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Abstract

Nature has only provided us with a limited number of bio-based and biodegradable

building blocks. Therefore, the fine tuning of the sustainable polymer properties is ex-

pected to be achieved through the control of the composition of bio-based copolymers

for targeted applications such as cosmetics. Until now, the main approaches to allevi-

ate the experimental efforts and accelerate the discovery of new polymers have relied

on machine learning models trained on experimental data, which implies an enormous

and difficult work in the compilation of data from heterogeneous sources. On the other

hand, molecular dynamics simulations of polymers have shown that they can accurately

capture the experimental trends for a series of properties. However, the combination of

different ratios of monomers in copolymers can rapidly lead to a combinatorial explo-

sion, preventing the investigation of all possibilities via molecular dynamics simulations.
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In this work, we show that the combination of machine learning approaches and high-

throughput molecular dynamics simulations permits to quickly and efficiently sample

and characterize the relevant chemical design space for specific applications. Reliable

simulation protocols have been implemented to evaluate the glass transition tempera-

ture of a series of 58 homopolymers, which exhibit a good agreement with experiments,

and 488 copolymers. Overall, 2,184 simulations (4 replicas per polymer) were per-

formed, for a total simulation time of 143.052 µs. These results, constituting a dataset

of 546 polymers, have been used to train a machine learning model for the prediction of

the MD-calculated glass transition temperature with a mean absolute error of 19.34K

and a R2 score of 0.83. Overall, within its applicability domain, this machine learning

model provides an impressive acceleration over molecular dynamics simulations: the

glass transition temperature of thousands of polymers can be obtained within seconds,

whereas it would have taken node-years to simulate them. This type of approach can

be tuned to address different design spaces or different polymer properties and thus

have the potential to accelerate the discovery of new polymers.

1 Introduction

Polymers are ubiquitous in our society thanks to their relative ease of synthesis from

petroleum-derived intermediates.1 Synthetic polymers can be formulated into diverse materi-

als, have shown extreme durability, and can be manufactured at a low cost.2 However, due to

current environmental concerns, the replacement of fossil-based polymers with biopolymers

has emerged as a promising mitigation strategy for reducing greenhouse gases emissions3

and contributing to a more circular economy.4 Plants and seafood waste are examples of

renewable feedstocks containing natural biopolymers such as cellulose/hemicellulose, starch,

lignin, and chitin, and have exhibited a broad range of structures, properties and functions

in nature.5 The current in silico study addresses the polymer structures and physicochemical

properties from the monomer scale (in machine learning approaches) to the nanometer and
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nanosecond scale (in molecular dynamics simulations). Thus, as this work cannot assess

sustainability over the entire product life cycle, it is focused on, but is not limited to, bio-

based polymers, hereafter referred to as "biopolymers". Indeed, despite their high interest

and relevance, the questions of biodegradability and sustainability of biopolymers are be-

yond the scope of the current work. On the one hand, state-of-the-art procedures to assess

biodegrability of chemicals, polymers and plastics are experimental.6–8 On the other hand,

the complex assessment of sustainability benefits and trade-offs requires scrutiny of the en-

tire life cycle of polymers (feedstock harvesting, processing steps, and end-of-life scenarios).

For more detail, the reader is referred to recent and thorough reviews.4,5,9 Besides, while

the terms polymers and plastics are often used interchangeably depending on the context,

here we reserve the usage of plastics to address commercial products made from processed

polymers while we focus our study on biopolymers for non-plastic applications.4

The cosmetic industry has always been at the forefront of innovation while staying closely

connected to natural products.10 It uses polymers for a variety of functions, e.g. as thickeners,

conditioners, emulsifiers, film formers, etc.11 Despite their extended application, the use

of polymers is not unproblematic. Amongst others, there are concerns with respect to

biodegradability, toxicity, and their sustainable production.5 Apart from the underlying

scientific and medical reasons, there is also an increasing regulatory pressure, which makes

the development of new products and macromolecules that obey the standards of green

and sustainable chemistry with sustainable ingredients a major goal of many industries.4,12

Moreover, socioeconomic studies have shown that consumers perceptions of biodegradable

polymers are positive and that they are willing to pay a higher price for green or sustainable

products.1,13 Therefore, there is nowadays an important drive to replace some of the typical

polymers used in cosmetic products by alternatives that do not suffer the aforementioned

shortcomings. However, in order to compete with established fossil fuel-based polymers and

motivate their replacement, biopolymers must exhibit performance advantages harnessing

the chemical functionalities of the starting bio-feedstocks,14 and because of the complexity of
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most of the formulas, solutions, emulsions, and other mixtures of components that industries

use, the development of new, safe, and biodegradable products is a particularly challenging

task.15 Lots of efforts nowadays focus on making such formulas more and more natural

by substituting historical compounds by naturally derived molecules, e.g., polysaccharides,

with no trade-off on performances. However, these kinds of formulas are often multiphasic

systems whose properties are highly sensitive to the substitution/addition of new compounds

and most of the inherent mechanisms that are involved in systems under such conditions are

still poorly known. In addition, the challenge is not only to correctly address physical or

chemical rules or to provide knowledge to the science of formulation, but also to integrate

a fair representation of biological substrates such as hair and skin. Such strategy has been

applied recently for gathering knowledge on the modes of actions of performance engines,

i.e., the set of common rules and components that drives an ensemble of formulations, for

hair care applications.16,17 However, such a fully digital evaluation workflow is well suited

only when one knows which kind of molecules should be studied and evaluated, and for

which purpose, i.e., the key performance levers have been clearly identified. For all these

reasons, a strategy for addressing reformulation, substitution, and design of new ingredients

consists in indirectly evaluating their cosmetics performance by targeting key features and

physico-chemical levers that have been identified to impact the performance from data and

experiments analysis. Therefore, in that context, the problematic takes the form of gathering

relevant insights for subsequent formulation design by characterizing the polymers via a series

of physico-chemical descriptors that can serve as proxies to key performance indicators.

To reach these ambitious objectives, the many major challenges to tackle will require sig-

nificant and multidisciplinary R&D efforts.5,18 Computational sciences, through simulation-

based and data-driven approaches, will play a primary role to narrow down the search within

the nearly infinite combinatorial polymer design space made of homopolymers, copolymers,

and polymer blends of all sorts.14,18 The development of tools capable of predicting the prop-

erties of polymers, both via molecular dynamics (MD) and machine learning (ML), without
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resorting to the complete and heavy experimental procedure of synthesis and characteriza-

tion, has the potential to dramatically accelerate the identification of promising candidates

for targeted applications. Such approaches already appear as a cornerstone of the transition

towards a greener and more circular economy, as they allow to study more chemicals in less

time, provide deep atomistic insights, reduce laboratory-generated waste, and decrease the

risk of R&D. Thanks to the important on-going effort undertaken in many fields of ma-

terial sciences to collect, curate and provide access to both empirical and computational

databases of materials and to the development of publicly accessible ML resources and tools,

the design of new materials has already started to integrate data-driven approaches.19,20

This is particularly attractive in polymer science, because, as soon as one starts combining

monomers in copolymers, with different ratios and synthesis conditions, one is facing a com-

binatorial wall of possibilities. The Polymer Genome platform21,22 is a bright example of a

commercial endeavor that harnesses data spanning from the general polymer literature to

density functional theory (DFT) calculations, in order to predict a series of polymer prop-

erties from the SMILES code23 of the polymer. Some examples of these polymer properties

are the glass transition temperature, polymer compatibility with 24 solvents, or polymer

gas permeability. In order to extend their work to copolymers,24,25 the same group col-

lected more than 7,500 data points (which corresponds to about 40% of their final dataset)

from the PoLyInfo database.26 While others also report having collected large amount of

data for more than 12,000 homopolymers from PoLyInfo,27,28 MatNavi, the database service

hosting PoLyInfo, now explicitly forbids the "acquisition of large amounts of data, whether

by manual or mechanical means".29 Therefore, as pointed out by Gormley et al.,30 even

though several polymer databases have been assembled, their data are not freely accessible

in a downloadable and programmatic manner.26,31–33 Consequently, a series of works have

assembled disparate datasets for the prediction of a variety of properties, from the ionic con-

ductivity of solid polymer electrolytes34 to the Young modulus of polyurethane elastomers35

or the performance as organic photovoltaic material.36 More detail on the exciting progresses
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of the polymer informatics community can be found in several recent review articles.19,37,38

One of the difficulties in the development of polymer database resources is their stochas-

tic and hierarchical structures with multiple length scales. This is a consequence of the

statistical nature of the polymerization reactions that yield structures with distributions in

molecular mass, composition, and topology. To overcome these barriers, a very recent ini-

tiative is impulsing the development of a Community Resource for Innovation in Polymer

Technology (CRIPT), in particular with the objective of defining a scalable polymer material

data structure.39 Driven by FAIR (findable, accessible, interoperable, and reusable)40,41 and

open-source principles, CRIPT has the potential to accelerate the democratization and the

adoption of polymer informatics. An alternative strategy, which permits to avoid the heavy

workload of dealing with huge amounts of experimental polymer data, is possible, as evi-

denced by the release of RadonPy, an open-source Python library that automates polymer

properties calculations using DFT and all-atom classical MD simulations.42 In this work,

Hayashi et al. successfully validated simulation protocols by systematically comparing the

15 calculated properties, which include thermal conductivity, bulk modulus and refractive

index, amongst others, with experimental results for more than 1000 amorphous polymers

from PoLyInfo. Furthermore, the recent software developments within the atomistic model-

ing community permit to harness the power of graphical processing units (GPU) hardware,

which provides a tremendous acceleration of both classical and quantum-mechanical simu-

lations. Therefore, RadonPy positions high-throughput (HT) simulations as an efficient and

reliable data source. Polymer simulations are now capable of quantitatively predicting ex-

periments, enabling the deployment of additional polymer informatics approaches and their

rapid expansion to new regions of the polymer design space.

The glass transition temperature (Tg), defined as the temperature at which an amorphous

material transitions from a glassy state into a rubbery state, is an important characteristic

of polymers. For instance, when used as hair conditioning products, high Tg polymers are

stiffer but also brittle, whereas low Tg polymer are more flexible at ambient temperature but
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also provide less hold.43 However, despite governing both manufacturing and applicability

of the polymers, Tg is a notable absent from the list of RadonPy properties. In MD, the

Tg can be calculated via annealing dynamics from high to low temperatures,44,45 mimicking

the approach that is applied experimentally. Accessing, via MD simulations, properties over

a broad range of temperatures is challenging and computationally intensive, as it requires

multiple equilibrations of the polymeric systems. Besides, there is a well known mismatch

with respect to cooling rates, which are many orders of magnitude higher in MD simulations

(nanosecond time scale) in comparison to experiments (100 seconds time scale).46,47 For

these reasons, many works have relied on machine learning approaches to predict the Tg of

homopolymers21,27,37,48,49 and copolymers24,50 from experimental data. Nevertheless, Afzal

et al. have evidenced the possibility to perform accurate HT calculations of the polymer

Tg via MD, demonstrating good agreement with experiments.51 Even though their study

was limited to 315 homopolymers (note that they performed 10 replica simulations per

homopolymer), which is not sufficient if one wants to perform a systematic screening of a

broad chemical space that should also include complex copolymers, it shows great promises

for in silico driven polymer design. Furthermore, Tao et al.27 also obtained a consistent

trend between MD-calculated Tg and experimental data for 100 homopolymers collected

from PoLyInfo.

One great advantage of simulations is that, once the simulation protocols have been

finely tuned and validated against experiments, they can be automated and their data and

metadata are intrinsically machine readable.38 Therefore, the combination of simulation- and

data-driven approaches offers the flexibility and scalability to study hundreds to thousands

of polymers in a fast and accurate way, as required for the exploration of new regions of the

polymer design space. This is of high interest since approaches to predict Tg usually exhibit

a trade-off between generality and predictive accuracy, as commented in detail by Pilania

et al.50 Indeed, as they illustrated for the polyhydroxyalkanoate polymers family, models

designed to target a wide and diverse chemical space usually show higher predictive errors
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and model uncertainties than models with a narrower applicability domain.

Throughout the work reported in this paper, MD simulations have been harnessed to ac-

quire accurate and consistent data with the objective of generating tailor-made ML models

targeting a specific region of the chemical space. We will show that this mixed approach, in

comparison to generic models trained on experimental databases, permits to reach promising

predictive accuracy with 10 to 20 times less data. More specifically, the goal of this work has

been to train an ML model capable of predicting the Tg of biopolymers. High-throughput

MD simulations of polymers have permitted us to obtain the Tg of 546 polymers, which

constitutes the target property of our supervised ML model. The next section details the

entire methodology implemented along this work. It addresses both the molecular modeling

aspects and the data-driven strategy. Afterwards, the results obtained from the MD sim-

ulations are reported and compared to experimental measurements before presenting and

discussing the performance of the ML model.

2 Methods

2.1 Molecular modelling

2.1.1 Challenges of setting up polymer simulations

Simulations of polymers are challenging due to the intrinsically large size of the involved

macromolecules, which affects both the initial setup of the system and the actual MD sim-

ulation. The preparation of such systems requires the generation, in an automated but yet

flexible way, of the configuration of the polymer, i.e., the coordinates of its constituent atoms,

as well as the corresponding topology, i.e., the parameters describing the interactions of the

constituent atoms according to the chosen force field (FF). Many tools have been recently

developed to facilitate this task, and although an exhaustive review is out of the scope of
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this paper, some specificity of a series of polymer builders permitting to generate all-atom

systems for MD simulations have been summarized in the Supporting Information.

The first issue faced when building the topology is the assignation, in a consistent and

automated way, of reliable force field parameters (i.e., bonds, angles, dihedrals, and non-

bonded interactions) to the complete series of polymer structures to be constructed. A

brief review of the FF generally used to determine the Tg of polymers via MD simulations

is reported in the Supporting Information. While the investigation of a specific family of

polymers often shows better agreement with experiments when relying on further refined

FF parameters,52 for example torsion potentials, such case-by-case refinements would be far

too time consuming for an extensive study like the present work. Considering the diversity

of polymer structures, aiming at reproducing the exact experimental values in a consistent

HT manner is utopian. Instead, the main focus should be on correctly producing relative

comparisons between different polymers. Therefore, the large but roughly constant offsets

of CHARMM General Force Field (CGenFF)53,54 and of the General Amber Force Field

(GAFF)55,56 for the estimation of Tg are not a problem,52 as long as the relative ranking

between polymers follows the experimental trend. For instance, even though their MD sim-

ulations overestimate Tg values by 79.1K on average compared to experimental values, the

results obtained by Afzal et al.51 clearly reproduce the experimental trends, which is highly

valuable in the perspective of simulation driven polymer design approaches. As our objective

is to perform the HT study of a set of diverse biopolymers, we decided to use GAFF55,56

for our simulations, both because it has been extensively used for a wide range of systems,

demonstrating its good transferability and validity, and because its parameter assignation

can be readily automated via Antechamber56 or with a tool like ACPYPE.57 Moreover, it has

already been employed in several studies related to the Tg calculations. For instance, Alesadi

et al.58 obtained good agreement between MD simulations, experimental references, and an

ML model for semiconducting conjugated polymers, and Andrews et al.59 calculated several

physico-chemical descriptors, among others Tg, for poly-lactic-co-glycolic acid (a synthetic
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biodegradable copolymer), obtaining good agreement with available experimental references.

As will be shown later, our simulations based on GAFF have indeed led to results that are in

good agreement with similar simulation studies and experimental reference values. However,

we have noticed that for a specific family of biopolymers, namely the polysaccharides, GAFF

did not perform well and rapidly led to instabilities in the MD simulations when the tem-

perature was increased. Therefore, in these cases, we have parameterized the corresponding

monomers with the force field GLYCAM06.60 GLYCAM06 was originally designed with the

objective of introducing a minimal set of parameters required to add carbohydrate simula-

tion functionality to the AMBER force field,61,62 while maintaining consistency with that

FF.63 Since GAFF has also been developed consistently with AMBER, it is compatible with

GLYCAM06, as the others FF from the AMBER family,64 and it should be possible to com-

bine them. In this context, parameter orthogonality is ensured assigning unique atom types

for GLYCAM06, consistently with the Antechamber procedure. In practice, the appropriate

assignation of GLYCAM06 atom types to polysaccharide structures relies on the recognition

of atomic fragments by a homemade implementation analyzing the chemical environment of

each atom.

In a second step, in order to obtain the complete topology, most modern FF require

to assign atomic partial charges to all atoms of the system. This assignation is typically

based on quantum mechanical calculations and a subsequent fitting of the atomic charges to

reproduce the electrostatic potential,65 or semi-empirical methods that were parameterized

to produce atomic charges that emulate the same potential.66,67 However, the computational

time of this approach can become problematic for large systems, as it scales at least cu-

bically with the system size. Even though there exist reduced scaling methods that make

the underlying ab initio calculations more benign for very large systems,68 they typically

introduce extra overhead. In many recent polymer builders, whose capabilities and par-

ticularities are summarized in the Supporting Information, the charge assignation is often

not explicitly discussed.69–75 On the other hand, Polyply 76 uses parameterized charges from
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GROMOS 2016H66 FF,77 Polymatic 78 works with the charges provided by the user, Polymer

Structure Predictor 79 uses monomer charges calculated on isolated monomers, and BIOVIA

Materials Studio 80 permits to use FF-defined charges, charges obtained from Qeq,81 or from

Gasteiger82 methodology. To account for the local environment of the monomer to some

extent while keeping the computational cost manageable, oligomers of the homopolymeric

systems were considered.Within this simplified setup, the atomic charges are calculated based

on the AM1-BCC approach66,67 and stored for each atom of the three different parts (head,

repeat unit, tail).

Figure 1: Summary of the building procedure implemented to obtain a well-entangled poly-
mer melt structure before performing the Tg molecular dynamics simulations.

Once the relevant force field parameters are properly assigned and the partial atomic

charges are obtained, the corresponding topology is constructed. Then, the next challenge

is to set up a realistic three-dimensional structure of the polymer. Due to the large size of

the polymers and their inherent long relaxation times, the system can easily end up trapped

because of an unfortunate bad initial setup, thus failing to reach an equilibrium state within

the accessible simulation time.44 Escaping from such trapped configurations can be acceler-

ated by Monte Carlo approaches, but their parametrization can be tedious and error prone.83

Therefore, as displayed in Figure 1, it is important to carefully prepare an initial structure
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close to its equilibrium state, which makes the subsequent simulations faster and more reli-

able. The different strategies adopted by recently published polymer builders are reviewed

in the Supporting Information. In our work, the polymer is grown monomer by monomer via

a random walk. Specifically, the monomers are added in the desired order in the simulation

box, and a short energy minimization and MD equilibration (in the NVE ensemble) with

LAMMPS84 is performed after each addition. In our approach, these MD steps are per-

formed with the relevant modern force fields GAFF or GLYCAM06, conversely to PSP and

PySoftK that rely on former generic ones such as Universal Force Field (UFF)85 and Merck

Molecular Force Field (MMFF).86 Once the coordinates of the entire chain of N monomers

(1 head + (N−2) repeat units + 1 tail) are obtained, the final polymer topology is generated

using ACPYPE.57 In this way, we can produce a system that is already well pre-equilibrated

and ready to be used in the main MD simulations, only requiring a short equilibration and

without having to resort to an elaborated yet cumbersome compression/relaxation procedure

like the so-called 21-step procedure.78,87 In order to illustrate this point, we compare in Fig-

ure S1 a snapshot of a system containing 10 chains of poly(4-hydroxybutyrate) (P4HB), each

made of 77 monomers (1,992 atoms) created with this approach (bottom) to a system built

with an approach in which each polymer is created independently and then added to the

simulation box (top). As can be seen, the latter approach leads to a very badly mixed system

of collapsed polymers, whereas our approach leads to a homogeneous mixture of entangled

polymer chains.

2.1.2 Simulation setup

The simulations boxes are filled with 10 polymer chains of roughly 2,000 atoms each,

according to the approach described above. The box size is chosen such that the final system

has a density of 0.5 g/cm3, which leads to box sizes of the order of 7 nm × 7 nm × 7 nm.

Even though the polymer chains are grown at a density that is typically of the order of

40%-60% below the experimental one, their adequate entanglement allows to reach well-
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equilibrated systems with correct densities after relatively short simulation times in the NPT

ensemble without resorting to complex multi-step equilibration protocols78,87–89 often used

in the literature27,49,90 and accurate results can be obtained with relatively simple workflows,

as detailed in the Supporting Information and in Figure 2 (top panel). The chain by chain

addition approach reported in Figure S1, on the other hand, yields system that are typically

stuck at densities about 15% below the experimental ones, and would most probably require

to follow more elaborated equilibration protocols to escape from such configurations.

Figure 2: Simulation protocol implemented for obtaining the glass transition temperature of
polymers (top) and illustration of the hyperbolic fitting procedure (bottom).

2.1.3 Glass transition temperature

In MD, the Tg can be calculated via annealing dynamics.44,45 More specifically, its deter-

mination is based on the observation that, asymptotically, the density varies linearly with

respect to temperature in both the glassy and the rubbery regimes, however with different
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slopes; the Tg is then given as the temperature where the density slope transitions from the

rubbery value to the glassy value. In practice, two linear functions can be fitted to the low

and high temperature domains, respectively, and the Tg is then given as the temperature

where they intersect.91 Even though this approach is relatively straightforward to imple-

ment, it contains some inherent uncertainty as the transition between the slopes is not very

sharp, and the specific value depends considerably on the exact definition of the low and

high temperature regions and the corresponding fits. An alternative solution that eliminates

this bias is to determine the Tg from a hyperbolic fit, as suggested by Patrone et al.45 and

illustrated in Figure 2 (bottom panel). Specifically, all the calculated data points are fitted

to the following equation for the density as a function of temperature:

ρ(T ) = ρ0 − a(T − T0)− b

(
1

2
(T − T0) +

√
(T − T0)2

4
+ exp(c)

)
, (1)

where T0, ρ0, a, b and c are fitting parameters.92 This approach is much better suited

for systematic HT calculations, as there is no need to manually assign the data to the

low and high temperature regimes, and we consequently employed it in this study for the

determination of the Tg values.

In practice, we applied the simulation protocol summarized in Figure 2 (top) and detailed

in the Supporting Information. It is worth mentioning that due to the inherent stochastic

nature of the way our polymer systems are created, we used several replicas in order to in-

crease the statistical significance of the obtained results. In the literature there are examples

where 10 replicas51 and 5 replicas52 were used. In our case we have seen that using 4 replicas

is enough to yield meaningful results with generally small standard deviations, as further

shown in section 3, while limiting the overall computational cost of the entire study.
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2.2 Data-driven approach

2.2.1 Dataset collection and combinatorial generation of copolymers

To assemble a dataset of monomers with a focus on biopolymers we have reviewed the

literature on biopolymers and the freely accessible polymer databases.4,5,9,32,93 As discussed

in the introduction, this manual data collection is a cumbersome process. Besides, as the list

of gathered known biopolymers, which includes polyhydroxylkanoates and polysaccharides,

could be considered limited, we have expanded our dataset with a few common monomers

such as polyvinyls, polyacrylates, and polyesters to reach 58 monomers. This number looks

very small in comparison to the more than 12,000 monomers of PoLyInfo, but as will be

discussed in section 2.2.3, they cover a smaller part of the polymer chemical space than

PoLyInfo. To permit the exploration and to densify the sampling of this region of interest

for our application, namely the ML prediction of the Tg of biopolymers, a set of 14,877

combinatorial copolymers were generated from the binary combinations of the 58 collected

monomers with monomer ratios in the range [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. The

list and SMILES code of the monomers used in this work is provided in the Supporting

Information.

2.2.2 Encoding polymer structures for machine learning

For training an ML model to predict a polymer property, it is first necessary to encode

the polymer structures into a set of features from which the algorithm will learn to make

predictions. In our dataset, homopolymers are represented by the polymer SMILES (Sim-

plified Molecular Input Line Entry System) code of their repeat unit,23 in which the symbol

"*" indicates the polymerization point. For binary copolymers, the SMILES codes of the

two repeat units involved and their respective weight ratios are used. One might wonder if

relying merely on repeat units SMILES would not limit the encoding of the complex polymer

hierarchical structures, since alternative strategies have been tested or are currently under
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development. Nevertheless, according to the state-of-the-art review of the alternative strate-

gies reported in the Supporting Information and the very complete work from Tao et al.,27

the repeat unit structure sufficiently captures the bonding information and key substructures

for the ML prediction of Tg of polymers. Therefore, in this work, we have encoded the poly-

mer structures using molecular descriptors calculated from the polymer repeat units with the

open access Python package Mordred.94 In particular, we have used the 1,613 2-dimensional

(2D) molecular descriptors that Mordred calculates. For the hypothetical copolymers gener-

ated from the binary combination of monomers, the feature vectors have been generated as

linear combinations of the descriptors of the involved repeat units weighted by their corre-

sponding ratios, following the same strategy as recent studies by Pilania at al. and Kuenneth

et al.24,25

2.2.3 Selection of polymers to simulate

As previously discussed, the existence of a trade-off between generality and predictive

accuracy for ML models developed to predict the Tg of polymers has been observed in several

occasions.50 Therefore, to select the polymers worth simulating as efficiently as possible, it

seemed of interest to first position the homopolymers and hypothetical copolymers in the

broader context of polymer chemical diversity. Despite the limitations to access the broad

information of polymer databases presented in the Introduction, the work of Ma et al.28

released a useful benchmark database for polymer informatics. Training a generative model

on 12,000 homopolymers from PoLyInfo, they built a database of about 1 million hypothet-

ical polymers named PI1M. Moreover, they showed that PI1M covers a similar chemical

space as PoLyInfo, while populating more densely regions where PoLyInfo data are sparse.

Therefore, we have used PI1M as a proxy for the chemical diversity of synthetic polymers

and implemented a selection strategy, detailed in the Supporting Information, which relies

on dimensionality reduction and clustering approaches to sample easily and broadly the

chemical space of interest for our application. Overall, we simulated all 58 homopolymers
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built from the monomers collected and we identified 1,000 copolymer combinations via the

approach detailed in the Supporting Information as upper dataset limit. Then, from this

pool of 1,000 copolymer combinations, we randomly selected structures to simulate and to

fill our dataset until the subsequent ML models reached a satisfying performance level. All

polymers simulated are displayed in Figure 3 after a UMAP (Uniform Manifold Approxima-

tion and Projection)95 dimension reduction; in green for the 58 homopolymers and in black

for the 488 copolymers, while Figure S4 also shows all combinatorial copolymers. The only

precaution that we took was to ensure that we did not over-sample combinations representa-

tive of little populated clusters positioned in the sparser and outer regions. Indeed, despite

the non-linearity of the UMAP transformation, they would likely carry a higher probability

of sampling sub-areas ultimately assessed as outside of the applicability domain of the ML

model (to be defined at a later stage).

Figure 3: Representation of the homopolymers (green) and copolymers (black) constituting
our dataset within the UMAP transformation trained on PI1M. Figure S4 offers an alterna-
tive orientation also displaying all generated copolymers.
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2.2.4 Supervised learning

The final objective of this work is to train an ML model that is accurate enough to

accelerate the exploration of the polymer design space for the targeted application via the

prediction of Tg. The MD-calculated Tg of homopolymers and copolymers selected in the

previous section is the target of the models, while polymer structures encoded as described in

section 2.2.2 constitute the features. All models were implemented using scikit-learn library

version 1.2.0.96 The different training steps involed, their outcomes and the technical details

are reported in the Supporting Information.

3 Results and discussion

3.1 Validation of the simulation protocols

Figure 4: MD-calculated Tg against reported experimental values for homopoymers. The
points are colored according to the standard deviation (Stdev) of the MD simulations, since
for each system 4 replicas are performed.

Before undertaking the computationally demanding HT simulations for acquiring the Tg

of copolymers, we have assessed the quality of the simulation protocols implemented via

comparison of the MD-calculated Tg with available experimental results for the homopoly-
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mers. In Figure 4, we show the Tg of 47 homopolymers obtained via the MD simulations

against their experimental reference values. All these data, with the sources of the experi-

mental references, which are either collected from the literature or from databases such as

PoLyInfo26 or the Polymer Database,32 are provided in the Supporting Information. For

the remaining 11 homopolymers we could not find any reliable experimental Tg reference,

therefore they have been discarded from this comparison. In the case of multiple references

being available in databases, we followed the prescription of Jha et al.97 and took the me-

dian value of the entry. The MD-calculated Tg values are typically higher compared to their

experimental counterparts, which is expected, as discussed in the introduction, due to the

difference between the cooling rates used in the simulations compared to the ones employed

in experiments. However, and importantly, the R2 value of 0.83 evidences the preservation

of the main experimental trends, i.e., relative comparisons between different polymers yield

correct results, and this offset does not affect the usefulness of the obtained MD data. In-

deed, the shaded area in Figure 4 has been drawn to show that most of the values are within

10% deviation from a simple 105.02K offset from experimental references. Furthermore,

even though we do not study the same polymers as Afzal et al.,51 we note that accounting

for the simple constant offset of our values while comparing MD-calculated Tg with experi-

mental data provides an R2 score close to what they obtain with linear fit. In other words,

with increasing Tg, their MD results deviate from a constant offset while ours do not. Al-

though some of our points Figure 4 seem to visually indicate a similar deviation, a linear

fit of our data does not capture it, as will be discussed in section 3.4, and such effect seems

very dependent of the dataset studied. Besides, the standard deviations on Tg values from

our MD simulations seems smaller (see Figure S5 for histogram). Furthermore, it is worth

mentioning that the homopolymers with the largest deviations from the experimental trend,

namely pectine (357K in experiment vs 612K in MD), hyaluronic acid (409K vs 618K),

and cyamopsis-tetragonobola (393K vs 571K), are polysaccharide polymers for which the

experimental assessment of Tg is usually challenging and for which only limited references
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could be found. Overall, the good agreement between simulations and experiments validates

our approach to use MD simulations to sample efficiently and accurately this region of the

polymer chemical space for the training of ML models.

3.2 High-throughput polymer simulations

Figure 5: Representation of the chemical space of all homopolymers and copolymers sampled
in this work, colored according to their Tg. The colored scale is centered in 273.15K

Once our simulation protocol had been validated, the Tg of the 488 copolymers selected

via the approach detailed section 2.2.3 was obtained by HT simulations. A total of 2,184

simulations ([58 homopolymers + 488 copolymers] × 4 replicas) were performed, which

corresponds to a total simulation time of 143.052 µs for this entire study. In Figure 5, the

chemical space sampled via MD simulations is displayed with each polymer colored according

to its mean Tg value. Before exploiting the MD-calculated Tg as targets for the training

of ML models, it is interesting to have a look at the generated data. As illustrated by the

histograms in Figure S5, the standard deviation of the Tg values is generally very small. For

homopolymers, the average standard deviation is 9.60K, whereas for copolymers is is 6.70K,
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with only a few values above 20K in both cases. The composition dependence of copolymers

Tg is often rationalized by the Fox equation,98 which states that the Tg of a copolymer can

be derived from the homopolymer Tg values of its constituting monomers as follows:

1

Tg,mix

≈
∑
i

ωi

Tg,i

, (2)

where Tg,mix and Tg,i are the glass transition temperatures of the copolymer and of the

homopolymers of the constituting components, respectively, and ωi is the mass fraction of

component i. Despite the establishment of this relation more than 70 years ago, the investiga-

tion of the composition dependence of Tg is still very relevant, in particular for understanding

the deviations from linearity99 or the effects of monomers sequence.100 Figure 6 compares

the combination of the MD-calculated Tg values of homopolymers according to the empirical

FOX relation with the actual MD simulation results for the corresponding copolymers. As

expected, the majority of the Fox equation values (for 339 copolymers) lie within a small

deviation of ±19.51K from MD results, with an average deviation of 8.20K for this subset

of copolymers. However, the remaining 149 copolymers show a much larger average devi-

ation of 45.23K. Histograms of the deviation distributions for both cases are represented

in Figure S6. If one were tempted, after assuming the effort required to obtain the Tg of

a series of homopolymers via MD simulations, to use the Fox equation to predict the Tg of

copolymers, a mean absolute deviation of 19.51K could seem very satisfying. Nevertheless,

resorting to such strategy would consist in erroneously positioning an empirical relation as

a gold standard and treat any deviation as prediction error whereas these deviations from

linearity, which are observed experimentally and currently rationalized as the consequence

of intra-chain stiffness and polar interactions effects,99 can be captured via MD simulations.

Therefore, the implementation of an approach based on a combination of explicit simulations

of copolymers and ML is better suited for the exploration of the relevant polymer design

space.
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Figure 6: Tg values predicted using the empirical Fox equation98 versus MD-calculated values
for copolymers. The points are colored according to the standard deviation (Stdev) of the
MD simulations, since for each system 4 replicas are performed.

3.3 Training machine learning models

After the usual separation of the data collected from MD simulations into a training

dataset with 491 samples and a testing dataset with 55 samples via a 90/10 train/test split

and the preprocessing of the training dataset, a series of regression algorithms (see Support-

ing Information for all technical details), including logistic regression, k-nearest neighbors,

support vector machines, and ensemble learning algorithms, were compared for the predic-

tion of the MD-calculated Tg of polymers. The mean absolute error (MAE) is used as scoring

function throughout this work. The results obtained across the range of number of tested fea-

tures (between 5 and 40) are displayed in Figure S7, and highlight the good performances of

out-of-the-box random forest (RF), gradient boosting (GB), and k-nearest neighbors (KNN)

regression algorithms, which were thus selected to be further refined and tested. Then, the

best features to train the models have been identified in two steps: i) first, the 50 most

relevant features were identified via recursive feature elimination (RFE), and ii) the effect of
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the number of features on the model performance was investigated in detail within a leave

one out cross validation (LOOCV), still relying on RFE for the features selection. It is worth

mentioning that the RFE procedure requires to be implemented with an estimator, i.e., a

regression model in this case, able to return a measure of features importances. Among the

3 algorithms selected, only RF satisfies this condition; thus, in order to perform its selec-

tion, the RFE procedure has been set up to rely on a standard RF regressor with default

parameters except for the number of trees (n_estimators) which was limited to 50, as we

intend to reduce trees complexity in subsequent steps. Figure S8 shows the evolution of both

the MAE and the root mean square error of these evaluations as a function of an increasing

number of features and evidences a first plateau in the performance improvement between

25 and 33 features in MAE, our main scoring function. Therefore, in the center of this inter-

val, we selected the 29 features identified by the RFE procedure for all subsequent training

steps with all learning algorithms. The list and definition of these features is reported in

the Supporting Information. Afterwards, for each type of algorithm, the hyperparameters of

the models have been optimized via grid searches detailed in the Supporting Information, in

which the ranges explored by the parameters governing the complexity of the model, such

as the number of trees (for RF and GB) or the number of neighbors (for KNN) used in the

training were limited to prevent overfitting.

The learning curves represented in Figure 7 for the best KNN model and in Figure S9

for the best models obtained with each learning algorithm permit to evaluate the models

average performances on training datasets and on hold out validation datasets, separated

via cross validation (CV) procedure, for different sizes of training datasets. That task was

performed using a 10-fold ShuffleSplit CV. On the one hand, the three models reach similar

levels of performances when the entire training dataset is used, with MAE values around

20K and the MAE curves obtained on the validation datasets keep decreasing (they do not

plateau) at the maximum training set size used, indicating that the performances of the

models could be improved by further addition of samples to the training dataset. This is
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Figure 7: Top panel: learning curves on the training and validation datasets evaluated
through ShuffleSplit CV as function of the size of the training datasets for the best KNN
model obtained. Bottom panel: final performances of the best KNN model on training
(green) and testing (blue) datasets.
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a positive sign for model health and it further illustrates the great potential of the entire

strategy implemented in this work. On the other hand, the RF and GB models exhibit a

significantly higher variance than the KNN model, i.e., there is a gap between their learning

curves on the training and on the validation datasets. The superior performances of RF and

GB on the training datasets compared to the validation datasets indicates a slight overfitting,

as also observed by Tao et al.27 who reported similar MAE differences of the order of 10K

between training and testing dataset. Nevertheless, as the performances on the validation

datasets are similar to the KNN model, we continued to characterize the performance of all

three models and evaluated their generalization abilities both in 10-fold ShuffleSplit CV and

in LOOCV, as reported in Table S2.

Table 1: Final performances on training and testing datasets of the best models obtained
with each learning algorithm.

Random Forest Gradient Boosting k-nearest neighbors

Testing Training Testing Training Testing Training
Mean Absolute Error (K) 19.97 12.43 20.30 12.04 19.34 17.04

Root Mean Square Error (K) 29.81 19.54 28.30 16.61 27.98 26.56
R2 0.88 0.93 0.89 0.95 0.89 0.87

The final performances of the best models trained with each learning algorithm are as-

sessed by applying them to the testing set isolated before the start of the training procedure.

Table 1 summarizes the results and shows that the KNN model is performing best with

a MAE (the optimized scoring metric) of 19.34K on the testing set, which corresponds to

a very good coefficient of determination R2 = 0.89. The good performances of the final

model, illustrated in the bottom panel of Figure 7 that shows the Tg predicted by the KNN

model as function of the reference MD-calculated Tg and permits to visually compare the

performance of the model between training and testing datasets, are consistent with the

evaluations of the cross-validations reported in Table S2. Furthermore, it is interesting to

note that the good fit of the KNN model, which predicts the Tg of polymers based on the

values of the neighboring structures in the chemical space, is consistent with the generally
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relatively smooth transitions over domains of different Tg ranges visible in Figure 5. Our

model performances are in the same order of magnitude as the work of Tao et al.,27 which

used 10 times more data to cover a larger design space. Their best models showed an R2 =

0.82 (their main scoring metric) and a MAE of 34.45K. With an entirely different approach,

namely a meta learner learning from 5 previously trained cross-validation models relying

on a total of 18,445 data points (20% for the meta-learner and 80% for the cross-validation

models) for homopolymers and copolymers glass transition temperature, melting tempera-

ture, and degradation temperature, Kuenneth et al.24 reached a root mean squared error

(RMSE) of 21.03K for R2 = 0.96 on the capability of the meta learner to predict Tg for the

80% of data used in the cross-validation models. One might note that they do not report

the isolation of a testing set to be excluded from any training step and only to be used

for final performance evaluation. Furthermore, as they obtain an important performance

improvement from their meta learner, we can point out that the RMSE of our model is of

the same order of magnitude as the ones of their cross-validation models for homopolymers

while their cross-validation models for copolymers perform better In these two other works,

an impressive amount of experimental data is used.

Despite their slight overfitting on the training set, both the GB and RF models reported

in Table 1 and illustrated in Figure S10 are performing well. Therefore, it seems worth

having a look at the features importances of the final RF model shown in Figure S11 to

put them in perspective with the glass transition process. Indeed, the shifts in polymer

properties occurring when the polymers transition from the glassy state to the rubbery

state are generally attributed to a change in molecular motion.51 Consistently with this

observation, the highest ranked feature for the RF model is the rotational ratio (ratio between

number of rotatable bonds and number of bonds, discarding hydrogen atoms), which is a

proxy for monomer flexibility and thus permits to capture differences in polymer motion

due to their intrinsic monomer flexibility. Although they may not always be as intuitive as

the rotational ratio, also other features ranked relatively high. On the one hand, AATSC0d
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and ATSC4d encode the autocorrelation of sigma electrons at respectively very short and

medium ranges; on the other hand, JGT10 and JGI2 describe the charge distribution at both

long and short range. We interpret these range segmentations, also observed in lower ranked

features, as ways for the RF model to encode changes in monomers properties at various

scales. Short and medium range autocorrelation descriptors can capture property changes

between neighboring atoms within one monomer in comparison to another one, for example

to capture main chain/side chain interactions, which are also relevant for interpreting Tg

variations,99 whereas long range autocorrelation descriptors account for the differences over

larger scale of the monomers. In the case of JGT10, this long range descriptor is a global

mean from order 0 to 10, i.e., from topological distance (number of involved bonds of the

shortest path between two atoms) 0 to 10, and thus provides an averaged encoding over the

scale of the monomer (approximatively, since monomer size varies). In other cases, like with

ATSC8d, the descriptor encodes the property at a large topological distance, and thus can

capture differences between small and large monomers and between monomers with similar

structures within the first neighbors of each atom, but with changes over larger distances.

Such information is used by the RF model in its prediction process, but also by the other

ML models, since they were trained with the same features. The last descriptors with

feature importance superior to 0.05 is SssCH2, an electrotopological state indice summing

the number of aliphatic -CH2- carbons over the monomers. To gain further insights on the

underlying machinery of the ML model predictions, one should turn to interpretable ML

approaches, which we intend to explore in-depth in future works.101

3.4 Applicability of the final model

With the development of quantitative structure activity relationship (QSAR) models for

regulatory usage on risk assessment of chemicals for their safe use, a series of principles have

been established by the Organization for Economic Co-operation and Development (OECD)

for the validation of QSAR models.102 According to OECD guidelines, it is compulsory for
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these models to have: i) a defined endpoint (in our case MD-calculated Tg of polymers),

ii) an unambiguous algorithm (k-nearest neighbors with the specific parameters reported

in the Supporting Information), iii) a defined domain of applicability, and iv) appropriate

measures of goodness-of-fit, robustness and predictivity (as reported in the previous section).

Although the context of our work is different, these principles represent standards to uphold.

Therefore, the remaining task is to define the applicability domain (AD) of our final model,

which defines the subspace of polymer structures for which the predictions of the MD-

calculated Tg would be considered reliable. A large variety of approaches has been used

for this task, from range-based and geometric methods to similarity-based methods and

decision forests.103,104 We have adopted a probability density distribution-based approach,

namely the clustering-based local outlier factor (CBLOF),105 which builds on the local outlier

factor106 at the cluster level. Therefore, using the implementation of the Python package

PyOD,107 we trained a CBLOF model to detect 15% of outliers within the dataset of 491

polymers used to train the ML model, from a Kmeans clustering model set to identify 20

clusters. In this procedure, only the 29 features kept as relevant for the final ML model

were used as features for the outliers detection and the other parameters were kept at their

default values. Using the web application hosted by Nextmol (see Supporting Information for

access details), the reader can seamlessly apply the final KNN model trained in this work to

obtain a prediction of the MD-calculated Tg for homopolymers and binary copolymers while

obtaining an AD evaluation (is the polymer of interest within the AD of the ML model?) by

simply providing the relevant SMILES codes and monomers ratios. Furthermore, to illustrate

the acceleration provided by the approach implemented in this work for the exploration of

the chemical space covered by the assembled dataset, we have applied the KNN model to

predict the MD-calcualted Tg of the 9,029 combinatorial copolymers within its applicability

domain. With the HPC architecture used in this work (the compute node contains 4 Nvidia

A100 GPUs and 64 CPU cores), we are able to simulate 1936.0 ns per day. Therefore,

as 4 replicas are needed, obtaining the Tg of these 9,029 combinatorial copolymers would
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require 3.34 node− years, whereas the entire series of ML predictions is obtained within a

few seconds. These predictions are displayed with the 496 MD simulations results in Figure

S12 and Figure S13.

Figure 8: Performances of the final KNN model for the 14 additional simulated polymers
within its applicability domain.

Moreover, as final evaluation of the approach implemented throughout this work, we

have selected 21 polymers (listed in the Supporting Information) from the dataset of Afzal

et al.51 that are located within the AD of our ML model. Then, both the MD simulation

protocols presented earlier and the final ML model have been applied to obtain the Tg of

these homopolymers at both MD and ML levels. First, we compare in Figure S14 the results

of our MD simulations with the results from Afzal et al.51 and the experimental data that

they collected from Bicerano.108 Please note that in what follows, the experimental data are

taken as reported, whereas comparisons with more recent works and revised experimental

protocols may lead to different reference values. On the one hand, Figure S14 shows that the

results from our MD simulations differ from those of Afzal et al., which clearly highlights the

difficulty of merging data from different sources. On the other hand, in-depth comparisons

between both sources of MD results and the experimental data, detailed in the Supporting

Information, indicate good agreement between the Tg values from our MD simulations and
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the experimental data. Finally, Figure 8 displays the performance of the final KNN model

for the prediction of the MD-calculated Tg of the additional series of polymers. For 16

polymers the Tg is well to very well predicted, whereas the remaining 5, which are poly(1-

pentene), poly(1-hexene), poly(2-heptyl acrylate), poly(vinyl propionate), and poly(N-butyl

acrylamide) appear as mild outliers. The overall MAE of 23.69K is a little higher than what

was found on the testing set, but as significantly stronger outliers are visible in Figure 7,

both for testing and training datasets, it is reasonable to expect the MAE to reduce over a

larger number of comparisons.

4 Conclusions

This work illustrates the attractivity of combining data-driven and molecular dynamics

approaches in the context of biopolymer design. As demonstrated, state-of-the art molecular

dynamics simulations permit to accurately reproduce experimental trends on a key physico-

chemical property of polymers, the glass transition temperature, and thanks to the recent

advances in computational hardware it is possible to deploy them in a high-throughput man-

ner. This way, the properties of 546 polymers could be evaluated in silico for a fraction of

the time and cost of performing the equivalent experiments. In this work, 2,184 simulations

were performed, for a total simulation time of 143.052 µs. Even though this number of poly-

mers is small in comparison to the combinatorial combinations of polymeric building blocks

into copolymers for the fine tuning of their properties, we have shown that it is sufficient to

adequately sample the design space for a targeted application such as the replacement of the

fossil-fuel based polymers used in cosmetics by biopolymers. Indeed, the ML models trained

from these data show good performances and can thus drastically accelerate the exploration

of the design space identified as relevant to the specific targeted application.

In that process, we have compiled a dataset constituted of 58 homopolymers, with a focus

on biopolymers, and implemented a polymer building and simulation procedure permitting to
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perform high-throughput simulations relying either on GLYCAM06 for polysaccharides or on

GAFF for all remaining polymers. The comparison of the glass transition temperature values

obtained with the simulation protocols implemented in this work and the data collected from

a variety of experimental references reported in databases and the literature has evidenced

that the experimental trends are well reproduced. Indeed, accounting for a well known

constant offset, with a value of 105.02K in our case, attributed to the mismatch between

experimental and computational cooling rates which are orders of magnitude different, such

comparison yields an R2 score of 0.83. Then, a set of 14,877 copolymers was generated via

binary combination of the collected 58 monomers with ratios in the range [0.1; 0.9] and a

machine learning driven selection approach was implemented to sample the targeted design

space by calculating the glass transition temperature of 546 polymers (58 homopolymers

and 488 copolymers) via molecular dynamics simulations. From this dataset, a k-nearest

neighbors model has been trained to predict the MD-calculated glass transition of polymers,

within the design space defined by its applicability domain, with a mean absolute error of

19.34K and an R2 score of 0.89 when evaluated on the testing dataset isolated before the

start of the training procedure.

Finally, a comparison with 14 polymers from an external dataset within the applicability

domain of our ML model has confirmed that both the MD simulation protocols and the

ML model are performing as good as expected. This comparison also shows the differences

between two series of MD simulations with different polymer building and Tg simulation

protocols, and thus highlights the difficulties of merging data from different sources. This

challenge exists both when working with experimental data and with computational data

and thus remains an important bottleneck for the implementation of large scale data-driven

approaches in science. Therefore, it further emphasizes the great potential of mixed strate-

gies combining data-driven and molecular dynamics approaches for targeted applications as

implemented in this work. Importantly, such approaches are not limited to polymers. They

can be applied to many classes of molecules or materials. Besides, the work undertaken here
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could be further refined and improved by future efforts in generating additional data or in

improving data quality. On the one hand, the learning curves of the ML model have shown

that adding more data would permit to reduce its mean absolute error. On the other hand,

even though it would require an important human effort, specifically looking at the outliers

found in the predictions of both training and testing datasets could permit to increase data

quality. Such outliers may be indicating some inconsistencies in a specific set of MD sim-

ulations, e.g., difficulties for the force field to handle some specific polymer chemistry, or

highlighting the presence of pairs of molecules with similar structures but large difference in

Tg, the so-called activity cliffs,109 requiring a specific treatment.110
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