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Abstract

In the realm of multiscale molecular simulations, structure-based coarse graining is

a prominent approach for creating efficient coarse-grained (CG) representations of soft

matter systems such as polymers. This involves optimizing CG interactions by match-

ing static correlation functions of corresponding degrees of freedom in all-atom (AA)

models. Here, we present a versatile method, namely, differentiable coarse-graining

(DiffCG), which combines multi-objective optimization and differentiable simulation.

The DiffCG approach is capable of constructing robust CG models by iteratively op-

timizing effective potentials to simultaneously match multiple target properties. We

demonstrate our approach by concurrently optimizing bonded and non-bonded poten-

tials of a CG model of polystyrene (PS) melts. The resulting CG-PS model accurately

reproduces both structural and thermodynamic properties of the AA counterpart. More

importantly, leveraging the multi-objective optimization capability, we develop a pre-

cise and efficient CG model for PS melts that is transferable across a wide range of

1

https://doi.org/10.26434/chemrxiv-2023-177pg-v2 ORCID: https://orcid.org/0000-0003-2862-4432 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-177pg-v2
https://orcid.org/0000-0003-2862-4432
https://creativecommons.org/licenses/by/4.0/


temperatures, i.e., from 400 to 600 K. It is achieved via optimizing a pairwise poten-

tial with non-linear temperature dependence in the CG model to simultaneously match

target data from AA-MD simulations at multiple thermodynamic states. Our work

showcases a promising route for developing accurate and transferable CG models of

complex soft-matter systems through multi-objective optimization with differentiable

simulation.

Introduction

Complementary to experimental methods, molecular simulations have emerged as powerful

tools for studying the behaviors of complex soft-matter systems at the microscopic level.

In spite of the fact that all-atom models can give direct, precise predictions of structure-

property relations of intricate systems with abundant atomic details, a considerable amount

of phenomena of interest in systems such as macromolecules (e.g., polymers and proteins)

that usually take place at the mesoscopic level are still inaccessible through all-atom sim-

ulations. To overcome these limitations, coarse-grained (CG) models have been developed,

where multiple atoms or molecules are represented by a single interacting entity, reduc-

ing computational cost while still capturing essential features of the system.1,2 Using the

CG models, molecular systems with extensive spatio-temporal scales are allowed to explore,

facilitating investigations of phenomena, e.g., long-time dynamics,3–6 interfacial/phase be-

haviors,7,8 self-assembly,9–11 etc.

Typically, coarse-graining methods can be divided into two categories: top-down and

bottom-up approaches.12,13 In the top-down approach such as Martini,14 relatively simple

functional forms with a fixed number of ajustable parameters are selected for parameteriza-

tion of CG models to match the experimentally measured macroscropic properties. However,

it is uncertain whether the top-down CG models can accurately reflect the underlying mi-

croscopic physics due to its lack of a rigorous CG mapping from atomic degrees of freedom.

In the bottom-up parameterization scheme, usually more complicated potentials are pa-
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rameterized with atomistically detailed information. The bottom-up CG method attempts

to capture the molecular details and reproduce the microscopic behaviors of the mapped

atomistic model. There are several promising algorithms to develop systematic bottom-up

coarse-grained models, including multiscale coarse-graining (matching effective force residu-

als),15 relative entropy (matching information loss),16 and Iterative Boltzmann inversion17

and Inverse Monte-Carlo (matching structural properties).18

Although bottom-up approaches hold promise in the development of faithful CG models,

there are still several significant challenges that remain unresolved.12 The first pertains to

the transferability of the CG models across varying environments such as (thermodynamic)

state points and compositions. Another challenge revolves around ensuring the consistency

and accurate representation including structural, dynamical, and thermodynamical proper-

ties. Numerous efforts have been dedicated to improving bottom-up CG modeling. The

problem of transferability within such models often arises due to inadequate training data

to parameterize the selected CG model. To address this limitation, for instance, one vi-

able strategy involves the utilization of the “extended ensemble” variational principle.19 This

method attempts to determine a set of transferable potentials that optimally describe CG

interactions for multiple systems across multiple state points under the multiscale coarse-

graining framework. A similar idea that leverages information from multiple state points

was also developed in the IBI method.20 A single set of potential functions, i.e., a force field,

that provides an optimal compromise for modeling a range of systems and thermodynamic

state points. More recent advances in improving the transferability of coarse-grained models

include the dual-potential method by Noid et al.,21,22 ultra-coarse-graining with semi-global

density potentials by Jin, Yu, and Voth,23,24 microcononical relative entropy by Pretti and

Shell,25 and a recent extension of IBI by Qian and co-workers.26

Aside from the transferability issue, the representability of CG models in comparison to

their corresponding AA models remains a persisting concern. One of the most common ex-

amples is the trade-off between accurately reproducing pairwise correlations and a dramatic
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overestimation of pressure. This issue is evident in methodologies like the IBI approach.17

To mitigate the pressure overestimation predicament, the IBI method employs a technique

involving linear rescaling within pairwise interactions.17 This rescaling is iteratively refined

to align with the desired pressure target. However, a drawback of this approach is that, while

it aims to improve pressure prediction, it cannot explicitly guarantee concurrent matching

of key structural attributes, such as radial distribution functions (RDFs). Consequently, this

approach could potentially lead to a reduction in the accuracy of structural predictions.

Recently, machine learning has emerged as a unique and powerful tool for the devel-

opment of bottom-up coarse-graining methods.27–29 It has shown remarkable potential in

improving essential components of coarse-graining methods, including determining opti-

mal coarse-grained mapping schemes,30,31 facilitating back-mapping processes,32–34 refining

coarse-grained force fields, and optimizing associated parameters.27,35,36 Moreover, an in-

creasingly noteworthy technique garnering attention is the differentiable simulations (Diff-

Sim). DiffSim built on automatic differentiation has been utilized to accelerate quantum

calculations, generate protein structures, and computational fluid dynamics. In molecular

simulations, Greener et al. used DiffSim to learn parameters of simple force-field function-

als for coarse-grained simulations of small proteins.37 Gómez-Bombarelli and co-workers im-

proved the memory efficiency of DiffSim using the adjoint ordinary differentiation equation.38

This augmented DiffSim is successfully applied to learn pairwise neural network potentials in

simple condensed systems39 and free energy barriers in systems with rare events.40 Although

it is significant for learning dynamics and non-equilibrium behaviors, differentiating through

a (long) simulation trajectory may generate unreasonable gradients due to the chaotic na-

ture of the dynamical system of molecular dynamics.41 To alleviate this issue, Differentiable

Trajectory Reweighting (DiffTre) provides a promising alternative that bypasses differentia-

tion through MD simulation for time-independent observables via combinations of automatic

differentiation with statistical reweighting.42

The utilization of DiffSim has proven to be remarkably successful in developing CG mod-
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els of simple liquids in condensed phase.42 Building upon this foundation, we introduce a

novel structural coarse-graining approach, namely, differentiable coarse-graining (DiffCG).

This novel method extends the capabilities of DiffSim to coarse-graining complex systems

in condensed phases, such as polymer melts. To alleviate the instability of gradients from

differentiating through a long trajectory in DiffSim, DiffTre is employed to obtain stable gra-

dients of CG potentials.42 Notably, the extension to more complex condensed-phase systems

is achieved through the integration of multi-objective optimization techniques. Specifically,

three multi-objective optimization algorithms are selected, which are popular in machine

learning community. These algorithms are meticulously benchmarked using a representative

system, i.e., mono-disperse polystyrene (PS) melts, which has been widely used for the eval-

uation of coarse-grained models.43,44 The conventional CG force fields (bond, angle, dihedral

and pairwise interactions) are employed to describe CG-PS system and they are optimized

to simultaneously match multiple target properties, encompassing the corresponding struc-

tural correlations and pressure characteristics. More importantly, leveraging the capability

of multi-objective optimization in DiffCG, we have developed a temperature-transferable CG

model of PS melts using (non-linear) temperature-dependent potentials. The effectiveness

of DiffCG in developing CG models of PS melts is comprehensively examined through a sys-

tematic evaluation in terms of the reproduction of target properties, transferability across a

wide range of temperatures and molecular weights, and the optimization efficiency.
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Methodology

Structure-Based Coarse-Graining

Figure 1: (a) Schematics of a coarse-grained polystyrene chain for the illustration of sep-
arations in bonded interactions: bond length L, bond angle φ, and dihedral angle ϕ; (b)
Coarse-grained mapping between all-atom model and coarse-grained model of a ten-monomer
polystyrene chain.

The essential concept underlying the structure-based coarse-graining methods, e.g., IBI and

IMC, is the Boltzmann inversion, where independent degrees of freedom q in a canonical

ensemble obey the Boltzmann distribution,

P (q) = Z−1 ln

∫
exp[βU(q)] (1)

where Z =
∫
exp[−βU(q)]dq is a partition function of the system with respect to q; β =

1/kBT , kB is Boltzmann constant and T denotes temperature. The primary objective of

structure-based coarse-graining lies in approximating the (many-body) potential of mean

force (PMF) with effective potentials that reproduce a set of reference distribution functions

from AA models. Hence, deriving the effective CG potentials can be considered as solving

an inverse problem: The forward function from the potential U(q) to the probability dis-

tribution functions P (q) is well established (through MD simulation), while the opposite

direction, from P (q) to U(q), is to be determined. Furthermore, this inverse problem can be

treated as an (iterative) optimization problem: (iteratively) optimize the effective potentials
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until it reproduces all target observables (e.g., distribution functions) through the CG-MD

simulation. It should be noted that the Boltzmann-inverted potential serves as an exact

solution only for non-interacting systems, such as ideal gases, but it often fails to reproduce

the reference gref(r) for condensed-phase systems due to strong many-body correlations.17

Therefore, optimization is necessary to improve the initial Boltzmann-inverted potential.

It is common to assume that the bonded and nonbonded interactions are uncorrelated

for molecular systems, giving:

UCG = UCG
bonded + UCG

nonbonded (2)

As shown in Figure 1 (a), the bonded potentials UCG
bonded can usually be further decomposed

into three terms: UCG
bonded = UCG

bond + UCG
angle + UCG

dihedral. The bond (UCG
bond), angle (UCG

angle), and

dihedral (UCG
dihedral) potentials describe the two-body interactions between connected beads,

three-body interactions between the bond angles, and four-body interactions between two

intersecting planes, respectively. The initial CG potentials can be derived from the corre-

sponding distribution functions according to Boltzmann inversion (Equation 1):

UCG
bond(l) = −kBT ln

[
PCG(l)/4πl2

]
(3)

UCG
angle(θ) = −kBT ln

[
PCG(θ)/ sin(θ)

]
(4)

UCG
dihedral(φ) = −kBT ln

[
PCG(φ)

]
(5)

where PCG(l), PCG(θ), and PCG(φ) are distribution functions of bond length l, bond angles

θ, and dihedral angle φ, respectively; 4πl2 and 1/ sin(θ) are rescaling factors in order to

obtain the volume normalized distribution functions.

The approximation of the additive pairwise potentials is employed to describe the non-

bonded interactions. It is noted that while higher body-order terms in the nonbonded poten-

tial might be significant for accurate CG models,45–48 the investigation in this direction falls

7

https://doi.org/10.26434/chemrxiv-2023-177pg-v2 ORCID: https://orcid.org/0000-0003-2862-4432 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-177pg-v2
https://orcid.org/0000-0003-2862-4432
https://creativecommons.org/licenses/by/4.0/


outside the scope of the current work. The initial trial pairwise potential for the nonbonded

interaction can be obtained through the Boltzmann inversion:

UCG
nonbonded(r) = −kBT ln gref(r) (6)

where gref(r) denotes the radial distribution function from the reference fine-grained simula-

tion. Effective potentials derived from structure-based coarse-graining often show (thermo-

dynamic) state dependence, e.g., temperature,25,49 composition,50 etc, even after the opti-

mization. Additional constraints can be introduced to the coarse-graining process to improve

the transferability and representability of the structure-based CG model.51–53 In structural

coarse-graining, we believe that achieving an accurate CG model can be transformed into a

problem of efficient multi-objective optimization with constraints.

Multi-Objective Optimization with Differentiable Simulation

Figure 2: A general workflow for the differentiable coarse-graining: mapping between fine-
grained (FG) and coarse-grained (CG) systems; simulation sampling; potential energy func-
tions U(Θ); multiple observables (e.g., radial distribution functions, bond length distribu-
tions, pressure, etc.); multi-objective loss Ltotal =

∑
i

αiLi; and ∇: gradients from automatic

differentiation.
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In this section, we begin with a brief introduction to DiffSim, explaining its fundamental

principles and methodologies for optimizing CG potentials. Following that, we delve into the

concept of multi-objective optimization algorithms, discussing how they can be integrated

into DiffSim for faithful structure-based bottom-up coarse-graining.

DiffSim uses automatic differentiation techniques that automatically calculate gradients

by differentiating through the simulator, allowing gradient-based optimization using “back-

propagation” to optimize simulation inputs such as force field parameters.38 Gradient-based

optimization requires the computation of reliable gradients. To overcome the issue of insta-

bility of gradient computation through the MD solver, we employ the importance reweight-

ing technique as DiffTre42 to improve the stability of gradients. DiffTre basically creates a

proxy function using the thermodynamic perturbation theorem to bypass the differentiation

through the entire trajectory for time-independent observables. Given that the structure-

based coarse-graining method only addresses static properties as targets, this method is

inherently well-suited for such applications.

As discussed in the previous section, the goal in structure-base coarse-graining is to

optimize potential energy functions of the CG model to minimize a loss function as follows:

Lθ =
∑

i∈{P (l),P (θ)...}

Lθ,i(⟨OCG⟩, ⟨OAA⟩) (7)

where ⟨·⟩ is the ensemble averaging operator; OCG and OAA are microscopic properties/observables

from CG simulations and AA reference simulations, respectively;
∑

(·) represents the sum-

mation of various observables such as probability distributions of bond length, bond angles,

and pressure. DiffTre constructs a well-behaved proxy objective for differentiation of static

properties, utilizing the statistical reweighting based on the Bolzmann probability distribu-

tion:42

⟨O(R,Uθ)⟩ =
N∑
i=1

wiO(R,Uθ) (8)
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wi =
e−β(Uλ,θ(ri)−Uλ,θ̂(ri))∑K
j=1 e

−β(Uλ,θ(rj)−Uλ,θ̂(rj))
(9)

where wi denotes thermodynamic weights where Uλ,θ represents the potential energy cal-

culated with the parameters to be updated; Uλ,θ̂ represents the potential energy calculated

with the reference parameters that generate the trajectory. More details of DiffTre can be

found in the reference.42

As depicted in Equation 7, the loss function comprises a summation of various loss

functions associated with the target observables. Consequently, the utilization of a multi-

objective optimization algorithm becomes imperative. In numerical optimization, a natural

concept to combine losses from multiple objectives is to perform a weighted linear summation

of the losses, as shown below:

Ltotal =
∑
i

wiLi (10)

where wi and Li are the weight coefficient and loss function of objective i, respectively.

Weight wi can be an additional optimizable parameter or can be determined self-consistently

during the optimization process. Searching for these optimal weightings is usually expensive

and increasingly difficult for large models with numerous objectives. Although balancing the

loss contribution for each objective is still an open research area in multi-objective optimiza-

tion/learning, several attempts have been made towards this direction. Here we test three

different multi-objective optimization strategies that are popular in the machine learning

community, namely, Uncertainty Weighting54, Auxiliary Multi-Task 55 (a revised version of

Uncertainty Weighting), and Coefficient-of-Variations Weighting56, integrated with DiffSim

for structure-based coarse-graining. The uniform weighting scheme in which the weights are

kept at w = 1 throughout the optimization is used as a baseline for comparison. A list of

different weighting schemes considered in this work with their definitions and characteristics

is summarized in Table 1.
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Table 1: A summary of different weighting schemes considered in this work with definition
and main characteristics of the weight coefficient w

Algorithm Definition of w Main characteristics
Uniform Weighting 1 Constant

Uncertainty Weighting 1
2σ2

i
+ log σi

Li

Jointly optimized, with σi as variable;
loss may become negative

Auxiliary Multi-Task 1
2σ2

i
+

log(1+σ2
i )

Li
Jointly optimized, with σi as variable

CoV Weighting σli

µli
Observed, without additional variable

Uncertainty Weighting

Uncertainty weighting is a prominent method used in multitask machine learning.54 Multi-

task learning inherently entails a multi-objective nature due to potential conflicts between

distinct tasks. Tuning these weights by hand proves to be difficult and resource-intensive,

making multi-task learning prohibitive in practice. In particular, this concept resembles the

objective loss function outlined in Equation 7. Therefore, we are evaluating the efficacy of

this method in optimizing the CG model. The uncertainty weighting learns to numerically

balance a linear combination of loss functions tied to individual tasks, considering the ho-

moscedastic uncertainty of each task. The multi-task learning/optimization is treated as a

probabilistic model,54 and a set of learnable parameters is used to signify the task-specific

uncertainty. The combination of multi-objective loss functions can be written as:

Ltotal =
∑
i

Li

2σ2
i

+ log σi (11)

where Li is the loss of individual objective function; σi is an additional learnable parameter

that regulates the relative weights across multiple objective functions.

Auxiliary Multi-Task

This multi-objective optimization algorithm is a revised version of the uncertainty weighting

method from previous work of auxiliary tasks in multi-task learning.55 This weighting scheme

replaces the regularization term log σi in the uncertainty weighting (Equation 11) with log(1+
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σ2
i ) to avoid negative loss values.

Ltotal =
∑
i

Li

2σ2
i

+ log(1 + σ2
i ) (12)

This reformalism of the uncertainty weighting has demonstrated enhanced performance com-

pared to the uncertainty weighting in the task of scene geometry and semantics. The per-

formance of the algorithm might be task dependent; thus we also included this reformulated

algorithm into our benchmarks for the purpose of comprehensive evaluation.

Coefficient-of-Variations Weighting

The Coefficient-of-Variations (CoV) weighting scheme is also designed for optimally learning

machine learning tasks where the objective function is a weighted linear combination of

multiple losses.56 In brief, this weighting scheme uses the statistical properties inherent in

loss functions to explicitly determine their relative importance. This is achieved using the

CoV, which quantifies the relationship between the standard deviation (σ) and the mean (µ).

Essentially, CoV signifies the degree of variability exhibited by the observed losses relative

to their mean. The expression of CoV for the individual loss function L is given by:

cL =
σL

µL

(13)

To facilitate a standardized comparison of various loss functions, the CoV is computed based

on the observed ratio between the current observation and the mean of that particular loss,

rather than the direct loss value itself. The loss-ratio l employed as a measurement, instead

of the loss value itself, is defined as:

lt =
Lt

µLt−1

(14)

where Lt is the observed loss value at iteration step t; µLt−1 is the mean of the observed

losses up to iteration step t − 1. Notably, it is essential that the observations are derived
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from a ratio-scale to ensure accurate computation of the CoV. This approach enables an

equitable comparison of uncertainty across a diverse series of measurements, even when

their magnitudes differ.

The weight wi of individual loss function Li (Equation 7) based on the CoV of loss-ratios

clit at time step t is given by:

wit =
1

zt
clit =

1

zt

σlit

µlit

(15)

Here, zt denotes a normalization constant that remains unaffected by the specific objective i:

zt =
∑

i clit . This formulation guarantees
∑

i clit = 1, a crucial aspect to disentangle the loss

weighting from the learning rate. Obviously, the weight coefficient wi in the CoV approach

does not require additional parameters during optimization, making it different from the

probabilistic model as uncertainty weighting.

Simulation Details

Fine-Grained Simulations

All-atom simulations of isotactic polystyrene (PS) melts are performed in LAMMPS (Large-

scale Atomic/Molecular Massively Parallel Simulator).57 The OPLS (Optimized Potentials

for Liquid Simulations) force field is employed to describe the potential energies of the

system.58 The initial configuration prepared by AutoPoly (https://github.com/Chenghao-

Wu/AutoPoly) consists of 50 chains, each with 10 monomers. Periodic boundary conditions

are applied in the X, Y, and Z directions to simulate the bulk properties of PS melts. The

equation of motion is integrated based on a velocity-verlot algorithm with a time step of 1 fs.

We first equilibrate the systems for 10 ns at a constant pressure P = 1 atm and a constant

temperature T = 600 K. The Nóse-Hoover method is employed for both the barostat and the

thermostat with a coupling constant τP = 1 ps and τT = 0.1 ps, respectively. Subsequently,

we quench the system with a cooling rate 1 K/ps to low temperature. Further equilibration

with 10 ns runs under the NPT ensemble is taken to ensure that the density of the system
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converges to a plateau value. The production run of the system at each temperature is carried

out under the NVT ensemble for calculations of various observables. Simulation observables,

such as radial distribution functions and pressure, are calculated from the production runs.

All other parameters are the same as in the equilibration step.

Coarse-Grained Simulations

The mapping scheme of the PS CG model is shown in Figure 1 (b), where a CG bead rep-

resents one monomer. The CG bead is centered on the corresponding centers of mass of the

monomer in the all-atom model. All CG simulations are performed using the differentiable

and hardware-accelerated molecular simulator based on JAX59 (JAX-MD, version 0.1.2860),

enabling fast running on modern computing accelerators (e.g., graphical computing unit/

tensor computing unit). All forces are computed via automatic differentiation on potential

energy functions in JAX. It is noted that the derived tabulated potentials can also be used

in LAMMPS. Same as in the AA simulations, Nosé–Hoover thermostat is used to regulate

the temperature for all simulated systems. The initial configuration of the CG simulation

is taken from the last snapshot of the production run in AA simulations to accelerate the

equilibration of CG-MD simulations. The coarse-grained potential energy surface allows for

a longer integration time step. We select time step ∆t = 4 fs, which is consistent with

previous CG-PS models.44,61 Production runs with 1 ns sampling of CG-MD simulations are

used to evaluate the performance of the final optimized CG-PS models.

Details of Differentiable Coarse-Graining

The workflow of the DiffCG is shown in Figure 2. All potential energy functions are repre-

sented by tabulated forms using cubic spline functions. As discussed in Section Structure-

Based Coarse-Graining, the initial trial parameters are obtained via the direct Bolztamnn

Inversion method to facilitate convergence of optimization. The optimization is carried out

over 300 iterations using the stochastic gradient descent optimizer, i.e., Adam, implemented
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in Optax,59 with learning rate 0.003. The coarse-graining optimization is finished when it

reaches the 300-iteration limit. This number is selected so that the total loss remains con-

stant within a specified error range, and further optimization is unlikely to yield significant

improvements. The initial weighting factors for the Uncertainty Weighting (Uncertainty)

and Auxiliry Multitask Learning (Auxiliry) are 1 for each objective, while the Coefficient-of-

Variantions Weighting (CoV) does not need an extra parameter. In the construction of the

temperature-transferable CG model, we keep the bonded potentials (from T = 600 K) same

for all CG-PS models and only optimize the pairwise potentials during the coasre-graining

optimization process at target temperatures T = 400, 500, 600 K. RDFs and pressure from

the AA-MD simulations at respective temperatures are used as target properties for Dif-

fCG optimization. More details about the differentiable coarse-graining optimization can be

found in Supporting Information.

Results

Comparison of Multi-Objective Optimization Algorithms for Struc-

tural Coarse-Graining

First, we examine the effectiveness of DiffCG with various multi-objective optimization al-

gorithms in the construction of CG models of PS melts at a single thermodynamic state,

i.e., temperature T = 600 K and pressure P = 1 atm. The total mean square error (MSE)

defined as: Etotal = ϵbond + ϵangle + ϵdihedral + ϵRDF + ϵpressure as a function of iterations

during the optimization process using various multi-objective optimization algorithms is

shown in Figure 3. Among all these algorithms, the CoV algorithm achieves the best per-

formance in terms of minimizing Etotal. Surprisingly, the Auxiliary method even behaves

worse than the uniform one, although its error minimization is stable than others. Figure

3 (b) shows the decomposition of Etotal of individual loss functions. Specifically, the CoV

method achieves a balance of low MSEs in all these individual optimization objectives, in-
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Figure 3: (a) A comparison of total mean square error as a function of the optimization iter-
ation from DiffCG with various multi-objective optimization algorithms: uniform weighting
(blue), uncertainty weighting (red), auxiliary multi-task (green), and covariance-of-variation
weighting (purple). The shaded areas are corresponded to standard deviations of three in-
dependent optimizations with different random seeds; (b) The decomposition of total mean
square error into individual sources or errors: probability distrubution functions of bond
length, bond angle, dihedral angle, pair/radial distribution functions, and pressure.

dicating its advantages over other multi-objective algorithms in structural coarse-graining.

The thermodynamic constraint (pressure) exhibits a high degree of sensitivity to the choice

of multi-objective optimization algorithms. Among all the coarse-graining optimizations per-

formed, the primary source of MSE is attributed to pressure, with errors stemming from the

probability distributions of bond, angle, dihedral, and radial distribution function (RDF)

being comparatively minor.
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Validation of DiffCG for Coarse-Graining Polystyrene Melts

Figure 4: (a) Bond length distribution functions; (b) bond angle distribution functions; (c)
dihedral angle distribution functions; (d) radial distribution function; and (d) pressure as a
function of DiffCG optimization iterations.

Figure 4 (a)-(d) display the probability distribution functions of the bond length, bond angle,

dihedral angles, and radial distribution functions obtained from a 1 ns CG MD simulation of

PS melts with parameters from the final iteration of the CoV-based DiffCG. The apparent

overlaps indicate that the CoV weighting algorithm with DiffSim is capable of optimizing the

CG model to simultaneously match multiple target observables including (a) bond length,

(b) bond angle, (c) dihedral, and (d) RDF. Furthermore, the thermodynamic quantity, i.e.,

pressure, as a function of optimization iterations is depicted in Figure 4 (e). The initial CG

potential exhibits a notable tendency to overestimate pressure, similar to other structural

coarse-graining methods. Through a few optimization iterations, this discrepancy decreases

significantly. Typically, within approximately 100 optimization iterations, the potential sta-

bilizes to the target values.
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Trade-off between Sampling and Accuracy

Figure 5: Comparisons of (a) total mean square error and (b) accumulative time of entire
DiffCG optimization as a function of the optimization iteration; (c) Relationships between
total mean square error at the 300th iteration and the elapsed time of the DiffCG opti-
mization; (d) The pairwise potentials of CG-PS models obtained at the 300th iteration from
CoV-based DiffCG optimizations with various MD sampling lengths: tsim = 125 ps (blue),
tsim = 250 ps (red), tsim = 500 ps (green), and tsim = 1000 ps (purple).

The effect of MD sampling on the optimized potentials is important for the iterative coarse-

graining approach. Therefore, we conduct a detailed analysis to carefully investigate the

influence of the MD sampling length on the performance of the resulting CG-PS model in the

DiffCG framework. Figure 5 (a) compares the total MSE Etaotal during the coarse-graining

optimization with various sampling lengths from tsim = 125 ps to tsim = 1000 ps. The

decay rate of MSE along the optimization iterations is similar for different sampling lengths,

while the CG optimization with longer sampling length achieves lower MSE, i.e., higher

accuracy. The cumulative time for the 300 iterative optimization with various sampling

lengths is shown in Figure 5 (b). Obviously, optimization with a longer sampling requires a
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longer accumulative time. However, the difference between each other is not proportional to

the sampling length due to the reweighting scheme in DiffTre (see a detailed discussion in

Supporting Information). Figure 5 (c) depicts the trade-off between accuracy and MD

sampling length. The data from DiffCG using other multi-objective optimization algorithms

are also included for comparison. The CoV-based DiffCG method surpasses all alternative

approaches in achieving convergence towards the Pareto frontier. This analysis serves as a

valuable reference to determine the appropriate sampling length in alignment with the de-

sired level of accuracy. Figure 5 (d) shows that optimizations with various sampling lengths

converge to the same potentials within errors after 300 iterations. The converged potentials

fluctuate slightly between iterations, which may explain the small differences that can be

observed. A noticeable dependence of the simulation lengths is the optimized dihedral po-

tentials. As seen in Figure S1, the longer simulation length yields a better reproduction of

the probability distribution of dihedral angles. It can probably be attributed to the slow

relaxation times of the dihedral angles in comparison to other degrees of freedom, e.g., bond

length and bond angle. This insight suggests the potential incorporation of enhanced sam-

pling techniques to expedite the sampling process during the coarse-graining optimization.

Additionally, it is worth noting that even the shortest sample length (tsim = 125 ps) still

yields satisfactory CG models of PS melts, showing the computational efficiency of DiffCG

in the development of CG models.

Molecular Weight Transferability of CG PS model

In this section, the molecular weight transferability of the derived CG PS model is thoroughly

examined. We conducted molecular simulations of CG PS models with various chain lengths

from 10 to 100 monomers using the effective potentials derived at T = 600 K. Figure 6(a)

shows the chain-length-dependent density compared to previous simulation results.62 Despite

the effect of temperature, both models show similar asymptotic behavior of chain-length

dependence of the density, which converges to a plateau value for N > 60. In addition, we
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analyzed the chain dimensions of PS melts with various chain lengths. As seen in Figure 6

(b), the radius of gyration Rg and chain end-to-end distances Rete are plotted as a function

of chain length N . A power law fit is performed for both radius of gyration and end-to-end

distance, giving Rg ∼ N ν with ν ≈ 0.565 and Rete ∼ N ν with ν ≈ 0.555, respectively. As a

comparison, ν ≈ 0.551 for PS melts over a similar chain-length range was found in a recent

work.26 Moreover, the ratio ⟨R2
ete⟩/⟨R2

g⟩ ≈ 6.03 for CG-PS model with N = 100 monomers

is very close to the value of 6 predicted for Gaussian chains. These results underscore the

robust transferability of the molecular weight within the derived CG PS model.

Figure 6: (a) Density predictions as a function of chain length N from CG MD simulations
of PS model at T = 600 K (red), compared with previous simulation results of Harmandaris
et al.62 for PS at T = 453 K; (b) Chain sizes, ensemble-averaged square radius of gyration
(blue) and ensemble-averaged square end-to-end distance of CG-PS model as a function of
chain sizes from molecular simulations. The dashed lines are power law fits for radius of
gyration and end-to-end distance: Rg ∼ N ν with ν ≈ 0.565 and Rete ∼ Nν with ν ≈ 0.555,
respectively.

Temperature Transferability of CG PS model

The CG models derived via the structure-based approaches often suffer from the issue of

state dependence, where the effective CG potential derived at a certain thermodynamic

state (e.g., temperature, concentration, pressure, etc.) is not guaranteed to be transferable

to other states for accurate predictions of either thermodynamical or structural properties.

We attempt to improve the transferability of structure-based coarse-graining through the

20

https://doi.org/10.26434/chemrxiv-2023-177pg-v2 ORCID: https://orcid.org/0000-0003-2862-4432 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-177pg-v2
https://orcid.org/0000-0003-2862-4432
https://creativecommons.org/licenses/by/4.0/


utilization of the DiffCG method, with a particular focus on developing a systematic CG

model of PS melts that can be transferable over a wide range of temperature. Our strategy

to constructing the thermodynamically-consistent temperature-transferable CG model under

the DiffCG framework is from two sides. On the one hand, information at multiple states

from fine-grained MD simulation is configured as the targets to optimize the CG potentials.

This strategy was found to be useful for improving the derived CG potentials in the IBI

framework. On the other hand, thermodynamic dependence (e.g., temperature, density,

or volume) is embeded in the CG potential functional form, which could be necessary to

improve the transferability of CG models as suggested in previous studies.21,25 Specifically, we

employ a dual-potential-like model21 to incorporate temperature dependence in the pairwise

potential:

Upair(R) = U(R) + U(R, kBT ) (16)

where U(R) and U(R, kBT ) are a temperature-independent (T-independent) and a temperature-

dependent (T-dependent) potential energy functions, respectively. U(R, kBT ) is in principle

a flexible functional term as a function of both configuration R and temperature T . The

separation of two terms, as seen in Equation 16, is expected to correspond to the mean and

variance of energy distributions, or alternatively, the energetic and entropic contributions to

the free energy.25 This choice is based on established principles and aligns with well-founded

theoretical considerations.21,25

We define U(R, kBT ) = f(kBT )U
′(R), where f(kBT ) is a simple functional of tem-

perature and U ′(R) is a function invariant to temperature, neglecting the cross-correlation

between configuration R and temperature T . To our knowledge, it is still unclear how the

CG potentials would vary with temperature. Thus both linear (Equation 17) and non-linear

(Equation 18) T-dependence are examined here:

U(R, kBT ) = (αkBT + β)U ′(R) (17)
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U(R, kBT ) = (kBT
α + β)U ′(R) (18)

where α and β are optimizable parameters and U ′(R) is a temperature-independent pairwise

potential represented by a spline function. Power-law function is selected here since it is a

common non-linear model. The coarse-graining optimizations of these two types of potentials

employ the same hyperparameters and simulation setups.

Figure 7: (a) A comparison of total mean square error as a function of the optimization iter-
ation from applying DiffCG in constructing temperature-transferable CG-PS model with lin-
ear temperature-dependent pairwise potentials (blue) and power-law temperature-dependent
pairwise potentials (red). The shaded areas are corresponded standard deviations from three
independent optimizations with different random seeds; (b) The decomposition of total mean
square error into individual sources or errors: radial distribution functions and pressure.

Figure 7 (a) displays evolution of the total MSE, Etotal, as a function of optimization

iterations for T-transferable CG-PS models, where Etotal =
T∑
(ϵbond + ϵangle + ϵdihedral +

ϵRDF + ϵpressure), T = 400, 500, 600 K. The total MSE of the optimization with power-law T-

dependent potential decreases much faster than the linear one in all iterations. Moreover, the

CG model with power-law T-dependent potentials achieves a lower Etotal compared with the

linear counterpart, which is ∼ 103 times. In addition, the MSE of the individual source in the

final iteration is shown separately in Figure 7 (b). Both the RDF and pressure predictions

have smaller error from the power-law model than the linear one, suggesting the underlying

non-linear dependence of the CG potentials on the temperature.
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Figure 8: Radial distribution functions from temperature-transferable CG-PS model with
linear temperature-dependent pairwise potentials (dotted line) and power-law temperature-
dependent pairwise potentials (solid line) at (a) T = 600 K, (b) T = 500 K, (c)T = 400
K compared with respective target AA-MD data (dashed line); (d) Ratio of mass densities
ρCG/ρAA between AA and CG models with various temperature-dependent pairwise poten-
tials: Power-law (blue), Linear (red), and temperature-independent (green) obtained from
1-ns NPT simulations.

The predictions of the RDFs at temperatures T = 600 K, T = 500 K and T = 400 K are

shown in Figure 8 (a)-(c), respectively. Good agreement with the AA-MD reference simula-

tions indicates that the CG-PS model with power-law T-dependent potentials can capture

the temperature transferability of structures. Although less accurate than the power-law

model (particularly at low temperature T = 400 K), the linear T-dependent model generally

shows satisfactory predictions in structural properties from NPT simulations of the CG-PS

model at high temperatures. However, as displayed in Figure 8 (d), a substantial devia-

tion in mass density prediction is evident when the linear T-dependent model is used. The

situation is much worse when the T-independent potential is used (obtained from DiffCG

23

https://doi.org/10.26434/chemrxiv-2023-177pg-v2 ORCID: https://orcid.org/0000-0003-2862-4432 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-177pg-v2
https://orcid.org/0000-0003-2862-4432
https://creativecommons.org/licenses/by/4.0/


optimization at T = 600 K), consistent with previous findings of CG models developed us-

ing the IBI method.63 On the contrary, the mass densities from the power-law T-dependent

model match very well with those of the AA model over temperatures (T = 450, 550 K) that

are not even used for optimizations. The advantages of power-law temperature dependence

might be attributed to the fact that it allows larger variations as a function of temperature

in pairwise potentials. These observations underscore the efficacy of the non-linear formu-

lation of temperature dependence in CG pairwise potentials, which is the key in achieving

accurate structure and pressure predictions in a wide range of temperatures. The underlying

mechanisms for the nonlinearity observed in the CG model calls for detailed studies in the

future.

Discussions and Conclusion

We have successfully introduced an efficient and versatile structural coarse-graining method

for complex soft-matter systems, namely, differentiable coarse-graining (DiffCG). This ap-

proach combines the principles of multi-objective optimization and differentiable simulation

techniques with trajectory reweighting. In order to identify the most suitable candidate

for integration into the DiffCG methodology, we conducted a comprehensive benchmark of

three widely-used multi-objective optimization algorithms in the machine learning commu-

nity. Our meticulous assessments and systematic comparisons unequivocally demonstrate

that the CoV weighting algorithm consistently outperforms other prominent multi-objective

optimization algorithms examined in this study for the structural coarse-graining task. With

the integration of CoV, we demonstrate that DiffCG is capable of constructing CG models

of polymers with both structural and thermodynamic properties optimized at the same time

during coarse-graining optimization. We have also evaluated the relationship between the ac-

curacy of the CG model and MD sampling, which is the most time-intensive step in DiffCG.

Our result reveals a discernible trade-off between these two factors. Specifically, the accu-
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racy of the CG model increases with increasing MD sampling, while the improvement is not

sufficiently significant even when extending the sampling to tsim = 1000 ps from tsim = 125

ps. Our findings from the example CG-PS model indicate that the required MD sampling is

inherently influenced by slow modes within the corresponding AA model, e.g., dihedral an-

gles for polymers. To expedite the DiffCG process for coarse-graining more intricate systems,

enhanced sampling techniques such as tempering-based or collective-variable-based methods

may prove to be invaluable.64,65

Moreover, we have shown how a temperature-transferable CG model of PS melts can be

developed using DiffCG. To achieve this, we harness the multi-objective optimization capa-

bilities of DiffCG, utilizing target data collected from multiple thermodynamic states. In our

approach, a dual-potential-like form is adopted to represent the pairwise potential within the

transferable CG model. We conduct a systematic comparison between linear and non-linear

T-dependent pairwise potentials to assess their effectiveness in ensuring temperature trans-

ferability. Our results indicate that the reproduction of both structural and thermodynamic

properties in CG-PS models rely on the non-linear T-dependence of the pairwise potential.

This finding underscores the significance of considering non-linearity when striving for pre-

cise temperature transferability in CG models, which has not yet been thoroughly considered

in previous studies.22,25,49 It is noteworthy that a similar non-linear scheme has been suc-

cessfully applied in previous studies involving temperature-transferable coarse-graining.61,66

In future research, it might be imperative to develop a rigorous theoretical framework that

can provide insights into the underlying mechanisms of the observed nonlinearity in the

temperature dependence of the CG model.

As DiffCG has been successfully demonstrated to optimize CG models with transfer-

ability over a wide range of temperatures, it is reasonable to expect that our approach is

able to construct CG models transferable across other conditions, such as interfaces, multi-

component systems, diverse compositions, and so on. Extending this methodology to handle

such intricate environments may necessitate the development of CG potentials with improved
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expressiveness. Recent breakthroughs in machine-learning force-fields (MLFF) hold great

promise as a viable approach for developing accurate and transferable CG models.27,67,67

In particular, MLFFs have shown their effectiveness in CG simulations of various systems,

including organic molecules,27 liquids,68,69 and fast-folding proteins.28 However, the extent

to which MLFFs can be applied to condensed-phase macromolecular systems remains an

intriguing question for further exploration.1,29,70 Furthermore, an ideal scenario for the de-

velopment of CG models envisions integration with an automated optimization loop, possibly

through active learning schemes, as done in MLFFs of interatomic potential.71,72 This inte-

gration would unlock the full potential of coarse-graining techniques, enabling the modeling

of complex systems across extensive spatio-temporal scales. DiffCG is anticipated to be a

transformative tool in structural coarse-graining, with the potential to address a wide range

of challenges and pave the way for innovative developments in CG modeling.

Supporting Information Available

Details about differentiable coarse-graining optimization for polystyrene melts; Probability

distribution functions of bond length, bond angle, dihedral angles, and average pressure from

CG-PS models developed by DiffCG with various MD sampling; Tabulated potentials for

the transferable CG-PS model.
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