2
(5.11a)

σhole =
(
〈rhole · rhole〉 − 〈rhole〉 · 〈rhole〉

)1/2
, (5.11b)
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Figure 16: Schematic depictions of some statistical measures of electron–hole correlation, including (a) the average
electron–hole separation, d−e-h; (b) the RMS electron–hole separation, dexc; (c) the RMS size of the electron, σelec;
and (d)–(e) Pearson’s correlation coefficient for electron and hole, PCCe-h. Adapted from Ref. 324; copyright 2018
American Chemical Society.

and the RMS value of the electron–hole separation,

dexc =
〈
‖relec − rhole‖2

〉1/2
. (5.12)

The latter provides an alternative to Re-h in Eq. (5.8), or Lcoh in Eq. (4.24), for characterizing the size of an
exciton. Each of these measures electron–hole separation along the anti-diagonal direction in Fig. 12, but
they are numerically distinct. These quantities play a central role in attempts to quantify the CT character
of a given excited state, which will be explored below.

To explore these definitions a bit further, we define

d±e-h =
∥
∥〈relec〉 ± 〈rhole〉

∥
∥ , (5.13)

where 〈relec〉 and 〈rhole〉 are the centroids of the attachment and detachment densities, respectively. Equiv-
alently, these are the expectation values of the position operator, averaged over ∆ρelec(r) or ∆ρhole(r). For
example, the x component of 〈relec〉 is

〈xelec〉 =

∫

x ∆ρelec(r) dx . (5.14)

The quantity d+e-h in Eq. (5.13) is the average of the extracule coordinate relec + rhole for the electron/hole
pair. This value depends on the choice of laboratory-fixed coordinate frame but can be used to assess how
the exciton migrates upon change in molecular geometry. The average inter-particle (intracule) distance
is d−e-h (Fig. 16a), however this vanishes for any centrosymmetric system,18 meaning that it cannot detect
charge separation in any system with inversion symmetry. This can have important implications in solid-
state systems, where d−e-h (and correspondingly, the dipole moment change upon excitation) is zero or small,
yet there may still be significant charge separation.259 In view of this, the quantity dexc in Eq. (5.12) is a
more robust measure of electron–hole separation. The latter satisfies the bounds

d2exc ≥ (d−e-h)2 + (σelec − σhole)
2 (5.15a)

d2exc ≤ (d−e-h)2 + (σelec + σhole)
2 . (5.15b)

The physical interpretation of these mathematical bounds is that the RMS exciton size (dexc) is not larger
than the sum of the RMS sizes of the electron and the hole (σelec + σhole).

For MEH-PPV polymers (Fig. 7c), examination of dexc and d±e-h leads to the conclusion that excitations
in this system can be viewed as two independent quasiparticles in the intracule and extracule coordinates
of the electron/hole pair.151 As compared to geometric considerations, the RMS exciton size proves to be
a better diagnostic for the effective size of the chromophore in a long, disordered polymer. That length

30

https://doi.org/10.26434/chemrxiv-2023-gnh1v-v2 ORCID: https://orcid.org/0000-0002-1663-2278 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-gnh1v-v2
https://orcid.org/0000-0002-1663-2278
https://creativecommons.org/licenses/by/4.0/


scale (measured by dexc) is sometimes longer than what might have been anticipated simply by counting
conjugated bonds, due to electronic coupling between conjugatively distinct segments of the polymer. The
value of dexc is effectively constant for the low-lying excited states of interest for optoelectronic applications,
whereas exciton delocalization that is measured by d+e-h is found to increase with excitation energy.151

Other statistical descriptors of an exciton include the covariance between the vectors relec and rhole,
defined as

COV(rhole, relec) = 〈rhole · relec〉 − 〈rhole〉 · 〈relec〉 . (5.16)

From this, one may compute Pearson’s correlation coefficient (PCC) between the probability distributions
for the electron and the hole:

PCCe-h =
COV(rhole, relec)

σelec σhole
. (5.17)

This quantity is defined such that
− 1 ≤ PCCe-h ≤ 1 , (5.18)

with positive values indicating concerted motion of the two quasiparticles (Fig. 16d) and negative values
indicating that they avoid each other dynamically (Fig. 16e).18

Analysis of correlations between the size of the electron and hole quasiparticles as a function of con-
jugation length suggests that the semilocal TD-DFT results for (PPV)20 in Fig. 14 are consistent with
quasiparticles avoiding one another, or in other words, more consistent with a CT state than with a bound
exciton.327 Reducing the fraction of Hartree-Fock exchange is tantamount to eliminating electron–hole at-
traction, or equivalently, to an effectively repulsive interaction between the excited electron and the hole.318

As a result, TD-DFT using semilocal functionals contains no electron–hole interaction! Semilocal DFT,
meaning generalized gradient approximations (GGAs),1 is thus inherently unable to describe bound exci-
tons. This explains large errors for excitations energies in conjugated π systems that had been observed
in previous TD-DFT calculations.98,205,351,352 The origin of this failure cannot be deduced from the MOs
alone, because the anti-diagonal length scales (PRadiag) are essentially identical for all functionals. Instead,
real-space analysis of the transition density (i.e., visualization of electron–hole correlation) is required.14,327

5.3 CT metrics

Results for conjugated polymers allude to systemic problems with the description of long-range CT in TD-
DFT calculations.1,9,24–32 These will be considered further in Section 6, and will ultimately require one or
more metrics that can quantify the extent of CT character in a given excited state, to use as a diagnostic
for when problems should be anticipated. A variety of CT metrics have been proposed and several of them
are closely related to statistical measures of electron–hole separation that were introduced in Section 5.2,
although these connections have seldom been made clear in the literature. For that reason, we introduce a
few of these metrics here, in order to illustrate how they are connected to the physically-meaningful metrics
introduced above.

Much of the work on CT metrics for TD-DFT has been carried out by Ciofini and co-
workers.20,211,221,336,353–360 Without referring to them as such, these authors introduce particle and hole
densities (or attachment and detachment densities, which are equivalent within TD-DFT as discussed in
Section 2.2). Because these quantities describe the parts of space that are characterized by positive (∆ρelec)
and negative (∆ρhole) changes in the density, these density changes were called ρ+(r) and ρ−(r),336,356

defined as

∆ρ+(r) =

{

∆ρ(r), ∆ρ(r) > 0

0, ∆ρ(r) ≤ 0
(5.19a)

and

∆ρ−(r) =

{

0 ∆ρ(r) > 0

∆ρ(r), ∆ρ(r) ≤ 0
. (5.19b)
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Note that ∆ρ(r) = ∆ρ+(r) + ∆ρ−(r) [cf. Eq. (2.15)] and

∫

∆ρ+(r)dr = 1 = −
∫

∆ρ−(r) dr . (5.20)

There is no new information here, beyond what is contained in ∆ρelec(r) and ∆ρhole(r). Since the latter
quantities have names that invoke both their physical meaning and their connection to the particle/hole
formalism of TD-DFT, we will use ∆ρelec(r) and ∆ρhole(r) rather than ∆ρ+(r) and ∆ρ−(r).

Ciofini et al.336 introduced what is now a widely-used measure of charge separation, which they call DCT

and which is equal to the distance between the centroids of ∆ρelec(r) and ∆ρhole(r). However, this quantity
is precisely equivalent to d−e-h as defined in Eq. (5.13). A more detailed definition, for both d−e-h and d+e-h, is

d±e-h =

∥
∥
∥
∥

∫
[
∆ρelec(r) ± ∆ρhole(r)

]
r dr

∥
∥
∥
∥
. (5.21)

Because the nomenclature d−e-h more clearly identifies the physical meaning of this quantity, we prefer
that notation over DCT. In any case, this metric is increasingly being used to analyze TD-DFT calcula-
tions,20,211,221,336,353–361 though most authors simply refer to it as “DCT”, “Ciofini’s CT metric”, or similar
language that obscures its very straightforward physical interpretation as the distance between barycenters
of the particle and the hole.16 Although this fact has been noted elsewhere,336,360 failure to introduce particle
and hole densities per se obscures the conceptual origin of DCT and its connection to quantities such as the
attachment and detachment densities. For this reason, we suggest that this quantity be called d−e-h rather
than DCT, as the physics is inherent in that nomenclature, namely, electron–hole separation as defined by
the difference between centroids, rather than the more generic “CT”. The definition of d−e-h in Eq. (5.13) is
more obvious and meaningful. Even more complicated variants of DCT have been suggested,359 though it is
not clear what advantages these may have as compared to a simple moment analysis of the excitonic wave
function, à la Eq. (5.11).

As noted in Section 5.2, d−e-h ≡ 0 for any centrosymmetric system.18 To obtain a non-vanishing metric
CT for systems with inversion symmetry, Ciofini et al. introduced alternative diagnostics that they call the
“t index”336,354 and the “H index”.211,221,336,354 The latter is essentially (σelec + σhole)/2, which provides a
measure of the spread of the excitation, while the former is defined as t = DCT −H. We suggest replacing
t with an alternative measure of essentially the same information, the charge-displacement distance1

dCD = d−e-h − 1

2

(
σelec + σhole

)
. (5.22)

An alternative might be
d̃CD = d−e-h + dexc . (5.23)

Both of these are similar to a different charge-separation metric (∆σ) introduced by Adamo et al.,362 which
will be discussed in Section 6.2. Essentially the same information that is encoded in DCT and ∆σ is contained
also in the quantities d−e-h and dCD, but the latter are defined in a manner that is more directly connected to
properties of the particle and the hole. This analysis furthermore clarifies why the values of various charge-
displacement metrics are found to be strongly correlated with one another.22,191,229 In this author’s view, the
use of d−e-h (distance between the centroids of the electron and the hole) and dCD (center-to-center distance
reduced by the average of the RMS size of the electron and the hole) are preferable ways to measure exciton
size and electron–hole separation. These quantities provide a more intuitive and mutually self-consistent
way to convey the same information as the DCT and t indices.

One novel analysis tool contained in the work of Ciofini et al.336 is the idea to use the the second moments
σ2
elec and σ2

hole [Eq. (5.11)] to introduce Gaussian approximations to ∆ρelec(r) and ∆ρhole(r). These provide
quantitative realizations of the cartoons in Fig. 16, free of the nodal structure of the particle and hole
densities and perhaps slightly easier to conceptualize. Examples are depicted in Fig. 17 for a sequence of
poly(p-phenyl)nitroaniline molecules. Due to the complex nodal structure along the conjugated backbone
of these molecules, the barycenters of ∆ρelec(r) and ∆ρhole(r) are more clearly evident in their Gaussian
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(a) (b)

Figure 17: (a) Electron and hole densities (in green and red, respectively) and (b) Gaussian approximations to these
quantities, for a sequence of poly(p-phenyl)nitroanilines, O2N–(C6H4)n–NH2. Calculations were performed at the
TD-PBE0/6-31+G* level using a solvent model.336 Blue arrows connects centroids of the electron and hole densities
in each case. Adapted from Ref. 336; copyright 2011 American Chemical Society.
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Figure 18: Particle densities ∆ρelec(r) (in red) and hole densities ∆ρhole(r) (in blue), for various push-pull chro-
mophores that are indicated in the lower part of the figure. Each chromophore has the structure (CH3)2N–π–NO2,
where “π” indicates a large conjugated system. Examples include: (a) several oligomers of α, ω-dimethylamino-
nitro-(p-phenylene vinylene)n; (b) a tertiary amine of the form N(PhOCH3)2(PhR), where Ph = phenyl and R is
a pentathiophene side chain with a terminal nitro group; and finally, α, ω-dimethylaminonitro-(p-thiophene)5 with
the central thiophene unit replaced by either (c) benzodifuranone or else (d) benzotriazole. Green arrows indicate
the charge-separation distance, d−e-h. These arrows have been displaced away from the molecules for clarity but their
endpoints coincide with the centroids of the particle and hole densities. Adapted from Ref. 221; copyright 2012
American Chemical Society.

approximations (Fig. 17b). Note also that whereas the particle and hole densities extend to the very edges
of the molecule, the charge separation distance d−e-h (indicated by the blue arrows in Fig. 17) is noticeably
shorter. This is even more clear in the examples of Fig. 18, where plots of the particle and hole densities
appear to be considerably more delocalized than the quantitative measure afforded by d−e-h. The extent
of spatial charge separation is therefore smaller than plots of ∆ρelec(r) and ∆ρhole(r) might lead one to
imagine. The latter are susceptible to the choice of isocontour value, which can sometimes be used to make a
density appear almost arbitrarily compact or diffuse. For that reason, the author recommends that such plots
should always indicate the fraction of the indicated density that is encapsulated within the isosurface,149 as
in several of the figures presented elsewhere in this work.

The spatial overlap between particle and hole densities defines a region of space corresponding to a
localized excitation. In contrast, charge separation suggests that the product ∆ρelec(r) ∆ρhole(r) ≈ 0, i.e.,
there is little or no spatial overlap between the excited electron and the hole. This is depicted schematically
in Fig. 19a using electron and hole densities that are drawn to resemble the Gaussian approximations in
Fig. 17b. Based on this idea, Etienne et al.12,13,363 suggest a charge-separation metric based on this product:

φ =

∫
∣
∣∆ρelec(r) ∆ρhole(r)

∣
∣
1/2
dr . (5.24)
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(a) (b)

Δρelec ΔρholeΦ

Δρhole

Δρelec

Φ = 0.17Φ = 0.77

Figure 19: (a) Schematic view of the charge-separation metric φ defined in Eq. (5.24), using cartoon sketches of
particle and hole densities made to resemble those in Fig. 17b. Roughly speaking, the integrand in Eq. (5.24) is
non-zero in the blue region of overlap between ∆ρelec(r) and ∆ρhole(r). (b) Examples of a localized excitation (on
the left) and a CT excitation (on the right) in the push-pull system (H2C)2N–(C6H4)5–NO2. In its planar geometry
(on the left), there is significant overlap between ∆ρelec(r) and ∆ρhole(r), corresponding to a large value of φ, but
when the molecule is twisted (on the right), these densities localize on opposite ends of the molecule and φ is small.
Calculations in (b) were performed at the TD-PBE0/6-311++G(2d,p) level and the plots are adapted from Ref. 13.

Roughly speaking, this integrates over the blue region in Fig. 19a, corresponding to overlap of ∆ρelec(r) and
∆ρhole(r). In Eq. (5.24), we omit the normalizing denominator that is included in the definition of Ref. 12,
as it equals unity for TD-DFT calculations where both ∆ρelec(r) and |∆ρhole(r)| integrate to exactly one
electron.

The metric φ is defined such that 0 ≤ φ ≤ 1. If φ = 0 then there is no overlap between electron and
hole, meaning that the excitation in question is entirely CT-like. An actual example that lies close to that
limit is the end-to-end donor–acceptor electron-transfer excitation of the twisted push-pull chromophore
(H3C)2N–(C6H4)5–NO2, whose particle and hole densities are plotted on the right of Fig. 19b. A twist in
the geometry severs the conjugation of the π system, resulting in particle and hole densities that localize on
opposite ends of the molecule and a much smaller value of φ as compared to when the molecule is planar.
When planarity is restored (on the left in Fig. 19b), both ∆ρelec(r) and ∆ρhole(r) delocalize across the entire
π system, leading to a value of φ that is closer to its upper limit.

6 Diagnosing the CT Problem

TD-DFT calculations are afflicted by severe underestimation of excitation energies for states having charge-
separated character, as has been widely discussed.1,9,19,24–32 In a sufficiently large system, this can manifest
as “spurious” CT states,1,24–28 whose energies are much lower than what one would estimate using Mulliken’s
formula,9

ωCT(R) ≈ IE + EA +
1

4πǫ0R
. (6.1)

Equation (6.1) expresses the excitation energy ωCT between well-separated donor and acceptor moieties
in terms of the ionization energy (IE) of the donor and the electron affinity (EA) of the acceptor, along
with a Coulomb penalty of 1/(4πǫ0R) for creating an ion pair. In conjugated polymers, problems with
underestimated CT energies in TD-DFT lead to over-delocalization of the exciton wave functions.318,325,327

The phenomenology of this problem is discussed next, in Section 6.1. We have already seen (in Section 5.3)
that one can design metrics to measure the degree of CT in a given excited state. These and related metrics
are discussed in the context of TD-DFT’s CT problem in Section 6.2.

6.1 Overview of the problem

As discussed in Section 5, exciton size and delocalization can be characterized and quantified using properties
of the transition density T (relec, rhole), providing access to correlations between the electron and the hole
quasiparticles that cannot always be inferred from the MOs and excitation amplitudes alone. This has
a bearing on diagnosing anomalous CT in TD-DFT calculations, as shown schematically in Fig. 20 using
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Figure 20: Cartoon depiction of exciton size versus conjugation length for ladder-type poly(p-phenylene). The
quantity dexc [eq. (5.12)] is the RMS exciton size, which increases without bound when GGA functionals are used in
TD-DFT. Reprinted from Ref. 327; copyright 2017 American Chemical Society.

ladder-type poly(p-phenylene) polymers as an example.320,364 Here, TD-DFT calculations using semilocal
functionals (GGAs) predict a bound exciton that is delocalized across the entire polymer, regardless of
oligomer length, which is the same problem that was documented for (PPV)20 in Fig. 14. In the latter
case, hybrid functionals with a large fraction of Hartree-Fock exchange significantly attenuate the charge
separation (although not the FE delocalization).318 As indicated in Fig. 20, LRC functionals also predict a
finite size limit, in agreement with many-body calculations.327 Such functionals include 100% Hartree-Fock
exchange at long range only.1,26,37–39,259

The DMABN molecule that was introduced in Section 4.3 provides an interesting case study in TD-
DFT’s description of CT, and Fig. 21 characterizes the nature of its S0 → S1 and S0 → S2 transitions using
particle and hole densities. These are the 1La and 1Lb states, and according to the lore one of them should
be the 1ππ∗ or “LE” state, while the other should exhibit nascent CT character that is enhanced upon
twisting. At the planar ground-state geometry (on the left in Fig. 21), both transitions exhibit significant
delocalization across the donor–π–acceptor framework, although the excited electron (attachment density)
has slightly more density on the cyano group in S2 than in S1. Introducing a 90◦ twist of the amino group
(on the right in Fig. 21), and in a dielectric medium characteristic of acetonitrile, detachment densities for
both transitions localize on the n(NH2) lone pair. For the twisted geometry, S1 is clearly the CT state and
it is significantly stabilized by solvent polarization. In contrast, the excitation energy for the LE state is
scarcely affected by the twist.

Historically, a point of some debate was the fact that the PBE and B3LYP functionals both predict
reasonably accurate excitation energies for both the 1La and 1Lb states, with comparable errors in each,
for DMABN and other small donor–π–acceptor molecules.19,365,366 A resolution to this apparent paradox
comes in the form of metric for quantifying CT character, that will be introduced below but which ultimately
suggests that the extent of CT in the planar geometry of DMABN is not very large.19 Only in hindsight can
this be inferred from the densities in Fig. 21a, which do not suggest any dramatic difference between S1 and
S2 at the ground-state geometry. (The difference is much more pronounced at the twisted geometry.) As
such, DMABN serves as a cautionary tale to indicate that one must be careful with blanket statements that
TD-DFT fails categorically for CT excitations,19 or at least one must be careful about what gets called a CT
excitation. Energies for truly long-range CT excitations will indeed be systematically (and catastrophically)
underestimated using GGA functionals, but errors may be small if the donor and acceptor orbitals are not
completely separated in space. In the planar geometry of ground-state DMABN, these orbitals are clearly
not well-separated in space.
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Figure 21: Particle (attachment) and hole (detachment) densities for the S0 → S1 and S0 → S2 transitions in DMABN,
in both its planar, ground-state geometry (on the left) and upon introducing a 90◦ twist of the dimethylamino moiety
(on the right). Opaque and wire mesh surfaces encapsulate 50% and 90% of each density, respectively. TD-DFT/TDA
calculations were performed using LRC-ωPBE/6-31G* with a dielectric constant of 37.5 (representing acetonitrile).

6.2 Diagnostics

The resolution to the DMABN paradox described above was made possible through the use of the first CT
metric to be introduced for CT calculations, by Tozer and co-workers.19 Their proposed metric, denoted by
Λ, is defined as

Λ =

∑

ia κ
2
iaOia

∑

jb κ
2
jb

(6.2)

where
κia = xia + yia (6.3)

and

Oia =

∫

|ψi(r)| |ψa(r)| dr . (6.4)

Note the absolute value signs in the integrand of Eq. (6.4), which are necessary because occupied and virtual
MOs are orthogonal. For this reason, we resist using the term “overlap” when it comes to MOs, in favor of
“spatial proximity” versus “spatial separation”, although we might call Oia the “spatial overlap”. This and
similar metrics are sometimes used to quantify the spatial proximity of HOMO and LUMO in donor–acceptor
materials.367

In view of the normalization condition for x and y [Eq. (2.4)], it is unclear why the definition of Λ in
Eq. (6.2) does not involve both x + y and x − y. Perhaps it is in loose analogy to the expressions for the
particle and hole density matrices [Eq. (2.11)], which contain terms like (x+y)†(x+y) and (x+y)(x+y)†,
although these expressions also contain (x − y)†(x − y) and (x − y)(x − y)†. (The latter have sometimes
been erroneously omitted in our own work as well.98) Whatever the reason, the definition of Λ in Eq. (6.2) is
the one that has been used in practice,19,21,98,368–370 yet the decision to abdicate the proper normalization
seems questionable, and has implications for other CT metrics that are discussed below. Within the TDA
(where y = 0) there is no issue, as the denominator in Eq. (6.2) has a well-defined normalization, namely,
∑

ia x
2
ia = 1. The implies that 0 ≤ Λ ≤ 1 within the TDA, however this need not be the case in full TD-

DFT. In practice, Tozer et al. find that 0.45 ≤ Λ ≤ 0.89 for localized valence excitations whereas Rydberg
excitations lie in the range 0.08 ≤ Λ ≤ 0.27.19

Examining excitation energy errors as a function of Λ, it becomes clear that there are approximate (albeit
functional-dependent) thresholds below which TD-DFT results should not be trusted. For example, when
Λ < 0.4 (for B3LYP) or Λ < 0.3 (for PBE), the excitation energies are “likely to be in very significant
error”.19 Values of Λ are also found to correlate well with excitation energy errors along the torsional
coordinate of a hydroxynaphthalene bichromophore that has the potential for intramolecular CT.371 The Λ
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metric has been successfully used to explain other trends in TD-DFT errors,33 although other metrics can be
used in that capacity as well.131 Resolution of the DMABN paradox comes in noting that its intramolecular
CT excitation at the PBE level exhibits Λ = 0.72 in the planar geometry,19 which is not very CT-like in real
space. For the LRC-ωPBE/6-31G* calculations in Fig. 21, the corresponding values are Λ(S1) = 0.53 and
Λ(S2) = 0.67 in the planar geometry, indicating that the nominal CT state actually has somewhat larger
spatial proximity between particle and hole. This is actually true in the twisted geometry as well, although
the values are much smaller and lie in the “danger zone”: Λ(S1) = 0.20 and Λ(S2) = 0.22. Results at the
TD-B3LYP/6-31G* level are similar.

Thus, while Λ has proven to be successful as a diagnostic for TD-DFT errors, its numerical value does
not provide much physical insight. Moreover, this metric may fail to detect problems when the excited state
involves excitation from a relatively compact occupied MO into a much more delocalized virtual MO,368

since these two orbitals may share significant spatial proximity (in the sense of Oia) yet the delocalized
nature of the final state might still engender an erroneously low TD-DFT excitation energy. One relevant
class of examples is that large density rearrangements upon excitation of certain PAH molecules can lead
to anomalously low TD-DFT excitation energies, especially in larger aromatic systems.98,204,205,372 This
problem can be rectified through the use of asymptotically-correct LRC functionals,98,372 yet such states do
not exhibit what might be understood as CT in intuitive chemical or functional-group terms, and values of
Λ do not portend any problems in such cases.98

Other metrics that were introduced in Section 5.3 may do better job of providing physical insight, as
they connect more directly on the physical separation between electron and hole. A straightforward measure
is d−e-h [Eq. (5.13)], which is the distance between the centroids of ∆ρelec(r) and hole density ∆ρhole(r). As
discussed in Section 5.3, the quantity d−e-h has sometimes been called simply a “CT metric”, and denoted DCT

or dCT,20,211,221,336,353–361 but this obscures its readily-interpretable physical origin. That d−e-h is simply the
electron–hole separation is evident both from the nomenclature and from the definition, either Eq. (5.13) or
(5.21). On the other hand, d−e-h measures center-to-center electron–hole distance but takes no account of the
size of the distributions ∆ρelec(r) and ∆ρhole(r). That information is included in the charge-displacement
distance, dCD [Eq. (5.22)], which reduces d−e-h by the average size of electron and hole as measured by their
second moments.

Although d−e-h and dCD provide the most direct physical interpretation of the CT character, several
alternatives have been proposed in the spirit of the Λ metric, as attempts to find a diagnostic that is also
physically meaningful. One of these is a charge-separation metric ∆r,21,22 defined as

∆r =

∑

ia κ
2
ia‖Ria‖

∑

jb κ
2
jb

(6.5)

where
Ria = 〈ψi|r̂|ψi〉 − 〈ψa|r̂|ψa〉 (6.6)

is the relative position vector of the centroids of orbitals ψi(r) and ψa(r). The quantity ∆r measures the
change in the orbital centroids upon ψi → ψa excitation, weighted by κ2ia.

Although the definition in Eq. (6.5) seems like an intuitive way to measure charge separation, the utility
of ∆r as a separate metric is questionable. Within the TDA, this quantity is precisely equal to the electron–
hole separation d−e-h defined in eq. (5.13), whereas for full TD-DFT the definition of ∆r employs the same
curious choice of normalization that was used to define Λ, namely, use of κ2ia in the denominator of Eq. (6.5).
Perhaps more damningly, ∆r is not orbitally invariant so that its numerical value depends upon the choice
of MOs that are used in Eq. (6.6).22 It has been suggested to evaluate ∆r in NTO basis, as this seems
to afford good correlation between ∆r and DCT,22 but the need to make such a choice is a bothersome
manifestation of having broken orbital invariance. Moreover, for a different data set of intramolecular CT
energies,373 reasonable correlations are found between ∆r regardless of whether canonical MOs or NTOs are
used, but those values also correlate well with dexc.

191 The latter quantity, along with expectation values
such as 〈relec〉 and 〈rhole〉, and also d−e-h that is defined from them, are invariant to unitary transformations
of MOs. Quantities such as d−e-h, dexc, and dCD are thus fundamental properties of the exciton, independent
of its representation, and should therefore be preferred as measures of its properties.
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Note that d−e-h vanishes in centrosymmetric systems, as does its doppelgänger, ∆r. This is a significant
drawback in some cases, but which is not shared by dCD. Alternatively, to obtain a non-vanishing metric
in the presence of inversion symmetry, an “effective electron displacement” measure has been suggested,362

defined as
Γ = ∆r + ∆σ . (6.7)

This combines ∆r from Eq. (6.5) with

∆σ =

∑

ia κ
2
ia|σi − σa|
∑

jb κ
2
jb

(6.8)

where
σr =

(
〈ψr|r̂ · r̂|ψr〉 − ‖〈ψr|r̂|ψr〉‖2

)1/2
. (6.9)

The quantity σ2
r is the second moment of orbital ψr. In a sense, ∆σ is conceptually similar to dexc in

eqn. (5.12) in the same way that ∆r is conceptually similar to d−e-h, with the important distinction that both
∆r and ∆σ mangle the normalization when y is nonzero, and that the numerical values of both ∆r and ∆σ
depend upon the choice of representation.

In any case, these quantities correlate well enough with the largest errors in TD-DFT excitation energies
so that one may define a “trust radius”.21 It is suggested that states with Γ ≤ 1.8 Å for GGA functionals, or
Γ ≤ 2.0 Å for global hybrids, are “safe” in the sense that the excitation energy in question is is unlikely to be
seriously affected by long-range CT effects in TD-DFT. Since Γ ≈ d−e-h + dexc (insofar as the yia amplitudes
are small), this quantity provides not only a reliability metric for TD-DFT excitation energies but also a
physically-interpretable numerical value for how charge moves (d−e-h) and spreads (dexc) upon excitation. For
long-range excitations beyond 2.0 Å, it is suggested that the use of LRC functionals, or else global hybrids
with at least 33% Hartree-Fock exchange, is mandatory.21

Finally, a “Mulliken-averaged configuration index” (MAC) has been suggested for detecting spurious
low-energy CT states.360,374 Using a crude Koopmans-style approximation for long-range electron transfer
from ψi to ψa,

IE + EA ≈ −(εi + εa) , (6.10)

in conjunction with Mulliken’s asymptotic CT formula [Eq. (6.1)], suggests a definition

ωMAC =
−∑ia xia(εi + εa)

∑

jb x
2
jb

− 1

d−e-h
. (6.11)

(This is a slightly modified version of the metric called MAC that was proposed in Ref. 374, correcting what
this author believes to be a typographical error.) The idea is that if ω < ωMAC, where ω is the excitation
energy computed using TD-DFT, then the excited state in question is likely a “ghost” CT state, which
should not be taken at face value.374 However, this metric should only be used for large values of d−e-h,
because Mulliken’s formula (on which it is based) makes sense only for large donor–acceptor separation.
Moreover, given the crudeness of the approximation in Eq. (6.10), it is unclear how reliable this metric will
be. As such, proper statistical measures of electron–hole correlation seem preferable.

7 Summary

Visualizing TD-DFT excitations in terms of NTOs, as a conceptually superior alternative to canonical MOs,
has become standard practice. The present work provides a theoretical foundation to understand how the
NTOs relate to other common visualization tools including attachment and detachment densities, which are
equivalent (within the TD-DFT formalism) to separate densities for the excited electron and for the hole.
Atomic (or fragment) partitions of the density change ∆ρ(r) have been surveyed and related to one another.
Previous literature has not always been clear regarding these connections.

CT numbers ΩA→B , which quantify electron flow from A to B upon excitation, are one such atomic par-
tition. Arranged in the form of a matrix Ω, these quantities provides a simple visual representation of the
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transition density T (rhole, relec), a quantity that has occassionally been described as an “exciton wave func-
tion”. Heat maps of the matrix Ω provide an easy way to distinguish localized versus delocalized excited
states. This method can distinguish between delocalization caused by excitonic coupling between chro-
mophores, versus delocalization due to charge separation; these possibilities are not mutually exclusive but
also not equivalent. In multichromophore systems including conjugated polymers and crystalline acenes, this
analysis exposes qualitative differences in the low-energy states obtained using different exchange-correlation
functionals.

Atomic partitions of ∆ρ(r) also lend themselves to construction of various metrics intended to quantify
the CT character in a given excitation. This is an important descriptor in view of TD-DFT’s well known
tendency to underestimate long-range CT excitation energies, sometimes to the point of predicting spurious
low-lying states in large systems.25 Some of these CT metrics have more desirable properties than others,
such as correct normalization and invariance to unitary transformations of the MOs. The present work
advocates for the use of direct measures of exciton size that correspond to well-defined statistical quantities,
rather than ad hoc constructions. The former include the RMS electron–hole separation (dexc), which is
expressed in terms of the particle and hole densities ∆ρelec(r) and ∆ρhole(r). The mean separation between
the centroids of these quantities (d−e-h) can also be used, although it vanishes in centrosymmetric systems,
but in such cases a charge-displacement metric (dCD) can be used instead. These quantities are directly
interpretable and readily computable using third-party software,150,195,375,376 based on formatted output
from various electronic structure programs. The TheoDORE program is especially recommended,195 as
it implements various measures of exciton size that are grounded in proper expectation values, as well as
CT numbers ΩA→B that properly account for non-orthogonality of the AO basis functions. Much of this
functionality exists in the Q-Chem program also,378 without the need for third-party software. The author
hopes that this Perspective will lead to better understanding and more erudite discussion of precisely what
is being visualized or quantified when discussing the output of TD-DFT calculations.
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[18] F. Plasser, B. Thomitzni, S. A. Bäppler, J. Wenzel, D. R. Rehn, M. Wormit, and A. Dreuw, “Statistical
analysis of electronic excitation processes: Spatial location, compactness, charge transfer, and electron-
hole correlation”, J. Comput. Chem., 36, 1609–1620 (2015).

[19] M. J. G. Peach, P. Benfield, T. Helgaker, and D. J. Tozer, “Excitation energies in density functional
theory: An evaluation and a diagnostic test”, J. Chem. Phys., 128, 044118:1–18 (2008).

[20] D. Jacquemin, T. Le Bahers, C. Adamo, and I. Ciofini, “What is the “best” atomic charge model to
describe through-space charge-transfer excitations?”, Phys. Chem. Chem. Phys., 14, 5383–5388 (2012).

[21] C. A. Guido, P. Cortona, B. Mennucci, and C. Adamo, “On the metric of charge transfer molecular
excitations: A simple chemical descriptor”, J. Chem. Theory Comput., 9, 3118–3126 (2013).
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theory for photocatalytic water splitting systems”, J. Chem. Theory Comput., 11, 1700–1709 (2015).

[87] A. Savin, C. J. Umrigar, and X. Gonze, “Relationship of Kohn–Sham eigenvalues to excitation ener-
gies”, Chem. Phys. Lett., 288, 391–395 (1998).

[88] M. Petersilka, E. K. U. Gross, and K. Burke, “Excitation energies from time-dependent density func-
tional theory using exact and approximate potentials”, Int. J. Quantum Chem., 80, 534–554 (2000).

[89] E. J. Baerends, O. V. Gritsenko, and R. van Meer, “The Kohn–Sham gap, the fundamental gap and
the optical gap: The physical meaning of occupied and virtual Kohn–Sham orbital energies”, Phys.
Chem. Chem. Phys., 15, 16408–16425 (2013).

44

https://doi.org/10.26434/chemrxiv-2023-gnh1v-v2 ORCID: https://orcid.org/0000-0002-1663-2278 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-gnh1v-v2
https://orcid.org/0000-0002-1663-2278
https://creativecommons.org/licenses/by/4.0/


[90] R. van Meer, O. V. Gritsenko, and E. J. Baerends, “Physical meaning of virtual Kohn–Sham orbitals
and orbital energies: An ideal basis for the description of molecular excitations”, J. Chem. Theory
Comput., 10, 4432–4441 (2014).

[91] J. Kim, K. Hong, S. Choi, S.-Y. Hwang, and W. Y. Kim, “Configuration interaction singles based on
the real-space numerical grid method: Kohn–Sham versus Hartree–Fock orbitals”, Phys. Chem. Chem.
Phys., 17, 31434–31443 (2015).

[92] S. Kang, J. Woo, J. Kim, H. Kim, Y. Kim, J. Lim, S. Choi, and W. Y. Kim, “ACE-Molecule: An
open-source real-space quantum chemistry package”, J. Chem. Phys., 152, 124110:1–14 (2020).

[93] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry, Macmillan: New York, 1982.

[94] J. M. Herbert, “The quantum chemistry of loosely-bound electrons”, in Reviews in Computational
Chemistry, A. L. Parill and K. Lipkowitz, Eds., Vol. 28; Wiley-VCH: Hoboken, 2015; chapter 8, pages
391–517.

[95] F. Maschietto, M. Campetella, M. J. Frisch, G. Scalmani, C. Adamo, and I. Ciofini, “How are the
charge transfer descriptors affected by the quality of the underpinning electronic density?”, J. Comput.
Chem., 39, 735–742 (2018).

[96] A. Ipatov, F. Cordova, L. J. Doriol, and M. E. Casida, “Excited-state spin-contamination in time-
dependent density-functional theory for molecules with open-shell ground states”, J. Mol. Struct.
(Theochem), 914, 60–73 (2009).

[97] D. Rappoport and J. Hutter, “Excited-state properties and dynamics”, in Fundamentals of Time-
Dependent Density Functional Theory, M. A. L. Marques, N. T. Maitra, F. M. S. Nogueira, E. K. U.
Gross, and A. Rubio, Eds., Vol. 837 of Lecture Notes in Physics; Springer-Verlag: Berlin, 2012;
chapter 16, pages 317–336.

[98] R. M. Richard and J. M. Herbert, “Time-dependent density-functional description of the 1La state in
polycyclic aromatic hydrocarbons: Charge-transfer character in disguise?”, J. Chem. Theory Comput.,
7, 1296–1306 (2011).

[99] I. Franco and S. Tretiak, “Electron-vibrational dynamics of photoexcited polyfluorenes”, J. Am. Chem.
Soc., 126, 12130–12140 (2004).

[100] P. R. Surján, “Natural orbitals in CIS and singular-value decomposition”, Chem. Phys. Lett., 439,
393–394 (2007).

[101] E. Ronca, C. Angeli, L. Belpassi, F. De Angelis, F. Tarantelli, and M. Pastore, “Density relaxation in
time-dependent density functional theory: Combining relaxed density natural orbitals and multirefer-
ence perturbation theories for an improved description of excited states”, J. Chem. Theory Comput.,
10, 4014–4024 (2014).

[102] K. N. Walzl, C. F. Koerting, and A. Kuppermann, “Electron-impact spectroscopy of acetaldehyde”,
J. Chem. Phys., 87, 3796–3803 (1987).

[103] D. E. Freeman, J. R. Lombardi, and W. Klemperer, “Electric dipole moment of the lowest singlet π∗

state of propynal”, J. Chem. Phys., 45, 58–60 (1966).

[104] S. Millefiori, G. Favini, A. Millefiori, and D. Grasso, “Electronic spectra and structure of nitroanilines”,
Spectrochim. Acta A, 33, 21–27 (1977).

[105] B. H. Smith, A. Buonaugurio, J. Chen, E. Collins, K. H. Bowen, R. N. Compton, and T. Sommerfeld,
“Negative ions of p-nitroaniline: Photodetachment, collisions, and ab initio calculations”, J. Chem.
Phys., 138, 234304:1–8 (2013).

45

https://doi.org/10.26434/chemrxiv-2023-gnh1v-v2 ORCID: https://orcid.org/0000-0002-1663-2278 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-gnh1v-v2
https://orcid.org/0000-0002-1663-2278
https://creativecommons.org/licenses/by/4.0/


[106] J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, “Toward a systematic molecular
orbital theory for excited states”, J. Phys. Chem., 96, 135–149 (1992).

[107] H. K. Sinha and K. Yates, “On the ground and excited state dipole moments of planar vs. twisted
nitroaniline analogues”, Can. J. Chem., 69, 550–557 (1991).

[108] R. L. Martin, “Natural transition orbitals”, J. Chem. Phys., 118, 4775–4777 (2003).

[109] A. V. Luzanov, A. A. Sukhorukov, and V. E. Umanskii, “Application of transition density matrix for
analysis of excited states”, Theor. Exp. Chem., 10, 354–361 (1974).

[110] A. V. Luzanov and V. F. Pedash, “Interpretation of excited states using charge-transfer numbers”,
Theor. Exp. Chem., 15, 338–341 (1980).

[111] I. Mayer, “Using singular value decomposition for a compact presentation and improved interpretation
of the CIS wave functions”, Chem. Phys. Lett., 437, 284–286 (2007).
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methodology for aromatic molecules UV-vis properties: From benchmark to applications”, Chemistry-
Select, 8, e202301943:1–8 (2023).

[131] Z. Wang, J. Liang, and M. Head-Gordon, “Earth mover’s distance as a metric to evaluate the extent
of charge transfer in excitations using discretized real-space densities”, J. Chem. Theory Comput., 19,
7704–7714 (2023).

[132] L. Mei, J. Hu, X. Cao, F. Wang, C. Zheng, Y. Tao, X. Zhang, and W. Huang, “The inductive-effect of
electron withdrawing trifluoromethyl for thermally activated delayed fluorescence: Tunable emission
from tetra- to penta-carbazole in solution processed blue OLEDs”, Chem. Commun., 51, 13024–13027
(2015).

[133] T. Chen, L. Zheng, J. Yuan, Z. An, R. Chen, Y. Tao, H. Li, X. Xie, and W. Huang, “Understanding
the control of singlet-triplet splitting for organic exciton manipulating: A combined theoretical and
experimental approach”, Sci. Rep., 5, 10923:1–11 (2015).

[134] X. Cai, X. Li, G. Xie, Z. He, K. Gao, K. Liu, D. Chen, Y. Cao, and S.-J. Su, ““Rate-limited effect”
of reverse intersystem crossing process: The key for tuning thermally activated delayed fluorescence
lifetime and efficiency roll-off of organic light emitting diodes”, Chem. Sci., 7, 4264–4275 (2016).

[135] R. Chen, Y. Tang, Y. Wan, T. Chen, C. Zheng, Y. Qi, Y. Cheng, and W. Huang, “Promoting singlet/
triplet exciton transformation in organic optoelectronic molecules: Role of excited state transition
configuration”, Sci. Rep., 7, 6225:1–11 (2017).

[136] Y. Olivier, M. Moral, L. Muccioli, and J.-C. Sancho-Garćıa, “Dynamic nature of excited states of
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[320] J. Rissler, H. Bässler, F. Gebhard, and P. Schwerdtfeger, “Excited states of ladder-type poly-p-
phenylene oligomers”, Phys. Rev. B, 64, 045122:1–11 (2001).

[321] J. Rissler, “Effective conjugation length of π-conjugated systems”, Chem. Phys. Lett., 395, 92–96
(2004).

[322] L. Romaner, G. Heimel, H. Wiesenhofer, P. Scandiucci de Freitas, U. Scherf, J.-L. Brédas, E. Zojer,
and E. J. W. List, “Ketonic defects in ladder-type poly(p-phenylene)s”, Chem. Mater., 16, 4667–4674
(2004).

[323] E. Hennebicq, C. Deleener, J.-L. Brédas, G. D. Scholes, and D. Beljonne, “Chromophores in
phenylenevinylene-based conjugated polymers: Role of conformational kinks and chemical defects”,
J. Chem. Phys., 125, 054901:1–16 (2006).

[324] S. A. Mewes, F. Plasser, A. Krylov, and A. Dreuw, “Benchmarking excited-state calculations using
exciton properties”, J. Chem. Theory Comput., 14, 710–725 (2018).

[325] S. A. Mewes, F. Plasser, and A. Dreuw, “Communication: Exciton analysis in time-dependent density
functional theory: How functionals shape excited-state characters”, J. Chem. Phys., 143, 171101:1–5
(2015).

[326] S. A. Mewes, J.-M. Mewes, A. Dreuw, and F. Plasser, “Excitons in poly(para phenylene vinylene): A
quantum-chemical perspective based on high-level ab initio calculations”, Phys. Chem. Chem. Phys.,
18, 2548–2563 (2016).

[327] S. A. Mewes, F. Plasser, and A. Dreuw, “Universal exciton size in organic polymers is determined
by nonlocal orbital exchange in time-dependent density functional theory”, J. Phys. Chem. Lett., 8,
1205–1210 (2017).

[328] X. Feng, A. V. Luzanov, and A. I. Krylov, “Fission of entangled spins: An electronic structure per-
spective”, J. Phys. Chem. Lett., 4, 3845–3852 (2013).

[329] S. Matsika, X. Feng, A. V. Luzanov, and A. I. Krylov, “What we can learn from the norms of one-
particle density matrices, and what we can’t: Some results for interstate properties in model singlet
fission systems”, J. Phys. Chem. A, 118, 11943–11955 (2014).

[330] N. Mardirossian and M. Head-Gordon, “ωB97X-V: A 10-parameter, range-separated hybrid, general-
ized gradient approximation density functional with nonlocal correlation, designed by a survival-of-
the-fittest strategy”, Phys. Chem. Chem. Phys., 16, 9904–9924 (2014).

58

https://doi.org/10.26434/chemrxiv-2023-gnh1v-v2 ORCID: https://orcid.org/0000-0002-1663-2278 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-gnh1v-v2
https://orcid.org/0000-0002-1663-2278
https://creativecommons.org/licenses/by/4.0/
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Z. Pei, S. Prager, E. I. Proynov, A. Rák, E. Ramos-Cordoba, B. Rana, A. E. Rask, A. Rettig, R. M.
Richard, F. Rob, E. Rossomme, T. Scheele, M. Scheurer, M. Schneider, N. Sergueev, S. M. Sharada,
W. Skomorowski, D. W. Small, C. J. Stein, Y.-C. Su, E. J. Sundstrom, Z. Tao, J. Thirman, G. J.
Tornai, T. Tsuchimochi, N. M. Tubman, S. P. Veccham, O. Vydrov, J. Wenzel, J. Witte, A. Yamada,
K. Yao, S. Yeganeh, S. R. Yost, A. Zech, I. Y. Zhang, X. Zhang, Y. Zhang, D. Zuev, A. Aspuru-
Guzik, A. T. Bell, N. A. Besley, K. B. Bravaya, B. R. Brooks, D. Casanova, J.-D. Chai, S. Coriani,
C. J. Cramer, G. Cserey, A. E. DePrince III, R. A. DiStasio Jr., A. Dreuw, B. D. Dunietz, T. R.
Furlani, W. A. Goddard III, S. Hammes-Schiffer, T. Head-Gordon, W. J. Hehre, C.-P. Hsu, T.-C.
Jagau, Y. Jung, A. Klamt, J. Kong, D. S. Lambrecht, W. Liang, N. J. Mayhall, C. W. McCurdy,
J. B. Neaton, C. Ochsenfeld, J. A. Parkhill, R. Peverati, V. A. Rassolov, Y. Shao, L. V. Slipchenko,
T. Stauch, R. P. Steele, J. E. Subotnik, A. J. W. Thom, A. Tkatchenko, D. G. Truhlar, T. Van Voorhis,
T. A. Wesolowski, K. B. Whaley, H. L. Woodcock III, P. M. Zimmerman, S. Faraji, P. M. W. Gill,
M. Head-Gordon, J. M. Herbert, and A. I. Krylov, “Software for the frontiers of quantum chemistry:
An overview of developments in the Q-Chem 5 package”, J. Chem. Phys., 155, 084801:1–59 (2021).

[378] Ohio Supercomputer Center (http://osc.edu/ark:/19495/f5s1ph73), accessed 2023-12-12.

62

https://doi.org/10.26434/chemrxiv-2023-gnh1v-v2 ORCID: https://orcid.org/0000-0002-1663-2278 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-gnh1v-v2
https://orcid.org/0000-0002-1663-2278
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Theoretical Background
	Linear-response TDDFT
	Densities and density matrices
	Attachment and detachment densities

	Natural Transition Orbitals
	Theory
	Interpretation
	Examples
	Static correlation

	Atomic Partitions
	Mulliken analysis
	Charge-transfer numbers
	Example: DMABN molecule
	Frenkel excitons and charge-resonance states
	Participation ratio

	Exciton Wave Function
	Electron–hole correlation
	Quantifying exciton size
	CT metrics

	Diagnosing the CT Problem
	Overview of the problem
	Diagnostics

	Summary
	References

