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Abstract: Antimicrobial peptides (AMPs), with their versatile actions, offer promise against 
antimicrobial resistance and as templates for novel therapeutic agents. While existing AMP 
databases primarily feature AMPs from terrestrial eukaryotes, marine sources are gaining 
attention, with cephalopods emerging as a promising but still underexplored source. This study 
unveils the potential reservoir of AMPs encrypted within the proteome of cephalopods’ salivary 
glands using in silico proteolysis. A composite protein database comprising canonical and non-
canonical proteins from cephalopods' salivary apparatus was used as the substrate for five 
proteases involved in three digestion protocols. The resulting millions of peptides were 
screened using machine learning, deep learning, multi-query similarity-based models, and 
complex networks. The screening prioritizes antimicrobial activity, the absence of haemolytic 
and toxic attributes, and structural distinctiveness compared to characterized AMPs. Diverse 
publicly accessible AMP datasets are produced, catering to various research needs, ranging 
from those focused solely on antimicrobial activity to refined datasets of non-haemolytic and 
non-toxic AMPs. Comparative analyses and network science principles were applied to identify 
singular and representative subsets from non-haemolytic and non-toxic AMPs. All these sets of 
AMPs and the proposed mining tools serve as valuable assets for peptide drug developers. 
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1. Introduction  
Antimicrobial resistance (AMR) poses a significant global public health threat, prompting 

the urgent need for novel antimicrobial agents. The diminishing effectiveness of conventional 
antibiotics against a wide range of resistant pathogens has driven the search for alternative 
solutions.1 Antimicrobial peptides (AMPs) have emerged as promising candidates to address 
this crisis, offering versatile antimicrobial activities and diverse modes of action. Their 
therapeutic potential extends beyond the development of new antibiotics to combat multidrug-
resistant bacteria.2, 3 AMPs also hold promise in the creation of agents with antitumoral, 
antiviral, antifungal, and other therapeutic properties.4 

To fully harness the potential of AMPs, extensive efforts have been made to compile and 
organize AMP-related information into specialized databases. Notable among these are 
databases like APD (Antimicrobial Peptide Database)5, CAMP (Collection of Antimicrobial 
Peptides)6, and DBAASP (Database of Antimicrobial Activity and Structure of Peptides)7, 
which have been continuously updated. In addition to these, the StarPep database (StarPepDB) 
stands out as one of the most comprehensive curated repositories of AMPs, integrating unique 
entries from 42 AMP databases with their metadata.8 These databases facilitate the study of 
AMP sequences, structures, activities, and other relevant information, significantly enhancing 
their potential translation into therapeutic interventions. 

The origins distribution of AMPs has also been facilitated by databases. Most AMPs 
reported to date stem from eukaryotic origins, notably plants, animals, and fungi.9 
Antimicrobial properties have been attributed to various bodily fluids since 1885, including 
blood, sweat, saliva, plasma, white blood cell secretions, and granule extracts.10 Historically, 
terrestrial eukaryotes have been a primary source of AMPs. However, more recently, marine 
organisms, particularly invertebrates, have gained prominence due to their robust and effective 
innate immune systems, enabling their survival for over 450 million years in diverse ecological 
niches.11, 12 The immense ecological diversity of marine environments provides a promising 
landscape for the discovery of AMPs with unique structures and potent antimicrobial activities. 
Notably, AMPs from marine invertebrates constitute a significant proportion, approximately 
67% of all marine AMPs (statistics as of December 2022).12  

Marine invertebrates, including shrimp, oysters, and horseshoe crabs, are known to 
consistently express AMPs.13, 14 For instance, horseshoe crabs produce highly effective AMPs 
like tachyplesin and polyphemusin, exhibiting antibacterial and antifungal properties at low 
micromolar levels.11 Notably, polyphemusin, similar to several other AMPs, demonstrates 
antiviral activity against human immunodeficiency virus (HIV).15 More recently, the 
exploration of marine invertebrates has expanded through omics techniques, offering greater 
sensitivity in detecting the presence of AMPs.16 In this context, our research group identified 
AMPs within the ascidian's tunic and the salivary glands of Octopus vulgaris through shotgun 
proteomics analyses17, 18, and more recently others found AMPs common within octopus skin 
mucus proteome.19 The comprehensive discovery of AMPs in O. vulgaris became feasible 
through the application of an optimized methodological workflow and the utilization of a 
composite protein database constructed from proteomic and transcriptomic data of the 
cephalopods' salivary apparatus.18, 20, 21 Cephalopods, known for their efficient predatory tactics 
involving a diverse array of substances, predominantly cephalotoxins and neurotoxins to 
immobilize prey22, possess omics data characterizing their salivary apparatus that holds the 
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potential for venom-related proteins, toxins, and AMPs, as substantiated in previous research.18, 

21 However, AMPs with encrypted sequences within longer transcripts or proteins, exemplified 
by cases such as histones23, those not constitutively expressed, or potentially disregarded by the 
computational omics workflow (e.g., small-size transcripts or protein fragments less than 100 
amino acids)16 can be unveiled by a comprehensive examination of a composite protein 
database sourced from the cephalopods' salivary apparatus.20 This composite protein database 
was purposefully built for a proteome-wide AMPs discovery by including "non-canonical" 
proteins, exploring all the ORFs from cephalopods’ salivary glands transcriptomes, and 
proteins shorter than the TransDecoder default minimum protein length threshold of 100 amino 
acids.20 

In this context, this study focused on a privileged marine source represented by the 
cephalopods’ salivary glands, where a potentially abundant reservoir of hidden AMPs is 
believed to exist. Our approach to unveil these cryptic AMPs involves the in-silico proteolysis 
of the composite protein database originating from cephalopods' salivary apparatus. This 
enzymatic digestion is performed using proteases commonly employed in proteomics. 
Subsequently, the resulting peptide libraries, comprising millions of peptides, were subjected 
to in-silico screening. During this screening, we consider essential AMP characteristics relevant 
for drug development and pay particular attention to their structural distinctiveness within the 
chemical space. 

The resulting mining workflow yields various AMP datasets, catering to a spectrum of 
research needs. These datasets range from those solely focusing on antimicrobial activity to a 
refined, distinct dataset consisting of non-haemolytic AMPs devoid of toxic attributes. These 
datasets are publicly accessible and offer valuable resources for peptide drug developers, 
adaptable to their specific requirements. 

 
2. Datasets and Methods 
2.1. Omics data as a substrate for in silico proteolysis  

A version of the composite protein database, comprising various omics datasets sourced 
from the cephalopods' salivary apparatus, as reported in Ref20, served as the substrate for the in 
silico proteolysis. This composite database includes five distinct datasets originally labelled 
and referenced as follows: 

- Database A — 19,087 proteins derived from proteogenomic analyses of the O. vulgaris 
salivary apparatus, as reported by Fingerhut et al. (2018).21  

- Database C — 2,427 proteins corresponding to the post-salivary glands (PSGs) of three 
O. vulgaris specimens, as detailed by Almeida et al. (2020).18 

- Database D — 84,778 proteins identified through 16 publicly-available transcriptomes 
from cephalopods’ PSGs by TransDecoder.18, 20 

- Database E — 5,106,635 six-frame translated proteins shorter than the TransDecoder 
default minimum protein length threshold of 100 amino acids, which were not included 
in Database D.18, 20 

- Database F — 720,910 six-frame translated proteins extracted from the open reading 
frames (ORFs) from O. vulgaris PSGs transcriptomes that were not part of Database 
A.20, 21  
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Database B was not considered for proteolysis because it contained characterized AMPs 
from the StarPepDB.8 Putative duplicates in each database were removed, and then the 
databases were fused into a composite protein database, followed by a redundancy removal 
process with the cd-hit tool at 0.98 sequence identity (https://github.com/weizhongli/cdhit).24 
The seqkit tool (https://bioinf.shenwei.me/seqkit/) was used to assist in both duplicates removal 
and finding common sequences between two databases25, which allowed for an all-vs-all 
comparison among databases. The Jaccard index was used as a pairwise similarity metric.26  
2.2. In silico proteolysis and peptidomes characterization 

Five main proteases commonly used in proteomics: trypsin, chymotrypsin, proteinase K, 
AspN, and GluC were applied.27 Peptidomes were generated using 13 distinct proteolysis 
protocols involving the action of one enzyme (OE) or two enzymes (TE), which could be 
applied in a sequential (S) or concurrent (C) mode. We performed the in silico enzymatic 
digestion using the Rapid Peptides Generator (RPG) tool (https://rapid-peptide-
generator.readthedocs.io/en/latest/index.html).28 The previously-mentioned proteases were 
involved in the three digestion protocols: 
 
One Enzyme Two Enzyme Sequential Mode Two Enzyme Concurrent Mode 
Tryp Tryp-Chym Tryp-Chym 
Chym Tryp-Proteinase-K Tryp-Proteinase-K 
Proteinase-K Tryp-GluC Tryp-GluC 
GluC Tryp-AspN Tryp-AspN 
AspN   

 
The peptide libraries or peptidomes resulting from each proteolysis protocol were filtered 

following these steps: (i) retaining only peptides that were 6-40 AAs in length, (ii) removing 
duplicates, (iii) removing peptides sharing above 0.98 of sequence identity, (iv) leaving out 
peptides with non-standard amino acids. The seqkit and cd-hit tools were used to perform this 
pre-screening. Then, each peptide library was characterized based on its global peptide features, 
such as sequence length, AA frequency, isoelectric point (pI), global charge, global 
hydrophobicity, and global hydrophobic moment. The PDAUG package 
(https://github.com/jaidevjoshi83/pdaug) was used to calculate these features.29 
2.3. Antimicrobial and toxicity screening 

Each resulting peptide library is subsequently screened for promising AMPs, which had 
been revealed by the proteolysis step. To ensure accurate detections, we determined the final 
prediction output by consensus agreement of three prediction models/tools. The screening of 
the 13 peptidomes started by the prediction of the antimicrobial activity using one model 
implemented in Macrel: (Meta)genomic AMP Classification and Retrieval30 and other two from 
modlAMP31. The subcommand “macrel peptides” were used to run marcel on peptide libraries 
(https://github.com/BigDataBiology/macrel) while modlAMP used the data “AMPvsUniProt” 
for training its two implemented machine learning (ML)-based classifiers: modlAMP_Random 
Forest (RF) and modlAMP_Support Vector Machine (SVM) (https://modlamp.org).  

Subsequently, the toxicity which is the most undesired property of AMPs for drug 
development, was assessed by the prediction of their haemolytic potential and their content of 
toxic signatures. The haemolysis prediction was also performed by macrel30, HemoPI32, and by 
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a multi-query similarity searching model (MQSSM) developed in Ref.33 Since macrel output 
also provides haemolytic predictions for detected AMPs, “macrel peptides” were run as before 
(https://github.com/BigDataBiology/macrel). The standalone version of HemoPI was used 
(https://webs.iiitd.edu.in/raghava/hemopi/standalone.php), particularly its virtual screening 
option where the hybrid model is selected. The hybrid model considers the integration of motif- 
and SVM-based predictions. The MQSSM I1, the best model reported in Ref.33, was 
constructed using the half-space proximal network (HSPN) projecting the chemical space of 
2,004 haemolytic peptides from StarPepDB. The HSPN was constructed without similarity 
cutoff, and the angular separation was used as a pairwise similarity metric. Subsequently, a 
representative haemolytic subset was extracted from the HSPN using the following parameters: 
hub-bridge centrality, global alignment and a similarity cutoff of 0.8. This representative subset 
was further improved as described in Ref.33, and it was finally used to build a MQSSM model 
using global alignment and a similarity cutoff of 0.40. 

The detection of toxic signatures was performed by two models from ToxinPred334 and 
by ToxIBTL.35 ToxinPred3 has implemented two prediction model types, a ML-based classifier 
trained with compositional features of peptides and the other a hybrid model combining two or 
more models including motif- and ML-based predictions 
(https://github.com/raghavagps/toxinpred3). ToxIBTL is a deep learning approach based on the 
integration of evolutionary information and physicochemical properties of peptides into the 
information bottleneck principle, and transfer learning to predict the toxicity of peptides 
(https://server.wei-group.net/ToxIBTL/Server.html). Venn diagrams were used for identifying 
consensus predictions among the outputs of the three prediction models.  

In summary, the 13 proteolysis protocols rendered the following datasets: (i) peptide 
libraries (peptidomes), (ii) AMP consensus, (iii) non-haemolytic AMPs, (iv) non-
haemolytic/non-toxic AMPs. Peptide subsets corresponding to the 13 digestion protocols 
within each of the four datasets were concatenated and sequence redundancy was removed at 
0.98 of identity with cd-hit.  
2.4. Selection of cephalopods singular AMPs  

A comparison of the non-redundant non-haemolytic and non-toxic AMPs to StarPepDB8, 
one of the most comprehensively reported peptide databases, was performed using the cd-hit-
2d tool at 0.40, 0.50, 0.60, 0.70, 0.80, and 0.90 identity cutoffs. This was done to identify new 
peptide representations encoded in the cephalopods' proteome that differ from the previously 
reported peptides. Cephalopod singular peptides (CSPs) are considered those sharing sequence 
identities below the 0.40 threshold with StarPepDB members, while peptides with an equal or 
higher threshold were considered similar. Prior to the comparison, the StarPepDB's original 
space of 45,120 peptides was reduced to 32,863 by applying the cd-hit tool at 0.98 identity and 
retaining only peptides that ranged from 5 to 100 AAs in length and contained standard AAs. 

Validating the singularity of Cephalopods’ AMPs using complex networks: To validate 
the no relatedness of CSPs with respect to the known chemical space from StarPepDB8, both 
chemical spaces were represented as HSPNs.36 The non-redundant non-haemolytic and non-
toxic AMPs from cephalopods were divided into a set of CSPs (identity < 0.40 with StarPepDB 
space) and a more-closely related set to StarPepDB (identity > 0.40). These sets were then used 
together with the 32,863 peptides from StarPepDB to build HSPNs using the StarPep 
Toolbox.37 Each peptide/node was represented by an optimized set of molecular descriptors, 

https://doi.org/10.26434/chemrxiv-2023-rqqqb ORCID: https://orcid.org/0000-0002-9908-2418 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-rqqqb
https://orcid.org/0000-0002-9908-2418
https://creativecommons.org/licenses/by-nc-nd/4.0/


and the Euclidean distance metric with min-max normalization were applied to determine the 
pairwise similarity relationships among them. AMPs within the HSPNs were clustered using 
the modularity optimization algorithm based on the Louvain method.38 Peptides sharing similar 
features are grouped together, thus occupying the same chemical space in the network. 
2.5. Representativeness from Cephalopods singular AMPs by complex networks  

To further reduce the CSPs at selecting the most representative ones, centrality analyses 
were performed. A HSPN was constructed using only the CSPs (identity < 0.40 with StarPepDB 
space). The HSPN construction followed the same procedure described above, but a similarity 
cutoff of 0.75 was applied to improve network topology for mining information. Clusters, also 
known as communities, were identified using the Louvain method38, and then two centrality 
measures were calculated: hub-bridge centrality (HB)39 and harmonic centrality (HC).40 
Centrality values measure the importance of a node in a network. Additionally, pairwise 
similarity comparisons were performed using the Smith-Waterman method.41 Using the 
peptide's centrality and a sequence similarity cutoff of 0.30, the least redundant yet most 
important peptides in the network were identified. This process is described in Ref.36 
Afterwards, two datasets were recovered: the union and the intersection of the sets recovered 
using both HB and HC centralities. 
2.6. Computer Resources  

The in silico proteolysis of 5,412,039 proteins and the subsequent screening of resulting 
peptidomes were managed using a high-performance desktop computer with the following 
specifications: CPU: Dual 20-core Intel Xeon Gold 6148 processors with (min/max) speed 
1010/1000/3700 MHz, RAM: 256 GB, SSD: NVMe KINGSTON SNV2S/2000G (2 TB - M.2 
- 3500 MB/s), Operating System: Linux kernel 5.15.0-72-generic for x86_64 architecture, 
Processors: 880. 
2.7. Workflow focusing cephalopods’ omics data to AMP datasets  

The diagram representing how cephalopods' omics data have been focused to different 
AMP datasets to cater to a spectrum of research needs is displayed in Figure 1. 
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3. Results 
3.1. Construction of the starting composite database from cephalopods salivary glands.  

The composite protein database integrating transcriptomic and proteomic data used for 
the wide-proteome discovery of AMPs in O. vulgaris18, 20, is re-utilized here, for uncovering 
AMPs encrypted within the salivary apparatus of cephalopods. The scheme for building such 
composite database is depicted in Figure 2, where it is evident that characterized AMPs 
originally integrated as database B are leaving out. The original smaller databases (A, C, D, E 
and F) that integrated the composite were analysed by considering pairwise similarities based 
on common sequences, which are encoded by the Jaccard index (Figure 2). Overall, the 
individual databases were rather unique compared to each other, except for database C and D, 
which shared a Jaccard index of 0.44, and database E and F, which shared a Jaccard index of 
0.48. Databases C and D were somewhat related because the latter was used within the reference 
to detect the 2,427 proteins registered in database C. Similarly, databases E and F were sourced 
from non-standard ORFs from cephalopod PSGs transcriptomes (Figure 2). Redundancy was 

Figure 1. Workflow proposed to uncover several 
AMPs datasets encrypted in cephalopod salivary 
glands. This scheme shows how millions of 
proteins that characterize the cephalopod salivary 
apparatus are focused into several AMP databases 
using proteolysis and a rational screening 
strategy. 
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also explored within each individual database, and duplicates were found in 4 out of 5 
databases. The resulting individual databases after removing duplicates can be found at 
doi:10.17632/hgwkkmms3h.1. Such individual databases were concatenated, and a more 
stringent redundancy reduction was carried out at 0.98 sequence identity on the resulting 
composite database. Thus, a non-redundant composite database made up of 5,412,039 proteins 
was created (doi:10.17632/gxmkytwdhx.1), to be used as substrate at the in silico proteolysis. 

 
Figure 2. Building a non-redundant composite database with 5,412,039 proteins for the in silico proteolysis. This 
figure illustrates the scheme followed for concatenating and analysing the starting omics database from 
cephalopods’ salivary apparatus to generate the final composite protein database.  

3.2. In silico proteolysis of cephalopods omics data and filtering of virtual peptidomes 
This composite protein database was used as the substrate for the intended in silico 

digestion. The digestion used the five main proteases used in proteomics: trypsin, 
chymotrypsin, proteinase K, AspN, and GluC. Since trypsin is the most commonly used 
protease in proteomics, it was combined with the remaining four proteases in a sequential and 
concurrent mode. This combination was aimed at complementing the trypsin action with other 
cutting sites in order to obtain a higher diversity within the virtual peptidomes. 

As previously mentioned, three main digestion protocols were applied involving five 
enzymes, so a total of 13 distinct enzymatic digestions were performed on the non-redundant 
composite database (Figure 3). Consequently, 13 virtual peptide libraries were generated, 
offering a wide peptide diversity from cephalopods to explore in the field of peptide science. 
Such peptidomes are publicly available at doi:10.17632/c3zhzgwsnw.1. 
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Figure 3. Tracking the filtering of the peptidomes resulting from each proteolysis protocol. The scheme illustrates 
how the number of peptides decreased as the screening steps increased. Initial peptides were produced by directly 
applying proteases and were filtered to satisfy mainly sequence length (6-40 amino acids) and redundancy (no 
duplicates and representative peptides at 0.98 sequence identity) criteria 
 

Each resulting peptidomes was filtered to approach them to AMPs features. In this sense, 
only peptides ranging from 6-40 amino acids (AAs) in length were initially selected, followed 
by the removal of duplicates and a more stringent redundancy reduction at 0.98 sequence 
identity using cd-hit. At this stage, the length range for the peptides varied from 11 to 40 AA 
and non-standard AAs were also removed to facilitate further screenings. 

Figure 3 shows how much each peptide library varied at each filtering step, arriving at 
the final libraries containing peptides with standard AAs ranging 11-40 AAs in length (doi: 
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10.17632/6fjsdnvygb.1). These 13 final peptide libraries were concatenated to give a total of 
52,488,742 peptides, subsequently reduced to 9,216,442 peptides when applying redundancy 
removal at 0.98 sequence identity (doi:10.17632/v67g7r8nf2.1). This extensive but non-
redundant peptidome sourced from cephalopods' salivary glands will be of great utility for those 
researchers who want discover new bioactive peptides by computational and vitro screenings.  
3.3. Focusing cephalopods peptidomes to several AMP datasets.  

The final peptidomes corresponding to each proteolysis protocol (last column of table 
shown in Figure 3) were screened individually against antimicrobial activity. To determine 
whether a query peptide is an AMP, consensus prediction agreement among three models was 
considered. The Figure 1A-SM contains 13 Venn diagrams corresponding to the screened 
peptidomes, showing the AMPs detected solely by macrel, modelAMP_RF, and 
modlAMP_SVM, respectively, as well as the agreement/intersection among the three 
prediction tools. The FASTA files containing AMPs libraries, identified by consensus across 
three prediction models for each proteolysis protocol, can be accessed freely at 
doi:10.17632/wwk7zzcfhv.1 Additionally, the results of predictions on the 13 individual 
peptidomes by the three models are available in file 1SM. 

The consensus AMP libraries were then filtered by considering their toxicity potential, 
expressed by their haemolytic activity and the presence of toxic signatures. The haemolytic 
activity was first evaluated by three prediction tools. The Venn diagram representing non-
haemolytic predictions from Macrel, HemoPI, and MQSSM is illustrated in Figure 1B-SM. The 
definitive predictions for non-haemolytic AMPs are found at the intersections. The 
corresponding FASTA files for the 13 non-haemolytic AMP consensus libraries can be 
accessed at doi:10.17632/pvptjh7kmv.1. Additionally, the raw predictions made by each 
individual model are available in file 2SM. Subsequently, these consensus non-haemolytic 
AMPs were screened against toxic signatures using ML-based and hybrid models implemented 
in ToxinPred3 and the deep learning tool ToxIBTL. Similarly, Venn diagrams were employed 
to establish consensus predictions for non-haemolytic/non-toxic AMPs, as depicted in Figure 
1C-SM. The libraries containing non-haemolytic/non-toxic AMPs, identified through the 
agreement of the three models, can be accessed publicly at doi:10.17632/ccp94tgcp2.1. 
Furthermore, the raw predictions from each model are available for consultation in file 3SM. 
The tracking of this screening process from the peptidomes generated by the 13 proteolysis 
protocols to the generation of the datasets corresponding to non-haemolytic/non-toxic AMPs is 
summarized in Table 1. 
Table 1. Focusing peptidomes resulting from each proteolysis protocol to AMP datasets. The table illustrates how 
the peptides libraries are rationally reduced by the robust detection of AMPs, non-haemolytic AMPs and non-
haemolytic/non-toxic AMPs by three prediction tools at each screening step. 

Proteolysis 
protocol 

Peptidomes 
(No. peptides) AMPs_Consensus 

Non-Hem. 
AMPs_Cons 

Non-Hem/Non-
Tox. AMPs_Cons 

Tryp 4,785,875 46,615 9,897 7,478 
Chym 1,574,181 21,801 3,970 2,604 
ProtK 112,387 775 310 157 
AspN 5,643,298 294,959 33,108 22,978 
GluC 5,609,322 404,990 43,955 31,756 

Tryp-Chym_S 6,061,301 67,811 13,558 9,875 
Tryp-ProtK_S 4,883,567 47,316 10,142 7,599 
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Tryp-AspN_S 7,583,442 307,767 36,455 25,454 
Tryp-GluC_S 8,047,367 413,108 70,043 42,514 
Tryp-Chym_C 515,994 1,179 600 430 
Tryp-ProtK_C 26,425 168 148 52 
Tryp-AspN_C 4,201,827 46,713 9,670 7,270 
Tryp-GluC_C 3,443,756 57,691 10,335 7,696 

Total 52,488,742 1,710,893 242,191 165,863 
NonR_0.98_SeqId 9,216,442 542,485 104,242 68,694 

Table 1 also displays in bold the total number of non-redundant AMPs after all libraries 
within each column were concatenated and sequence redundancy was removed with cd-hit at 
0.98 of sequence identity. The resulting 542,485 AMP sequences from cephalopods, which 
represent a potential reservoir of novel AMPs, are promising for additional screenings to 
uncover peptide candidates for drug development (doi:10.17632/tr7xbp2pyt.1). This subset was 
further filtered by extracting 104,242 non-haemolytic AMPs, which may have an increased 
relevance for drug development (doi:10.17632/6gsdfj9876.1). However, the most promising 
dataset, made up of privileged AMPs, was obtained after toxic signatures were removed from 
non-haemolytic AMPs, rendering 68,694 non-haemolytic/non-toxic AMPs 
(doi:10.17632/8mttp4pvmc.1).  

The evolution of the 13 virtual peptidomes at the key AMPs mining points, which are 
shaded in Table 1, is monitored by changes in the distribution of six global peptide features, 
such as length, amino acid (AA) frequency, isoelectric point (pI), global charge, global 
hydrophobicity, and global hydrophobic moment, within each peptide library class (Figure 2A-
, 2B-, 2C-SM). Changes in the distribution of the global peptide feature values can be observed 
from the peptidomes (Figure 2A-SM) to the non-haemolytic/non-toxic AMPs (Figure 2C-SM). 
While median peptide length at the peptidomes are generally below 15 AAs, there is a shift to 
higher than 15 AAs with a top around 28 AAs in mostly of the non-haemolytic/non-toxic AMPs 
libraries. A similar shift to increased values is shown for the distribution of the pI and global 
charge. The median pI values distribution at peptidomes changed to be roughly around 8 to be 
consistently distributed around 10 at intermediate AMPs (Figure 2B-SM) and final AMPs 
datasets (Figure 2C-SM). Similarly, the global charge is completely shifted to the right at the 
AMPs and non-haemolytic/non-toxic AMPs libraries, where most of the AMPs take charges 
above 0. On the other hand, the hydrophobicity holds its values in a range from -1 to 1 for the 
peptidomes, intermediate, and final AMPs libraries, while the hydrophobic moment values 
slightly moved from a median of 0.35 at the peptidomes to higher values than 0.4 in the non-
haemolytic/non-toxic AMPs libraries. The AA frequency did not change significantly from the 
peptidomes to AMP libraries, even focusing attention on the positively charged AAs, which are 
key for the antimicrobial activity. 

The singularity of the peptide libraries generated at the AMPs mining points highlighted 
in Table 1, is also inspected by all-vs-all comparison using the Jaccard index. The Jaccard index 
quantifies how many peptides are shared by two libraries, namely the intersection of two sets. 
Thus, it is used as a pairwise similarity metric to evaluate the diversity among peptide libraries 
from each proteolysis protocol at three key AMPs mining steps. The Jaccard index heatmaps 
corresponding to each proteolysis protocol for the generated peptidomes, predicted AMPs 
consensus, and predicted non-haemolytic/non-toxic AMPs are shown in Figure 4. 
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Generally, the heatmaps show a striking singularity among the digestion protocols at each 
of the evaluated mining steps (Figure 4). The Jaccard index only reached values above 60% 
among the peptidomes when trypsin was compared to a combination of trypsin-chymotrypsin 
and trypsin-proteinase K in a sequential mode, or when these last proteolysis protocols were 
compared to each other. A significant library redundancy is also observed when comparing the 
proteolysis with AspN to its sequential action after trypsin (Figure 4A). 

Similarly, redundancy among AMP libraries is mostly observed between trypsin and its 
sequential counterparts, trypsin-chymotrypsin and trypsin-proteinase K. However, additional 
pairs from concurrent mode, such as trypsin-AspN and trypsin-GluC, also show significant 
similarities with trypsin proteolysis. GluC proteolysis shows a high AMP redundancy with its 
trypsin-GluC sequential counterpart. The same sequential pairs that shared redundancy with 
trypsin, trypsin-chymotrypsin and trypsin-proteinase K, also share redundancy with the 
concurrent action of trypsin-AspN and trypsin-GluC (Figure 4B). 

Finally, a similar redundancy pattern is displayed for the non-haemolytic/non-toxic AMPs 
(Figure 4C), including the high peptide redundancy derived from the action of AspN and the 
sequential proteolysis of trypsin-AspN.  

Figure 4. Peptide diversity among 13 proteolysis protocols at three steps of AMP mining on cephalopod salivary 
glands. A. Virtual peptidomes generated by 13 proteolysis protocols. B. AMPs detected by the consensus of three 
prediction models from peptidomes shown in A. C. Non-haemolytic/non-toxic AMPs detected by the consensus 
of three prediction models from AMPs libraries shown in B.  Jaccard index is used as a pairwise similarity metric.  

 
While the heatmaps allowed for comparative analyses even between proteolysis protocol 

pairs not originally intended in the primary design, this analysis suggests that sequential 
application of chymotrypsin and proteinase K after trypsin leads to high peptide redundancy at 
all mining stages. Similarly, but in a less consistent manner, this is observed for the concurrent 
action of trypsin with AspN and GluC, respectively. 

Therefore, for future proteolysis-driven virtual mining efforts aimed at AMP discovery 
using the proposed enzymatic digestion protocols, it is not recommended to employ the 
sequential application of chymotrypsin and proteinase K following trypsin. Similarly, though 
with less emphasis, the concurrent action of trypsin with AspN and GluC should be avoided. 
These two recommendations are further supported by the observed recurrent similarity in the 
distribution pattern of global peptide features between trypsin and its sequential action with 
chymotrypsin and proteinase K, as well as between trypsin and its concurrent action with AspN 
and GluC at the same mining AMP stages (Figure 2A-, 2B-, and 2C-SM). 
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The singularity of the sequence space represented by the 68,694 non-haemolytic/non-
toxic AMPs from cephalopods' salivary glands was evaluated against the 32,863 characterized 
AMPs registered in StarPepDB. To achieve this, both databases were compared using cd-hit-
2d to identify how many and which AMPs from cephalopods were clustered to StarPepDB's 
members above identity cutoffs of 0.40, 0.50, 0.60, 0.70 and 0.80. The similarity clusters 
resulting from the comparison were parsed to extract the cephalopods AMP sequences 
satisfying the previously mentioned identity cutoffs. Both the similarity clusters and the FASTA 
files corresponding to the extracted subsets are shown in file 4SM. Out of 68,694 cephalopod 
AMPs, 63,228 were clustered to StarPepDB members above the threshold of 0.40 sequence 
identity, suggesting that these AMPs are more closely related to the known chemical space of 
characterized AMPs.  

The remaining 5,466 non-haemolytic/non-toxic AMPs are denoted by the acronym CSPs 
(Cephalopods Singular Peptides), as explained in the Materials and Methods section. Both sets 
of AMPs are accessible at doi:10.17632/8mttp4pvmc.1, along with additional datasets that 
categorize the similarity with StarPepDB based on identity percentages within the following 
ranges: 40-50, 50-60, 60-70, 70-80, and greater than 80. These datasets consist of 26,744, 
30,217, 5,716, 453, and 98 AMPs, respectively. 

Given that the 5,466 CSPs share less than 40% of sequence identity with the characterized 
chemical space of AMPs, their internal diversity was also explored by all-vs-all global 
alignments (Figure 5). Figure 5A illustrates the heatmap of the pairwise sequence identities 
from all-vs-all global alignments above, while figure 5B shows the distribution/frequency of 
the peptide pairs satisfying sequence identities at ranges increasing in 0.10 units. This analysis 
was also applied to characterize the 63,228 cephalopods AMPs displaying similarities above 
40% of identity with StarPepDB, using the aforementioned datasets discretized by identity 
ranges (Figure 3SM). 

 
Figure 5. A. Heat map and B. histogram of pairwise sequence identity of the 5,466 CSPs. The heat map and 
histogram were built with in-house tools SeqDivA (https://github.com/eancedeg/SeqDivA)42 and Dover Analyzer 
(http://mobiosd-hub.com/doveranalyzer/).43 

As shown in Figure 5, the internal sequence diversity among the 5,466 CSPs is high, also 
indicating the structural singularity among its members. This singularity among these virtual 
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scaffolds bearing privileged antimicrobial potentials is a strong point for peptide drug 
development. 
3.4. The singularity of Cephalopods’ AMPs from the outlook of complex networks 

Based on the previous comparison, where 63,228 out of 68,694 promising cephalopod 
AMPs were identified as more closely related to characterized StarPepDB members, while the 
remaining 5,466 appear to be unique with respect to the known chemical space, the relatedness 
of the cephalopod AMPs with the characterized chemical space of AMPs can also be 
demonstrated using HSPNs, which are less computationally demanding at considering all 
peptides but not all pairwise similarity relationships.36, 44 A HSPN was constructed from the 
32,863 StarPepDB peptides and the 68,694 cephalopod AMPs, including the two subsets with 
different degrees of relatedness to the StarPepDB chemical space. A clustering algorithm was 
then performed over the network topology to delineate network communities that should group 
peptides with similar features. Figure 6 illustrates how the cephalopods chemical space 
represented by 68,694 promising AMPs are overlapped on the know sequence space 
represented by the 32,863 peptides from StarPepDB. HSPNs were used to project such 
chemical/sequence spaces.  

 
Figure 6. Superposition of the 68,694 non-haemolytic/non-toxic AMPs from cephalopods on the known sequence 
space represented by 32,863 peptides from StarPepDB, projected through Half-Proximal Similarity Networks 
(HSPNs). A. HSPN constructed with cephalopod and StarPep datasets. Clusters are delineated using different 
colours. B. HSPN projecting the superposition of cephalopods AMPs on StarPepDB members in yellow. C. HSPN 
projecting the overlapping of three AMP datasets: (i) StarPepDB in yellow, (ii) cephalopod AMPs sharing higher 
than 40% of sequence identity with StarPepDB, coloured by clusters, and (iii) cephalopod AMPs sharing less than 
40% of sequence identity (black) with StarPepDB. D. HSPN projecting cephalopod AMPs sharing less than 40% 
of sequence identity with StarPepDB, highlighting the network clusters or communities 

Figure 6C supports the findings of the comparison of the 68,694 non-haemolytic/non-
toxic AMPs from cephalopods to StarPepDB using the cd-hit-2d tool. The chemical space 
corresponding to the cephalopod AMPs sharing higher than 40% of sequence identity with 
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StarPepDB is closer to the known sequence space of StarPepDB (coloured in yellow), while 
the sequence space occupied by CSPs sharing less than 40% of sequence identity (black) with 
StarPepDB is somewhat spatially disconnected from the yellow zone.  
3.5. The singularity of Cephalopods AMPs as Seen from Physicochemical Characterization of 
Network Clusters 

The 5,466 CSPs were studied in the context of the 32,863 peptides from StarPepDB. The 
HSPN consisting of both peptide datasets revealed nine clusters (Figure 7). 

 
Figure 7. HSPN corresponding to the clustering of 32,863 peptides from StarPepDB and the 5,466 non-
haemolytic/non-toxic AMPs from cephalopods. Nine clusters (0-8) were identified, and their peptide content is 
displayed as a percentage. 

 The peptides from each cluster were identified and physicochemically characterized. The 
detailed composition of peptide clusters and their physicochemical characterization can be 
found in file 5SM. Of the nine clusters, two were highly represented by CSPs: cluster 8 (50.7%) 
and cluster 5 (44.0%). The remaining clusters were only represented by 0.04%‒18.40% CSPs 
(Figure 8). 

Cluster 8 is characterized by having an intermediate peptide length (~36 AAs), low 
hydrophobicity (-0.21), high net charge (4.03), intermediate amphiphilicity (1.02), high 
isoelectric point (9.65), and a high Boman index (1.99). On the other hand, peptides from cluster 
5 are shorter (~28 AAs) and more hydrophobic (-0.07), but they are also less charged (1.54), 
with a lower amphiphilicity (0.82), isoelectric point (8.54), and Boman index (0.95).  
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Figure 8. Physicochemical characterization of peptide clusters. This figure shows the distribution of the 
physicochemical properties of the peptides belonging to different network clusters or communities. The colour of 
each cluster represents the percentage of CSPs that it contains. Only clusters 8 and 5 are mostly represented by 
CSPs. The clusters were obtained after building a HSPN with the StarPepDB peptides and the CSPs. 

 Overall, peptides from clusters 8 and 5 differ from other peptide clusters in their sequence 
length, as they are neither as long as in cluster 7 (~73 AAs) nor as short as in cluster 1 (~11 
AAs). Additionally, they tend to have higher net charge, hydrophobicity, and isoelectric point 
values. These findings provide more evidences that the CSPs are novel peptide representations. 
3.6. Complex networks for extracting representativeness from the CSPs  

The 5,466 CSPs were further reduced by extracting the most representative ones using 
network science. First, an HSPN projecting the chemical space of the CSPs was constructed. 
However, to achieve effective extraction of representative CSPs, the HSPN projecting the most 
informative topology should be used. This HSPN was found by applying an optimal similarity 
cutoff of 0.75 to produce a reasonable trade-off between the number of communities and 
singletons, considering the diversity of the CSPs set. A community or cluster within the network 
is considered when at least two nodes/peptides are connected, and the singletons are those that 
are not connected with any other in the network. Singletons are atypical peptides with singular 
structures that may represent privileged scaffolds for designing peptide drugs. 

The optimal cutoff of 0.75 was determined by exploring network density at different 
similarity cutoffs. From 0.70 to 0.80, a significant change in network density is observed, 
reaching the desired value of 0.001 for HSPNs at a similarity cutoff of 0.75 (Figure 9A). At this 
similarity cutoff of 0.75, the number of communities/clusters increased to 60, while the network 
density decreased to 0.001, as mentioned before. Additionally, the number of disconnected 
peptides increased to 763, the so-called singletons, with a degree of 0 (File 6SM). The HSPN 
representing this topology is visualized in Figure 9B, after applying the Fruchterman-Reingold 
layout.  
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Figure 9. Selection of the most informative HSPN projecting the chemical space of the 5,466 CSPs, by applying 
an optimal similarity cutoff. A. Network density plot at different similarity thresholds. The similarity cutoff of 
0.75, indicated in the plot, was selected as optimal. B. HSPN topology resulting from applying the optimal 
similarity threshold. The HSPN topology is formatted according to the Fruchterman-Reingold layout. 
 

From this optimal HSPN topology, the most representative peptides were extracted using 
the procedure described in Ref.36 Two subsets of non-redundant and representative peptides 
were extracted based on their harmonic (HC) and hub-bridge (HB) centrality measures. HC 
centrality weights the relevance or popularity of each peptide in the entire network, while HB 
centrality measures the relevance at the community level. Thus, two subsets of 1,469 and 1,453 
CSPs were extracted using HC and HB centralities, respectively. File 6SM contains the 
sequences corresponding to these two subsets, the HSPN characterization at a 0.75 similarity 
cutoff, and the properties of its 5,466 nodes (CSPs), including the HC and HB values.  

Finally, the union and intersection of these two subsets resulted in 2,114 and 808 non-
haemolytic/non-toxic AMPs, respectively (Figure 10). These two final datasets are freely 
available at doi:10.17632/vv5fcxk5rn.2. The larger final dataset is a non-redundant but 
comprehensive representative subset of CSPs, while the smaller one is composed of the 
representative CSPs commonly identified by each centrality metric.   

 
Figure 10. Venn diagram illustrating the union and intersection of the 1,469 and 1,453 non-haemolytic/non-toxic 
AMPs that were extracted using harmonic and hub-bridge centralities, respectively. From the union and 
intersection of these two subsets, the final AMP datasets from this study were obtained: 2,114 and 808 non-
haemolytic/non-toxic AMPs from cephalopods. 
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4. Discussion 
In silico proteolysis has been mostly applied to protein families from plants to identify 

promising bioactive with clinical potential.45-49 However, this approach has not been extended 
to omics data for the same purpose. This proteolysis-based exploration has been limited to small 
protein datasets, likely due to the high dimensionality and diversity of peptides resulting from 
protease application, despite trypsin being the most commonly used protease and targeting 
10.7% of the AAs.27 Trypsin is the preferred protease for (MS)-based proteomics. It cleaves 
carboxy-terminal to arginine and lysine residues, resulting in a positive charge at the peptide 
C-terminus, which is beneficial for MS analysis. Nonetheless, other proteases are frequently 
used to gather supplementary data, such as AspN and GluC, which target acidic AAs, and 
chymotrypsin, which primarily targets aromatic AAs.27 

The sequential use of these proteases following trypsin has recently been shown to 
enhance the identification of proteins and peptides by MS, even encompassing less commonly 
used proteases in proteomics like proteinase K due to its broad specificity, targeting 53.3% of 
AAs 27. Inspired by these findings and the growing need to utilize omics data to identify new 
AMPs, we evaluated trypsin, chymotrypsin, AspN, GluC, and proteinase K in silico, as well as 
the activity of these last four proteases following trypsin in a sequential and concurrent manner, 
using a composite protein database that incorporates all proteomic and transcriptomic data from 
cephalopods salivary glands.20  

One of the primary challenges of this work was addressing the "curse of dimensionality," 
which is exacerbated when generating peptidomes through in silico proteolysis of 5,412,039 
proteins representing a comprehensive proteome characterizing the cephalopods' salivary 
apparatus. The total number of non-redundant peptides (9,216,442) from the 13 proteolysis 
protocols significantly exceeded the initial number of proteins (5,412,039). The selection of 
appropriate proteolysis and AMPs mining tools, capable of exploiting high-performance 
computing resources and integrated into a rational screening strategy combining machine 
learning, deep learning, multi-query similarity searches, and complex networks for AMP 
discovery, enabled the processing of millions of proteins/peptides until manageable AMP 
datasets were obtained. The RPG tool played a pivotal role in the AMPs mining process by 
facilitating the execution of the intended proteolysis protocols involving five proteases and, 
crucially, enabling the processing of millions of protein sequences from the composite 
database.28  

The use of an encompassing omics database characterizing the cephalopods’ salivary 
apparatus for the proteolysis-based AMPs exploration is a strong point of the study. This 
comprehensive database integrates 16 translated transcriptomes from cephalopods’ PSGs using 
six ORF translations, considering non-canonical transcripts. Additionally, proteins shorter than 
100 amino acids, often disregarded by the TransDecoder coding-region identifier tool, are 
included. Therefore, the in silico proteolysis not only revealed encrypted AMPs from existing 
proteins but also brought to light potential AMPs hidden in non-canonical proteins or in those 
typically methodologically discarded.   

The rational in silico reduction from 9,216,442 unannotated peptides to various AMP 
datasets/libraries with varying relevance for further screenings aimed at discovering/developing 
new peptide drugs is depicted in Figure 11. This rational mining strategy yielded AMPs datasets 
that were subsequently narrowed down to a privileged subset of 5,466 CSPs, which could be 
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represented by either 2,114 or 808 non-haemolytic/non-toxic AMPs according to network 
centralities. These AMPs datasets are publicly accessible and can be utilized by drug developers 
according to their specific requirements. 

 
Figure 11. Tracking the screening of non-redundant cephalopods peptides (9,216,442) derived from the 
application of 13 proteolysis protocols. Different AMPs libraries were generated, considering the (i) antimicrobial 
activity (AMPs consensus), (ii) non-haemolytic potential (AMPs NoHaem), (iii) no presence of toxic signatures 
(AMPs NoHaem-NonTox), (iv) AMPs singularity regarding the known sequence space of StarPep (similar and 
singular NoHaem-NonTox AMPs), (v) Representative subsets according to network centrality analyses (union and 
intersection of the subsets extracted with HC and HB centralities). 
 

The sequential application of chymotrypsin, AspN, GluC, and proteinase K after trypsin 
has been demonstrated to enhance peptide detection by MS.27 However, our study shows that 
the sequential use of chymotrypsin and proteinase K following trypsin does not significantly 
increase peptide diversity compared to trypsin alone, despite both enzymes having more 
cleavage sites than trypsin. Furthermore, the concurrent action of AspN and GluC with trypsin 
does not significantly contribute to the diversity of the resulting libraries compared to trypsin 
alone. This is evident as AspN and GluC proteases are highly specific, targeting only aspartic 
(D) and glutamic (E) acids, which represent only 5.4% and 6.8% of AAs in proteins.27   
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5. Conclusions 
Cephalopod salivary glands harbour a remarkable reservoir of AMPs, including non-

haemolytic and non-toxic AMPs, underscoring the remarkable biological diversity of these 
marine invertebrates and their potential as antimicrobial agents. A significant portion of these 
AMPs exhibits unique sequences that expand the chemical space for exploration beyond 
existing databases. 

Omics data integration and advanced in silico analyses provide a powerful strategy for 
AMP identification. This multifaceted strategy has the potential to uncover a vast array of 
AMPs, including those encrypted within existing and non-canonical proteins, as well as those 
present in smaller proteins often overlooked by standard translation tools. The proteolysis-
driven mining strategy, coupled with rigorous virtual screening steps aimed to effectively 
identify promising AMPs based on their characteristic signatures, non-toxic nature, and 
sequence singularity expands the potential for AMP discovery in proteogenomic data.  

Thus, the peptide datasets provided lay the foundation for further exploration of 
cephalopod salivary glands as a rich source of novel AMPs with therapeutic potential. These 
findings contribute significantly to the field of AMP research, being our approach extensive to 
other organisms, which hold promise for combating antimicrobial resistance and promoting 
peptide-based drug development. 

 
Supplementary Materials: The following supporting information is available free of charge 
at: 

- Figure 1SM – Venn diagrams representing the prediction results from the three 
evaluated models. The consensus prediction for 1A- AMPs detection, 2B- Non-
haemolytic AMPs and 3C- Non-haemolytic/non-toxic AMPs.  

- Figure 2SM – Distribution of global peptide features (length, amino acid (AA) 
frequency, isoelectric point (pI), global charge, global hydrophobicity, and global 
hydrophobic moment) within each peptide library class. 2A- AMPs consensus, 2B- 
Non-haemolytic AMPs, 2C- Non-haemolytic/non-toxic AMPs.  

- Figure 3SM – Histograms of pairwise sequence identity for datasets sharing similarity 
with StarPepDB at following identity percentage ranges: 40-50, 50-60, 60-70, 70-80, 
and greater than 80. 

- File 1SM – Raw prediction results for AMPs detection on the 13 individual peptidomes 
by each of the three models. 

- File 2SM – Raw prediction results for non-haemolytic AMPs detection on the 13 
individual peptidomes by each of the three models. 

- File 3SM – Raw prediction results for non-haemolytic AMPs deprived of toxic 
signatures detection (non-haemolytic/non-toxic AMPs) on the 13 individual peptidomes 
by each of the three models.  

- File 4SM – Similarity clusters resulting from the comparison between 68,694 non-
haemolytic/non-toxic AMPs from cephalopods versus StarPepDB members at different 
identity cutoffs. It also contains FASTA sequences from cephalopods extracted from 
similarity clusters at different identity cutoffs. 
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- File 5SM – HSPN projecting the clustering of CSPs with StarPepDB. Clusters 
composition and their characterization through peptide length, charge, pI, 
hydrophobicity, amphiphilicity, Boman Index. 

- File 6SM – HSPN that projects the chemical/sequence space of the 5,466 CSPs at 0.75 
of similarity cutoff. HSPN properties and CSPs’ representative subsets extracted with 
network centralities.   
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