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Abstract

With the recent breakthroughs and advances in synthetic chemistry, carbon nanobelts

(CNBs) have become an emerging hot spot in chemistry and materials science. Owing to

their unique molecular structures, CNBs have intriguing properties with applications in

synthetic materials, host–guest chemistry, optoelectronics, and so on. Although a con-

siderable number of CNBs with diverse forms have been synthesized to date, no system-

atic nomenclature is available yet for this important family of macrocycles. Moreover,

little is known about the detailed isomerism of CNBs, which, in fact, exhibits greater

complexity than that of carbon nanotubes. The copious variety of CNB isomers, along

with the underlying structure–property relationships, bears fundamental relevance to

the ongoing design and synthesis of novel nanobelts. In this paper, we propose an

elegant approach to systematically enumerate, classify, and name all possible isomers

of CNBs. Besides the simplest, standard CNBs defined by chiral indices (n,m), the

nonstandard CNBs (n,m, l) involves an additional winding index l. Based on extensive

quantum chemical calculations, we present a comprehensive study of the relative isomer

stability of CNBs containing up to 30 rings. A simple Hückel-based model with a high

predictive power reveals that the relative stability of standard CNBs is governed by

the π stabilization and the strain destabilization induced by cylindrical carbon frame-

work, and the former effect prevails the latter. For nonstandard CNBs, a third stability

factor, the H. . .H repulsion in the benzo[c]phenanthrene-like motifs, is shown to be

also important and can be incorporated into the simple quantitative model. In general,

lower-energy CNB isomers have a larger HOMO–LUMO gap, suggesting that their ther-

modynamic stability coincides with kinetic stability. The determined most stable CNB

isomers can be considered as the optimal targets for future synthesis. These results lay

an initial foundation and provide a useful theoretical tool for further research on CNBs

and related analogs.
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1 Introduction

Carbon nanobelts (CNBs) are an intriguing family of aromatic macrocyclic hydrocarbons

that have been recently receiving an escalating attention in the chemical community.1–5

Structurally, they can be regarded as sidewall cutouts of carbon nanotubes (CNTs) and are

conventionally defined as closed molecular loops consisting solely of fully unsaturated and

fused benzene rings. Compared with the analogous carbon nanorings (CNRs),1,5–7 for a

CNB we need to break at least two C—C bonds to open its macrocyclic framework whereas

the cleavage of only one bond is required in the CNR case.4,8 As a more strict definition,

CNBs are considered by many chemists as double-stranded structures with a single layer of

benzene rings,3,5,7,9–15 although multilayered nanobelts, such as the Vögtle belt,16,17 are also

frequently known.13,18,19

Due to their cylindrical carbon skeleton, CNBs are highly strained molecules and first-

principles calculations20,21 have shown that they are generally higher in energy than the

macrocyclic topoisomers of other types, like the generalized kekulenes,20–22 clarenes20,21 and

even the doubly-twisted, infinitene23 and its generalized analogs.20,24,25 Nevertheless, because

of their aesthetically pleasing structures, CNBs have become a long-standing synthetic tar-

get for ambitious chemists since the first CNB molecule, [n]cyclacene, was theoretically con-

ceived in 1954.26 Over the past six decades, a great deal of efforts by generations of synthetic

chemists had been devoted to the synthesis of these challenging compounds, but all attempts

were unsuccessful. In 2011, the formation of an armchair CNB, [10]cyclophenacene, was ob-

served by laser desorption ionization time-of-flight mass spectroscopy, though the attempted

isolation of the product proved futile.27 The first genuine CNB was synthesized and isolated

by Itami et al. in 201728 and has now become a commercially available product.29 Since this

milestone achievement, ten more CNBs of different types and sizes have been successfully

synthesized by various teams.12,13,18,19,30,31 Thanks to the recent synthetic advancements and

the high fundamental and practical significance of these fascinating molecules, CNBs have

currently become a burgeoning research area in chemistry and materials science.2,4
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The distinctive structures of CNBs endow them with unique properties and potential ap-

plications in electronics, photonics, and optoelectronics. First, CNBs have been proposed as

molecular seeds or templates for the bottom-up precise synthesis of uniform, single-chirality

CNTs, which is regarded as one of the ultimate goals in CNT industry.4,5 As another ap-

plication in synthetic chemistry, CNBs can be exploited as building blocks for making more

complex nanocarbon architectures,4 as exemplified by the synthesis of cycloiptycenes from

CNBs.32 On the other hand, the electron-rich macrocyclic framework of CNBs makes them

ideal hosts to selectively capture guest molecules.11 In turn, CNBs can be inserted inside

larger nanoporous materials as well. In a recent experiment, an antiaromatic metal–organic

framework caused a substantial downfield shifting in the 1H nuclear magnetic resonance sig-

nals of the encapsulated CNB.33 These host–guest examples involving CNBs suggest inter-

esting implications in molecular recognition and supramolecular self-assembly.11 Moreover,

owing to their double-stranded cylindrical skeleton, the radial π-conjugation in CNBs brings

about more efficient orbital overlaps than the linear conjugation. As a result, CNBs are sup-

posed to have remarkable charge transport properties15 and be generally more conductive

than linear conjugated semiconductors,5 which was confirmed by both experimental14 and

computational studies.34 Lastly, photophysical measurements13,30 and excited state simula-

tions35,36 demonstrated that CNBs exhibit peculiar photophysical and fluorescent properties

and, as envisioned in ref. 35, we could make use of the supramolecular chemistry of CNBs

to modulate these properties by varying the guest species.

In light of the increasing importance of the CNB chemistry, we propose here a systematic

approach to the enumeration and nomenclature of CNBs of all types and sizes, which we

believe is of urgent significance to the emerging nanobelt science and technology. Although

a considerable number of CNB molecules with various types and sizes have been synthe-

sized and identified, not to mention the numerous synthesized CNB analogs (e.g., partially

saturated, heteroatom-embedded),2,4,5 there has not yet been a systematic naming system

established for this significant class of macrocycles, to the best of our knowledge. This is not
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a trivial matter. The structures of CNBs are actually more complex than those of CNTs,

since, given a fixed CNT structure, there are usually a plethora of possible ways to cut out

a valid CNB segment, which brings an additional dimension to the structural description.

As we will see in the following section, the number of possible isomers of CNBs increases

exponentially as the CNB size enlarges. For example, the single-walled armchair CNT (6, 6)

has only one structure, but there exist 35 distinct molecular structures for CNBs (6, 6) and

this number explodes to nearly thirty thousand for the double-sized CNBs (12, 12).

Furthermore, as the synthetic technique further advances, we can anticipate a growing

number of forthcoming CNB structures with a greater variety of types and sizes, thus offering

a diversified properties and functions to promote the applications of CNB-related materi-

als. For instance, comparative experimental measurements combined with density functional

theory (DFT) calculations discerned that three CNBs of the same (armchair) type but dif-

ferent sizes exhibited diverse characteristics in the fluorescence spectra, as a consequence

of the size-dependent energy shifts of their frontier orbitals.30 Therefore, it would be valu-

able to predetermine the energetically favorable isomers, among a vast number possibilities,

as promising candidates for future synthesis and applications. More importantly, since the

properties of CNTs depend strongly on their chirality, a curious fundamental question is how

the stability of CNBs is connected with their chirality and/or other structural characteris-

tics. In this work, we carry out exhaustive quantum chemical computations of an enormous

number of CNB structures, covering a wide range of chiralities and sizes. We present a

comprehensive theoretical investigation on the relative stability of CNB isomers and un-

cover the determining stability factors. The derived simple topology-based models allow us

to quantitatively predict with high confidence the relative isomer stability for CNBs. The

simple stability rules and models, coupled with strategic searches, have eventually unveiled

the CNB structures with the highest stability as the optimal targets for upcoming synthetic

studies.
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2 Enumeration and Nomenclature of CNB Structures

In this work, we consider systematically the single-layered CNBs, a prototypical type of aro-

matic hydrocarbon belts that consist of cata-condensed37 benzene rings, forming a double

strand of carbon atoms (see ref. 28,30 for recent synthetic examples). On the other hand,

a multilayered nanobelt possesses additional benzene rings attached to essential belt struc-

ture,18,31 and may also contain peri-condensed37 rings.13,18,19 For brevity, hereafter we refer to

the double-stranded CNBs simply as CNBs, i.e., following the more strict definition.3,5,7,9–15

2.1 Chirality of CNBs and Their Connection to CNTs

As shown in the right panel of Figure 1a, a CNB structure can be regarded as cut out

from a single-walled CNT structure, which is uniquely defined by a pair of integer indices

(n,m) for chirality.38–41 It has been well recoginized that CNTs are categorized into three

structural types depending on the chiral indices: the armchair type when n = m > 0, the

zigzag type when one of the indices is zero, and the chiral type for the rest of cases. For

the zigzag and chiral types, conventionally, we need only to consider the right-handed CNT

(n,m) with n > m > 0, which is symmetrically equivalent to the left-handed CNT (n,m)

where m > n > 0.41 The 3D structure of CNT (n,m) can be obtained by rolling up a

2D graphene sheet along the curl vector, ~C = n~a + m~b (~a and ~b being the lattice vectors

of graphene), as illustrated in Figure 1a. The translation vector, ~T = n′~a + m′~b, which is

perpendicular to ~C, becomes the periodic (axial) direction of the resultant CNT. Accordingly,

CNB structures have usually been designated the same chiral indices (n,m) as those for the

CNTs where the CNBs are cut out from.1,3–5,18,30 Figure 1a demonstrates the construction

of CNB (7, 0) (represented by green rings) by rolling up the graphene nanosheet along the

horizontal direction, ~C = OC = 7~a.

Generally speaking, however, there may exist more than one way to cut out a CNB

segment from the sidewall of CNT of the same chirality (n,m). For instance, we can find
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Figure 1. Schematic explanation of nomenclature and construction of CNB isomers with
different chiralities and circular paths for (a) CNB (7,0), (b) CNB (5,2)-1, (c) CNB (5,2)-2,
and (d) CNB (5,2)-3. The path code of each of the CNBs is given in square brackets. The
curl vector, ~C, and the translation vector, ~T are indicated by blue arrows and are defined
by coordinates (n,m) and (n′,m′), respectively, in terms of the basic vectors, ~a, and ~b, of
2D graphene lattice. The CNT unit cell determined by ~C and ~T is represented by a light
blue box. Each CNB structure (highlighted as green rings) unfolded onto 2D graphene
nanosheet is defined by the associated CNT chirality (n,m) and the path (indicated by dark
red lines) running through the centers of rings of the CNB. The lengths of path segments
are indicated beside the path. Rolling up the 2D unfolded structure along the corresponding
curl vector, we obtain the 3D CNB structure (green rings only) shown in the right panel
of each subfigure. The DFT computed relatively energies among these [7]CNB isomers are
provided in kcal/mol.

three different ways to construct CNBs (5, 2) with 7 rings, as depicted in Figure 1b–d. The

number of possible CNB isomers increases drastically with the increasing size of the nanobelt.

For example, there are nearly thirty thousand isomers for CNBs (12, 12) with 24 rings (see

Table S1 in Supporting Information). Moreover, it is also possible to make CNBs (n,m)

with more than n+m rings, which have been found in the recently synthesized zigzag-type

CNBs, whose essential belt structures were identified as two different (16, 0) CNBs with 20
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rings and a (24, 0) CNB with 30 rings.12 Thus, if such kind of CNBs is allowed to take into

account, one needs to introduce an additional winding index, l, to the chiral indices (n,m),

as will be discussed in detail below. Let us refer to the CNBs (n,m) with n + m ring as

standard CNBs and call the CNBs (n,m, l) with n+m+ l rings nonstandard CNBs.

To cut a single-layered CNB segment from the sidewall of CNT (n,m) (see Figure 1b

for example), we choose a strip of rings that starts from the one centered at the origin O

and ends at the one centered at point C (the yellow ring in Figure 1b), as given by the curl

vector ~C. When we roll up the whole strip of rings along ~C to make a looped nanobelt,

we exclude the last ring C because it is circularly equivalent to the starting ring O. This

procedure can be mathematically described as choosing a directional path starting from the

origin point O to the ending point C, with each of the CNB rings represented by a node in

the path (see the dark red lines in Figure 1b). Let such a path for making a CNB structure

be denominated the construction path of the CNB. For the sake of convenience, we refer to

each pair of adjacent nodes as a step in the construction path. We define the kth step vector,

~sk, as the vector from the (k− 1)th node to the kth node in the path and k = 0 corresponds

to the starting point O. Evidently, the sum of all step vectors equals the curl vector:

NR∑
k=1

~sk = ~C = n~a+m~b (1)

where NR is the number of rings in the CNB, since the number of steps is equal to the

number of nodes in the circular construction path.

2.2 Construction and Enumeration of Standard CNBs (n,m)

We first explain the algorithm to construct and enumerate all possible isomeric structures

of the standard CNBs (n,m), which are the forms of most of the CNBs synthesized so

far13,18,19,28,30,31 (see Figure 2). As the simplest type of nanobelts, the standard CNBs are

constructed by following the shortest construction paths. That is, for any given chirality
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(n,m), the shortest paths between points O and C generate the CNBs with a minimum

possible number of rings, resulting in the standard CNBs containing n+m rings, which can

be rationalized as follows.

As shown in Figure 1, since the starting point of the construction path, O, lies at the

leftmost and topmost position relative to the ending point, C, all step vectors must be either

the basic vector ~a or ~b so as to make the whole path as short as possible. Any other option

for step vectors (e.g., ~a−~b or −~b) involves going leftward or upward and thus makes the path

from O to C inevitably longer than the shortest one. It follows that any possible shortest

path going from O to C consists exactly of n vectors of ~a and m vectors of ~b, and the only

difference between two distinct shortest paths lies in the ordering of these n ~a and m ~b

vectors. As the number of rings of a standard CNB (n,m) equals the total number of basic

vectors constituting the whole path, we obtain from Equation 1 that

NR = n+m (2)

To identify the ordering of basic vectors in a given path, we divide the path into a series

of path segments, each consisting of only ~a or only ~b as step vectors. In other words, each

segment corresponds to a maximum number of linearly arranged benzene rings. The nodes

that connect adjacent segments are called turning points in the construction path. For

instance, for the CNB (5,2) isomer shown in Figure 1b, the corresponding shortest path,

as going from O to C, is split into three segments, which are composed, consecutively, of 3

~a, 1 ~b, 2 ~a, and 1 ~b vectors. We may therefore conveniently assign a path code, [3 1 2 1],

to this particular isomer of CNB (5, 2) in Figure 1b. As we can see, there are four turning

points in the construction path of this isomer (including the starting point O because of

the circular boundary condition). Likewise, the other two isomers of CNB (5, 2) shown in

Figures 1c,d can be encoded as [4 1 1 1] (with 4 turning points) and [5 2] (with 2 turning

points), respectively.
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In general, a CNB (n,m) structure built following a shortest path is identified using a

path code consisting of an even number (τ) of positive integers, n1,m1, n2,m2, . . . , nτ/2,mτ/2,

where τ is the number of turning points (nodes) in the path. While n1, n2, . . . , nτ/2 repre-

sent, consecutively, the lengths of the path segments made of ~a vectors along the path,

m1,m2, . . . ,mτ/2 correspond to the lengths of the path segments following ~b vectors. As a

result, using Equation 1, it is readily to establish that

τ/2∑
i=1

ni = n (3)

τ/2∑
i=1

mi = m (4)

For the special case of zigzag CNBs (n, 0) (i.e., m = 0), there is only one possible shortest

path with a unique path code of [n], as it has no turning points (τ = 0) and consists of only

horizontal step vectors (~C = n~a), as exemplified by CNB (7,0) shown in Figure 1a.

As such, we can nicely convert the problem of enumerating CNB structures into a pure

mathematical problem of integer partition and combinatorial arrangements of the parts. The

basic idea is as follows. Given a pair of positive42 integers, n and m, we look for all possible

ways of partitioning n into a varying number of positive integers, n1, n2, . . . , nτ/2, and all

partitions of m with the same number (τ/2) of partitions, m1,m2, . . . ,mτ/2. Subsequently,

we combine alternately the two sets of parts, n1, n2, . . . , nτ/2 and m1,m2, . . . ,mτ/2, and then

enumerate all nonequivalent combinations and orderings of these τ numbers. To be more

specific, we generate all partitions of n (and ofm) using the ascending composition generation

algorithm.43 Then, we enumerate all unique permutations of the parts of n and those of m,

which are order-dependent and are termed as the compositions of n andm in the terminology

of number theory and combinatorics. By putting together each part of each composition of

n and each part of each composition of m in an alternate manner, we get a sequence of path

code, namely, n1,m1, n2,m2, . . . , nτ/2,mτ/2, as a possible combination that corresponds to

each of the possible isomers of CNB (n,m). Note that we only combine the parts of n and of
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m with the same number of partitions, i.e., τ/2. After removal of all duplicated path codes,

we end up with all nonequivalent path codes, each of which represents uniquely a possible

construction path and therefore a unique isomer of CNBs (n,m).

It is worth providing more details on determining equivalent path codes in order to elim-

inate the duplicated ones. The key is to find a canonical path code of a given path code

according to the following procedure. We circularly shift (both clockwise and counterclock-

wise) the numbers in a path code to generate all circularly equivalent path codes, among

which we choose the one with lexicographically largest numbers as the canonical path code.

For example, we determine the canonical path code of [2 1 1 2 3 1] to be [3 2 1 1 2 1]

by reversing and/or circularly shifting the original path code so that the largest numbers

in the code sequence appear as early as possible. Given a set of path codes, we can thus

obtain all unique ones by comparing their canonical path codes. In passing, the enumeration

of all shortest paths is much more efficient if we combine all compositions of m with all

nonequivalent compositions of n.

Table 1 lists the numbers of all possible isomers of standard CNBs of all possible chiralities

with no more than 16 rings. As we can see, there exist only one possible structure for zigzag

CNBs (n, 0) and for CNBs (n, 1). For CNBs (n, 2), the number of isomers can be calculated

as bn/2c+1, where b c is the floor function for rounding a number down to its nearest integer.

We can also see that, given the same number of rings, the number of isomers increases as n

and m become closer to each other. The only exception is that armchair CNBs (n, n) has

fewer isomers than CNBs (n + 1, n − 1), because of the higher symmetry of the armchair

belts.

2.3 Nomenclature of Standard CNBs

The canonical path codes enable a systematic numbering of all isomers of the standard CNBs

(n,m). We sort all isomers using the following rules: (i) the isomers with a larger number

of turning points in the construction path (i.e., a larger τ) appear earlier in the ordered list;
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Table 1. Number of isomers (Niso) of standard CNBs of chirality (n,m) with the
number of rings (NR) ranging from 3 to 16.

NR (n,m) Niso NR (n,m) Niso NR (n,m) Niso

3 (3, 0) 1 10 (10, 0) 1 14 (14, 0) 1
(2, 1) 1 (9, 1) 1 (13, 1) 1

4 (4, 0) 1 (8, 2) 5 (12, 2) 7
(3, 1) 1 (7, 3) 8 (11, 3) 16
(2, 2) 2 (6, 4) 16 (10, 4) 47

5 (5, 0) 1 (5, 5) 13 (9, 5) 79
(4, 1) 1 11 (11, 0) 1 (8, 6) 126
(3, 2) 2 (10, 1) 1 (7, 7) 85

6 (6, 0) 1 (9, 2) 5 15 (15, 0) 1
(5, 1) 1 (8, 3) 10 (14, 1) 1
(4, 2) 3 (7, 4) 20 (13, 2) 7
(3, 3) 3 (6, 5) 26 (12, 3) 19

7 (7, 0) 1 12 (12, 0) 1 (11, 4) 56
(6, 1) 1 (11, 1) 1 (10, 5) 111
(5, 2) 3 (10, 2) 6 (9, 6) 185
(4, 3) 4 (9, 3) 12 (8, 7) 232

8 (8, 0) 1 (8, 4) 29 16 (16, 0) 1
(7, 1) 1 (7, 5) 38 (15, 1) 1
(6, 2) 4 (6, 6) 35 (14, 2) 8
(5, 3) 5 13 (13, 0) 1 (13, 3) 21
(4, 4) 7 (12, 1) 1 (12, 4) 72

9 (9, 0) 1 (11, 2) 6 (11, 5) 147
(8, 1) 1 (10, 3) 14 (10, 6) 280
(7, 2) 4 (9, 4) 35 (9, 7) 375
(6, 3) 7 (8, 5) 57 (8, 8) 257
(5, 4) 10 (7, 6) 76

(ii) those with the same value of τ are sorted lexicographically in ascending order of their

canonical path codes. As a result, we can assign the ranking numbers in the sorted list of

canonical path codes to the CNB isomers in their nomenclature. For example, the ordering

of the canonical path codes for the three isomers of CNBs (5, 2) in Figure 1b–d complies
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with rule (i): [3 1 2 1], [4 1 1 1], and [5 2]. Accordingly, these isomers are named (5, 2)-1,

(5, 2)-2, and (5, 2)-3, respectively. Now, we are able to provide systematic names for most of

the CNBs that have been synthesized, as summarized in Figure 2. Note that in some cases a

few side rings (colored in pink) are appended to the macrocyclic structure, but the essential

belt structure (the green rings) can be unequivocally identified using our naming system.

2.4 Enumeration and Nomenclature of Nonstandard CNBs (n,m, l)

Now, we extend the standard CNBs (n,m) to the nonstandard CNBs (n,m, l) by allowing

an additional basic vector ~b′ = ~a − ~b (see Figure 3a) to constitute the step vectors in the

construction path. Thus, the whole construction path for a nonstandard CNB (n,m, l)

consists of N path segments of horizontal steps of ~a vectors, M segments of downward and

rightward steps of ~b, and L segments of upward and rightward steps of ~b′. Enumerating all

nonequivalent combinations and orderings of these path segments of three types of steps, we

obtain all possible isomers of nonstandard CNBs (n,m, l).

As the path goes from the origin O to C, we have the following relationship between the

basic vectors (cf. Equation 1):

N∑
i=1

ni~a+
M∑
i=1

mi
~b+

L∑
i=1

li~b′ = n~a+m~b (5)

Knowing that ~b′ = ~a−~b, we obtain from the above equation

n =
N∑
i=1

ni +
L∑
i=1

li (6)

m =
M∑
i=1

mi −
L∑
i=1

li (7)

We define l as the total number of basic vectors ~b′ constituting the entire path, and conse-
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Figure 2. Representative synthesized CNBs of different chiralities and sizes, including
the armchair CNBs (a) (6,6)-16,28,30 (b) (8,8)-108,30 (c) (8,8)-201,31 (d) (12,12)-12235,30
(e) (12,12)-28670,18 the zigzag CNBs (f) (12,0)-1,13 (g) (18,0)-1,19 and the chiral CNB (h)
(18,12)-1.18 The canonical path codes are given in square brackets for each CNB. Green rings
indicate those comprising the single-layered CNB structure, while the side rings are colored
in pink. All hydrogens and/or substituent groups are omitted for clarity.

quently

l =
L∑
i=1

li (8)
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Figure 3. Schematic explanation of nomenclature and construction of the nonstandard
CNB isomers (a) (5, 2, 2)-1, (b) (5, 2, 2)-2, (c) (5, 2, 2)-3, and (d) (5, 2, 2)-4. The canonical
path code of each of the CNBs is provided in square brackets. The CNT unit cell determined
by ~C and ~T is depicted as a light blue box. The three types of basic vectors, ~a, ~b, and ~b′, that
constitute the construction path are indicated by black arrows in (a). Each CNB structure
(highlighted as green rings) unfolded onto graphene nanosheet is determined by the path
(indicated by dark red lines) passing through the centers of rings of the CNB. The lengths of
path segments are indicated beside the path. For better visualization, the actual illustrated
paths follow circularly shifted but equivalent path codes. In the right panel of each subfigure,
the corresponding 3D structure (green rings only) of each isomer is depicted, along with their
DFT relatively energies indicated in kcal/mol.

According to Equations 6–8, let us define two new, positive integers, ñ and m̃, as

ñ = n− l =
N∑
i=1

ni (9)

m̃ = m+ l =
M∑
i=1

mi (10)

In light of Equations 9, 10, and 8, the enumeration problem of the nonstandard CNBs

(n,m, l) can be essentially converted into the problem of partitioning the three integers ñ,
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m̃, and l, along with the subsequent combinatorial arrangements of the obtained parts. In

addition, the arrangements of vectors ~a, ~b, and ~b′ are subject to the condition that ~b and ~b′

should never be adjacent to each other. Otherwise, the resultant path leads to triply fused

benzene rings forming a peri-condensed nanobelt instead of the cata-condensed one that

we are interested in in the present study. In other words, vectors ~b and ~b′ must be always

separated by vectors ~a along the construction path. Therefore, we can build the nonstandard

CNBs (n,m, l) by taking the standard CNBs (ñ, m̃) and replacing L segments of ~b vectors

with the same number of ~b′ segments. As a result, the following relation holds

N =M + L (11)

On the basis of the above discussion, the enumeration of the nonstandard CNBs (n,m, l)

can be realized using the following procedures. We first enumerate separately all partitions

of m̃ and of l and combine each of the partitions of both numbers to form a collected set.

As a trick, in the set we have taken the opposite (negative) values of l’s parts in order to

distinguish them from m̃’s parts. We subsequently make all permutations for each array

in the collected set. On the other hand, we take all circularly nonequivalent compositions

of ñ, irrespective of clockwise or counterclockwise orderings of ñ’s parts. Then, we make

all valid combinations of the above-obtained compositions of ñ, m̃, and l that meet the

following two conditions: (i) The N parts of ñ appear at the odd positions in the sequence

of each combination, whereas the numbers coming from the M parts of m̃ and the L parts

of l are placed at the even positions; (ii) N = M + L (i.e., Equation 11). Taking each of

the valid combinations of ñ, m̃ and l as a unique path code, we can therefore construct

each of the possible isomers of nonstandard CNBs (n,m, l). In order to distinguish the path

code numbers coming from ñ, m̃ and l, we set a couple of rules for a valid path code of any

nonstandard CNB (n,m, l): (i) The path code numbers at the odd positions come exclusively

from the parts of ñ (corresponding to the steps of ~a in the path), whereas the numbers at the
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even positions come either from m̃’s parts or from l’s parts (corresponding to the ~b steps and

~b′ steps, respectively); (ii) If the numbers come from the parts of l, the opposite (negative)

numbers are used as the code numbers so as to differentiate them from the parts of m̃. As the

path codes are circularly equivalent (provided that rule (i) is fulfilled), we use the canonical

path codes to determine the unique isomers of nonstandard CNBs, similar to the case of

standard CNBs. Figure 3 presents the four isomers of CNBs (5, 2, 2) with the corresponding

canonical path codes embraced by brackets.

Figure 4. Synthesized nonstandard CNBs (a) (16,0,4)-5 and (b) (16,0,4)-1212 with their
canonical path codes given in square brackets. The essential belt rings are colored in green
and the side rings are in pink. Hydrogens and/or substituent groups are not shown.

The nomenclature for the nonstandard CNBs is in analogy to that for the standard

CNBs. By sorting the canonical path codes of all isomers of CNBs (n,m, l), the isomers

can be uniquely numbered according their appearance in the sorted list (in lexicographically

ascending order). One can check the nomenclature for the four isomers of CNBs (5, 5, 2) in

Figure 3. Incidentally, as a consequence of Equations 8–11, the indices (n,m, l) should fulfill

at once the following requirements: n > m > 0, n > l + 2, and l > 1. All valid indices

(n,m, l) for the nonstandard CNBs with up to 10 rings, as well as the corresponding numbers

of isomers, are tabulated in Table 2. Furthermore, compared to the standard CNBs, the

nonstandard CNBs containing the same number of rings have generally much more isomers.

For instance, there are about 25 thousand standard [21]CNBs while this number increases to

over 1 million for nonstandard [21]CNBs, as shown in Table 3. We can also see that as the
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Table 2. Number of isomers (Niso) of nonstandard CNBs (n,m, l) with the number
of rings (NR) ranging from 4 to 10.

NR (n,m, l) Niso NR (n,m, l) Niso

4 (3, 0, 1) 1 9 (4, 3, 2) 1
5 (3, 1, 1) 1 (4, 4, 1) 3

(4, 0, 1) 1 (5, 1, 3) 1
6 (3, 2, 1) 1 (5, 2, 2) 4

(4, 0, 2) 1 (5, 3, 1) 9
(4, 1, 1) 2 (6, 0, 3) 2
(5, 0, 1) 2 (6, 1, 2) 10

7 (3, 3, 1) 1 (6, 2, 1) 10
(4, 1, 2) 1 (7, 0, 2) 9
(4, 2, 1) 2 (7, 1, 1) 9
(5, 0, 2) 2 (8, 0, 1) 3
(5, 1, 1) 4 10 (4, 4, 2) 1
(6, 0, 1) 2 (5, 2, 3) 1

8 (4, 2, 2) 1 (5, 3, 2) 4
(4, 3, 1) 3 (5, 4, 1) 12
(5, 0, 3) 1 (6, 0, 4) 1
(5, 1, 2) 3 (6, 1, 3) 4
(5, 2, 1) 6 (6, 2, 2) 15
(6, 0, 2) 6 (6, 3, 1) 19
(6, 1, 1) 6 (7, 0, 3) 9
(7, 0, 1) 3 (7, 1, 2) 22

(7, 2, 1) 19
(8, 0, 2) 17
(8, 1, 1) 12
(9, 0, 1) 4

CNB size increases, the number of isomers for the nonstandard CNBs grows more rapidly

than that for the standard CNBs. Applying the nomenclature for nonstandard CNBs, the

two recently synthesized CNBs12 can be recognized as (16,0,4)-5 and (b) (16,0,4)-12, as

shown in Figure 4a and b.
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Table 3. Number of chirality types (Nchiral) and total number of isomers (Niso)
for the standard and nonstandard CNBs with different numbers of rings (NR)
ranging from 3 to 24.

NR
Standard CNBs Nonstandard CNBs

Nchiral Niso Nchiral Niso

3 2 2 0 0
4 3 4 1 1
5 3 4 2 2
6 4 8 4 6
7 4 9 6 12
8 5 18 8 29
9 5 23 11 61
10 6 44 14 140
11 6 63 17 308
12 7 122 21 697
13 7 190 25 1 572
14 8 362 29 3 570
15 8 612 34 8 180
16 9 1 162 39 18 669
17 9 2 056 44 43 114
18 10 3 914 50 98 974
19 10 7 155 56 229 502
20 11 13 648 62 529 223
21 11 25 482 69 1 230 245
22 12 48 734 76 2 847 701
23 12 92 205 83 6 631 367
24 13 176 906 91 15 397 616
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3 Results and Discussion

3.1 Relative Isomer Energies of Standard CNBs

At the GFN2-xTB level of theory (hereafter simply referred to as xTB), we have computed

the relative energies for all possible isomers of the standard CNBs containing 3 to 24 rings

(see Table 3 for the numbers of isomers). For lager standard CNBs with up to 30 rings, we

have prescreened the candidate isomers using a simple and well-performed prediction model

that accounts for both the electronic and strain effects on the relative stability of standard

CNB isomers (see below for details). As a result, we have considered all isomers with the

model predicted relative energy value being less than 0.5|β|, where β is the resonance integral

in the Hückel molecular orbital (HMO) theory.44–47

To unveil the factors governing the relative stability of standard CNB isomers, we first

examine the xTB computed relative energies, RExTB, as a function of the total Hückel π

energy, EHMO, for all isomers of the same chirality (n,m). Figure 5a plots RExTB against

EHMO for all 257 isomers of CNBs (8, 8). We see clearly that the data points are clustered into

parallel groups and the points within each group present a good linear correlation between

RExTB and EHMO. It appears that these groups are separated by a constant shift, implying an

additional effect on the relative isomer stability apart from the electronic effect approximated

by the HMO model. A careful inspection of the structural characteristics reveals that the

difference between the groups is linked to the number of turning points (denoted by τ) in the

construction path of the corresponding CNB. For example, the lowest-energy isomer, (8,8)-1,

with a path code of 16 ones, has 16 turning points in the construction path; every ring in

(8,8)-1 serves as a turning point, as can be seen in its 3D structure illustrated in Figure

5c. In comparison, the highest-energy isomer, (8,8)-257, with a path code of [8 8], has only

two turning points (τ = 2), as shown in Figure 5d. Comparing the two isomer structures

shown embedded in a (8,8) CNT in Figure 5c,d, we notice that (8,8)-257 is a structurally

high aspect ratio CNB31 and has thus a much larger circumference than (8,8)-1. We would
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Figure 5. (a) XTB computed relative energy, RExTB, versus HMO π energy, EHMO, for all
257 isomers of CNBs (8,8). The data points are distinguished by different colors, according
to the number of turning points (τ) in the construction path. (b) RExTB plotted against
EHMO + 0.05|β|τ for all CNB (8,8) isomers (see Equation 12). (c) and (d) Structures of
CNB isomers (8,8)-1 and (8,8)-257, respectively, depicted within a segment of nanotube
(8,8). The path codes are given in squared bracketed. (e) Correlation between RExTB and
(EHMO + 0.05|β|τ) for all 1162 isomers of [16]CNBs with all kinds of chiralities. Squared
correlation coefficients, R2, are provided in (b) and (e).

thus expect that the latter isomer (with τ = 16) suffers from a greater strain effect than

the former (τ = 2). More generally, CNB isomers with more turning points (i.e., a larger τ

value) should be more destabilized by the strain in macrocyclic skeleton, which well explains

the systematic shift between the groups shown in Figure 5a.

To quantitatively confirm the above speculation, we propose a simple model to predict
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the relative stability of standard CNB isomers, combining both the π electronic effect (as

described by the HMO theory) and the strain effect (assumed to be proportional to τ), as

follows

Estd
model = EHMO + 0.05τ (12)

where both EHMO and the empirical coefficient 0.05 are in units of |β|. The last term in the

equation, 0.05τ , is responsible for the shift between groups seen in Figure 5a. Adding this

strain effect term to EHMO results in a very good correlation with the xTB relative energy

(the squared correlation coefficient R2 being 0.9984), as evidenced in Figure 5b. Even for all

1162 isomers of [16]CNBs including all possible chirality types, the strain-corrected EHMO

correlates equally well with RExTB (R2 = 0.9972), as we can see in Figure 5e. In fact,

employing the universal empirical parameter 0.05, the simple model exhibits high prediction

performance for all considered standard CNB isomers containing 5 or more rings. The

squared correlation coefficients are above 0.9 in all cases and are as high as 0.99 for CNBs

with more than 8 rings (see Figures S1–S5 in Supporting Information).

Therefore, we conclude that the relative stability of standard CNB isomers is essentially

governed by two opposite effects, the π electronic stabilization offered by the conjugated sys-

tem in the entire molecule and the strain destabilization induced by the curved macrocyclic

shape. We also infer that the electronic effect prevails over the strain effect and the reason

is as follows. As we can see from the groups associated with different τ values in Figure

5a, the CNB isomers with more turning points have generally more favorable π electronic

effect (i.e., lower value of EHMO) but meanwhile unfavorable strain effect (due to a shorter

circumference of the macrocycle). Overall, as revealed in Figure 5b and e, the isomers with

more turning points are in general lower in energy than those with fewer turning points,

indicating the more decisive role of the π electronic effect than the strain effect.

The fact that the CNB isomers with fewer turning points benefit less from π stabilization
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can be understood by the Fries rule48–52 or the Clar rule.53–55 According to the Clar rule,

given a π conjugated polycyclic system, one tries to allocate as many Clar sextets to the

rings as possible, while utilizing the remaining π electrons to form a valid, closed-shell Kekulé

structure. Each Clar sextet comprises formally six π electrons within a ring and is symbolized

by a circle inscribing the ring. Note that no two Clar sextets are adjacent; otherwise, one

double counts the π electrons from the adjacent C atoms between two neighboring rings. Such

a resonance structure with the maximum possible number of Clar sextets is called a Clar

structure. The Clar rule posits that the more sextets a π conjugated molecule possesses in its

Clar structures, the more π electronic stabilization it acquires. For the looped macrocycles

like CNBs with NR rings, the maximum possible number of Clar sextets is NR/2 since the

Clar sextets and nonsextets are distributed alternately in the rings. It is easy to show that

in a segment comprised of three or more linearly arranged rings (taking anthracene as the

simplest example), one can draw only one Clar sextet without introducing radical sites (with

unpair electrons) to the Clar structure.54 Hence, if a segment of a conjugated benzenoid

contains more than three rings in a row (like naphthacene), there are more nonsextet rings

than sextet rings and hence the molecule is deficient in π electronic stabilization. As the

length of the segment of linearly arranged rings increases, the percentage of sextet rings

reduces, thus producing weaker π stabilization effect. As for CNBs, each path segment in

the construction path consists of a certain number of linearly arranged rings. Accordingly,

for the CNB isomers with a given number of rings, those having fewer turning points in the

construction path have fewer but longer path segments and are therefore electronically less

stable.

3.2 HOMO–LUMO Gaps of Standard CNBs

While the thermodynamic stability can be measured by the relative energy, we would also

like to examine the kinetic reactivity of CNBs on the basis of their HOMO–LUMO gaps,

which are also referred to as chemical hardness56–58 in conceptual DFT59–61 and may usually

23

https://doi.org/10.26434/chemrxiv-2023-85ww5 ORCID: https://orcid.org/0000-0003-2540-2199 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-85ww5
https://orcid.org/0000-0003-2540-2199
https://creativecommons.org/licenses/by-nc-nd/4.0/


reflect chemical reactivity.62,63

Figure 6. (a) XTB computed HOMO–LUMO gap, GapxTB, versus HMO HOMO–LUMO
gap, GapHMO, for all 1162 isomers of [16]CNBs with all chirality types. Isomers with different
numbers of turning points (τ) in the construction path are indicated by different colors. (b)
GapxTB versus xTB relative energy, RExTB, for all isomers of [16]CNBs. The data points are
colored according to the maximum number in the path code, λ.

We present in Figure 6a HOMO–LUMO gaps for all isomers of the standard [16]CNBs

obtained from the xTB and HMO calculations. As we can see, the HMO gaps (in units of

|β|) correlates very well with the xTB calculated gaps (R2 = 0.9965). A least-squares fit to

the correlation gives an estimation of β, being −2.82 eV for [16]CNBs. We have similarly

estimated the values of β for CNBs of other sizes (see Table S2 in Supporting Information),

which fall into a reasonable range for typical π conjugated carbon systems.64,65 Figure 6b

plots the xTB computed HOMO–LUMO gaps versus the xTB relative energies for [16]CNB

isomers. The overall tendency suggests that the thermodynamic stability generally coincides

with the kinetic stability for CNBs; lower-energy isomers are more likely to exhibit a higher

HOMO–LUMO gap, and vice versa. This conclusion holds for the standard CNBs of other

sizes (see Figures S9–S12 in Supporting Information).

Furthermore, Figure 6a discloses that, in general, the isomers with more turning points

(a larger τ value) possess a larger HOMO–LUMO gap. In Figure 6b, we have colored the

data points according to the maximum number in the path code (λ). It is evident that the
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isomers with a smaller λ generally have a lower relative energy and a larger HOMO–LUMO

gap, which can be understood using the Clar rule. A smaller maximum number in the path

code, λ, implies that the CNB isomer has more short segments that consist of fewer linearly

arranged rings and therefore a higher sextets to nonsextets ratio. As a result of the Clar

rule, the isomers with a smaller value of λ (and as a consequence, usually with a larger

value of τ) are electronically more favored, showing a higher stability and opening a larger

gap. The ideal case is the first isomer of armchair CNBs, (n, n)-1, whose path code is 2n

ones (see Figure 5c for the example of CNB (8, 8)-1). It has the shortest path segments

(all being 1 and hence λ = 1) and a maximum possible number of turning points (τ = 2n).

Thus, the armchair CNB isomer (n, n)-1 has a maximized π stabilization effect and are the

lowest-energy form of all considered CNBs with an even number of rings (NR = 2n). As for

CNBs containing an odd number of rings, the lowest-energy structure is found to be isomer

(n+1, n)-1, since its has the longest path code (τ = 2n) composed of a 2 followed by (2n−1)

ones.

On the contrary, the isomers with longer path segments (i.e., with a larger λ) are less

stabilized electronically due to the fewer Clar sextets they acquire. If a segment of a CNB

comprises over six rings in a row, the HOMO–LUMO gap is expected to be so narrow that the

electronic ground state is most likely an open-shell singlet with a polyradical character. Sim-

ilar phenomenon has been found in the case of linear oligoacenes,66 generalized infinitenes,20

and generalized kekulenes.21 The extreme case is the zigzag CNBs (n, 0), or the so-called

[n]cyclacenes.26 The absence67 of Clar sextets in their electronic structure makes them the

highest-energy isomers for all sizes of CNBs. Our DFT calculations reveal that the zigzag

CNBs with 5 or more rings have an open-shell singlet ground state, in line with the previous

studies.68–70 As previous multiconfigurational computations69 disclosed, zigzag CNBs have

an increasing polyradical character with the increasing number of rings.

Interestingly, the three experimentally synthesized armchair CNBs, (6,6)-16,28,30 (8,8)-

108,30 and (12,12)-12235,30 (see Figure 2a, b, and d, resepctively), all achieve the maximum
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number (NR/2) of Clar sextets, or say, 50% of the rings are aromatic sextets. As for the

other CNBs synthesized so far13,18,19,31 (Figure 2c, e, and h), the essential belt structure owns

an insufficient number of Clar sextets and is supposed to be unstable. This explains why

side rings are attached to the essential belt in the synthesized structures, which increases

the percentage of sextet rings and thereby enhances the stability. For instance, owing to the

additional side rings, the synthesized CNBs, (8,8)-201,31 (12,12)-28670,18 and (18,12)-1,18

have increased the sextet percentage from 37.5%, 25.0%, and 40.0%, respectively, to 54.5%,

57.1%, and 57.1%, respectively. Remarkably, in the synthesized zigzag CNBs, (12,0)-113 and

(18,0)-119 (Figure 2f,g), the attachment of side rings to the otherwise sextet-free zigzag belts

brings about a considerable number of Clar sextets occupying 60% of the rings.

3.3 Relative Stabilities of Nonstandard CNBs

To systematically explore the relative stabilities of nonstandard CNBs, we have performed

xTB calculations on all possible isomers of all sizes up to NR = 12. For lager nonstandard

CNBs with 13 to 21 rings, we have only considered the isomers with a path code consisting

of numbers no greater than 2 (i.e., λ 6 2). This selection criterion ensures that all candidate

isomers achieve a maximum possible number (equal to NR/2) of Clar sextets in order to

have optimal electronic stability. When the CNB size further grows, the number of possible

isomers is enormous, e.g., over 15 million for the nonstandard [24]CNBs (see Table 3). There-

fore, for the nonstandard CNBs with 22 to 29 rings, we have chosen only the structures that

have λ 6 2 and do not contain any benzo[c]phenanthrene-like motif to avoid strong H· · ·H

repulsion (see Figure 7c and the discussion below for detailed reasons).

We first look at the correlation between the xTB relative isomer energies and the HMO

energies, as shown in Figure 7a for all 90 isomers of CNB (8, 2, 2). Although the data points

are distributed into groups associated with the number of turning points, τ , no universal

correlation is seen between RExTB and EHMO for all different groups, which is unlike the

case of standard CNBs (see Figure 5a). For example, the data points belonging to the
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Figure 7. (a) XTB relative energy, RExTB, versus HMO π energy, EHMO, for all 90 isomers
of the nonstandard CNBs (8,2,2). The data points are colored according to the number
of turning points (τ) in the CNB structures. (b) Correlation between RExTB and EHMO +
0.05|β|τ + 0.07|β|η (i.e., Equation 13) for all 697 isomers of nonstandard [12]CNBs with all
kinds of chiralities. Squared correlation coefficient, R2, is indicated. (c) Structural formula
of the benzo[c]phenanthrene molecule, where the closest H· · ·H contact is indicated in red.
(d) and (e) Structures of CNB isomers (8,2,2)-3 and (8,2,2)-33, respectively. The canonical
path codes are given in squared bracketed. In (d), isomer (8,2,2)-3 has two pairs of close
H· · ·H contact, as highlighted in red.

τ = 10 group are distributed almost vertically (see the cyan points in Figure 7a), indicating

that these isomers have very similar EHMO values and the same τ value, but their relative

energies, RExTB, span a considerable range of ca. 12 kcal/mol. This hints that, aside from the

electronic stabilization and strain destabilization effects, there exists a third factor affecting

noticeably the relative stability of nonstandard CNB isomers.
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After scrutinizing the structural characteristics of CNB (8, 2, 2) isomers, we found that

the relative energy depends also on the number of close H· · ·H contacts, like the one present

in the benzo[c]phenanthrene molecule. It has been known that the overcrowding in the fjord-

regions of benzo[c]phenanthrene causes considerable H· · ·H repulsion,71 as shown in Figure

7c. As a consequence, this molecule adopts a distorted geometry rather than a planar one

in order to alleviate the H· · ·H repulsion. The dihedral angle between its two terminal rings

is about 28.1◦ according to our DFT calculation, in good accordance with the experimental

value (26.7◦) in crystal state measured by X-ray crystallographic analysis.72 By contrast,

the isomeric chrysene molecule is perfectly planar and our DFT calculation shows that it

is 5.3 kcal/mol lower in energy than benzo[c]phenanthrene. Similar phenomenon is found

in certain nonstandard CNBs. Taking CNB isomer (8, 2, 2)-3 as an example, it has two

pairs of benzo[c]phenanthrene-like close H· · ·H contacts, as indicated in red in Figure 7d.

In comparison, isomer (8, 2, 2)-1 contains four benzo[c]phenanthrene motifs and is therefore

expected to suffer from higher distortion strain induced by H· · ·H repulsion. Hence, it is

now understandable that isomer (8, 2, 2)-1 is markedly less stable than isomer (8, 2, 2)-3 (see

Figure 7a), albeit both have very similar HMO energies and the same number of turning

points (τ = 12). Regarding the lowest-energy isomer, (8, 2, 2)-33 (Figure 7e), despite its

relatively higher HMO energy, the absence of close H· · ·H contacts makes it energetically

more stable than (8, 2, 2)-1, as can be seen in Figure 7a.

Incorporating the distablization effect cause by H· · ·H repulsion, we come up with the

following model for predicting the relative isomer stability of nonstandard CNBs by adding

an additional term to Equation 12:

Enonstd
model = EHMO + 0.05τ + 0.07η (13)

where η is the number of benzo[c]phenanthrene motifs in the carbon framework and the

corresponding coefficient takes an empirical value of 0.07 (in units of |β|). This model
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works generally well for nonstandard CNBs of many other sizes, as shown in Figures S6–

S8 in Supporting Information. From Equation 13, we can see that the term accounting

for close H· · ·H contacts, 0.07η, is roughly of equal importance to the strain-related term,

0.05τ . Thus, a stable nonstandard CNB should ideally contain no benzo[c]phenanthrene

motif (η = 0), which is corroborated by the fact that the benzo[c]phenanthrene motif is

absent in the nonstandard CNBs synthesized so far12 (see Figure 4).

Figure 8. (a) XTB HOMO–LUMO gap, GapxTB, versus HMO HOMO–LUMO gap,
GapHMO, for all 697 isomers of nonstandard [12]CNBs with all kinds of chiralities. Isomers
with different numbers of turning points (τ) in the construction path are colored differently.
(b) GapxTB versus xTB relative energy, RExTB, for all isomers of nonstandard [12]CNBs.
The data points are colored according to the maximum number in the path code, λ.

We have also investigated the HOMO–LUMO gaps of the nonstandard CNBs and the

basic conclusions are similar to those for the standard CNBs. Figure 8a attests a good

correlation between the xTB and the HMO gaps for all 697 isomers of the nonstandard

[12]CNBs. In Figure 8b, we find a general tendency similar to that in the case of standard

CNBs (cf. Figure 6b); the lower-energy isomers usually exhibit a larger HOMO–LUMO gap

and the isomers with smaller λ are more stable both thermodynamically and kinetically.

The latter fact can likewise be explained by the Clar sextet rule. The same conclusions hold

as well for the nonstandard CNBs of other sizes, as evident in Figure S13 in Supporting

Information.
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3.4 Relative energy distribution and lowest-energy forms of CNBs

Considering that there are typically a huge number of isomers for both the standard and

nonstandard CNBs, we are curious about how their relative energies are distributed. Figure

9a presents the probability density distribution of the xTB relative energies of all 176 906

isomers of the standard CNBs of all chiralities. The histogram exhibits a slightly right-skewed

distribution, which can be best described by a reversed Weibull distribution (see the blue

solid curve in Figure 9a). This indicates that most of the isomers have intermediate relative

energies and there are more isomers with a relative energy lower than the mean value. Similar

distribution is observed for the relative energies of nonstandard CNB isomers, as shown in

Figure 9b for the nonstandard [12]CNBs. The asymmetric relative energy distribution for

CNB isomers might be explained as follows. As discussed in the preceding subsections,

isomers with shorter path segments in the construction path (i.e., with a smaller λ) are

generally lower in energy. Meanwhile, shorter path segments usually indicate that there are

more segments/turning points (i.e., a larger τ) and hence a larger number of combinations

of them to constitute the whole path, thus resulting in a larger number of possible isomers.

Therefore, lower-energy isomers tend to be more abundant than the higher-energy ones.

Taking into account this tendency on top of the normal distribution (black dashed curves in

Figure 9) would lead to the right-skewed distribution. It is interesting to mention that the

relative energies of fullerene isomers (like C60 and C80) also follow an analogous right-skewed

distribution.73

Lastly, we pay attention to the lowest-energy isomers of CNBs. As mentioned above, the

lowest-energy form of the standard CNBs shows a quite regular pattern: they correspond

to the isomer (n, n)-1 and isomer (n + 1, n)-1, respectively, for the CNBs with an even

number of rings and those with an odd number of rings (see Table 4). However, there is no

discernible regularity for the lowest-energy isomer of the nonstandard CNBs, probably due

to the large number of nearly isoenergy isomers and the subtle interplay among the different

stability factors. As we can see in Table 4, the lowest-energy form of nonstandard CNBs can
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Figure 9. Probability density distribution of the xTB relative energies of all isomers of
(a) standard [24]CNBs and (b) nonstandard [12]CNBs. The bins of the histograms are 2.5
kcal/mol. The black dashed and the blue solid curves correspond, respectively, to the normal
distribution and the reverse Weibull distribution fitted to the actual distribution.

have different chiralities varying with the CNB size; in most cases it is of chiral type and

occasionally it is of zigzag type. Comparing both the standard and nonstandard CNBs, we

see in Table 4 a general trend that for smaller sizes the lowest-energy nonstandard isomer

is a considerably higher in energy than the lowest-energy standard isomer. As the CNB

size increases, the energy difference between the lowest-energy nonstandard and standard

isomers decreases and becomes less than ca. 2 kcal/mol for NR > 13. For sufficiently large

(NR > 17) CNBs with an odd number of rings, the lowest-energy nonstandard isomer is

even slightly lower in energy than the standard one. At any rate, the energy difference

is practically insignificant between the lowest-energy isomers of nonstandard and standard

CNBs. Hence, from a thermodynamic point of view, both the standard and nonstandard

forms of relatively large CNBs are suggested to be viable synthetic targets.
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Table 4. Chirality and relative energy (in kcal/mol) of the lowest-energy isomer
for the standard and nonstandard CNBs with a varying number of rings (NR).
Relative energies in brackets are obtained from DFT calculations including zero-
point energy correction.

NR Std. CNBs Nonstd. CNBs NR Std. CNBs Nonstd. CNBs

4 (2, 2) [0.0] (3, 0, 1) [46.9] 16 (8, 8) [0.0] (12, 1, 3) [1.6]

5 (3, 2) [0.0] (3, 1, 1) [36.8] 17 (9, 8) [0.1] (11, 4, 2) [0.0]

6 (3, 3) [0.0] (5, 0, 1) [15.6] 18 (9, 9) [0.0] (14, 0, 4) [1.2]

7 (4, 3) [0.0] (4, 2, 1) [15.3] 19 (10, 9) [0.3] (14, 1, 4) [0.0]

8 (4, 4) [0.0] (6, 1, 1) [7.8] 20 (10, 10) [0.0] (15, 1, 4) [1.0]

9 (5, 4) [0.0] (6, 2, 1) [6.9] 21 (11, 10) [0.4] (15, 2, 4) [0.0]

10 (5, 5) [0.0] (7, 2, 1) [4.6] 22 (11, 11) [0.0] (17, 0, 5) [0.9]

11 (6, 5) [0.0] (8, 1, 2) [3.2] 23 (12, 11) [0.5] (16, 3, 4) [0.0]

12 (6, 6) [0.0] (8, 3, 1) [3.3] 24 (12, 12) [0.0] (18, 1, 5) [0.9]

13 (7, 6) [0.0] (9, 2, 2) [1.1] 25 (13, 12) [0.4] (17, 4, 4) [0.0]

14 (7, 7) [0.0] (11, 0, 3) [2.2] 26 (13, 13) [0.0] (20, 0, 6) [0.9]

15 (8, 7) [0.0] (10, 3, 2) [0.2] 27 (14, 13) [0.3] (18, 5, 4) [0.0]
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4 Conclusions

In summary, we have devised a graph-based method to enumerate all possible isomers of

standard CNBs with any given chirality (n,m). This approach elegantly converts the struc-

tural construction of CNBs into a problem of integer partitions coupled with combinatorics

of numbers. By introducing an additional winding index, l, we can extend the standard

CNBs to the nonstandard CNBs, delineated by the triplet indices, (n,m, l). Allowing l = 0,

we can incorporate the standard CNBs (n,m) into the general notation, (n,m, 0). Each of

the standard and nonstandard CNBs can be uniquely described by a canonical path code

that instructs us how to cut out the CNB segment from the corresponding CNT sidewall.

Based on the lexicographic ordering of the canonical path codes, we have proposed a system-

atic nomenclature for CNBs and demonstrated its efficacy in naming the synthesized CNB

structures known to date. This naming system should be also applicable to the partially

saturated CNBs, heteroatom-embedded CNBs, or other related CNB structures.

On the basis of exhaustive xTB calculations of the standard CNB isomers containing up to

30 rings, we have established a simple, efficient, and well performed model to quantitatively

predict the relative isomer stability, requiring only the topological information (the path

code) of CNBs. More profoundly, the model clearly discloses that the relative stability of

standard CNBs is essentially governed by the π conjugation stabilization and the strain

destabilization due to the rigid carbon framework. In some nonstandard CNBs emerges a

third destabilizing factor, the H· · ·H repulsion in the benzo[c]phenanthrene-like regions. By

including this effect, we have formulated an extended model that also shows a high predictive

power for the relative stability of the nonstandard CNBs. Remarkably, all three stability

effects can be approximately linked to topological characteristics: the π stabilization can be

understood by the Clar rule; the strain effect is roughly proportional to the number of turning

points in CNB’s construction path; the H· · ·H repulsion can be estimated by counting the

close H· · ·H contacts. As a result, we put forward two simple criteria as prerequisite for

a stable CNB structure: i) all path segments should not be longer than 2 (λ 6 2); ii) no
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benzo[c]phenanthrene-like motif is present (η = 0).

To evaluate the relative kinetic stability of CNB isomers, we have examined systemati-

cally their HOMO–LUMO gaps, which show a general correlation with the relative energies.

Hence, we conclude that the thermodynamic stability of CNBs generally coincides with their

kinetic stability.

Finally, we have discovered that the relative energies of CNB isomers follows a slightly

right-skewed distribution. For all considered standard CNBs, the lowest-energy isomer is

always (n, n)-1 (for even number of rings) or (n + 1, n)-1 (for odd number of rings). As for

the nonstandard CNBs, however, no clear pattern is observed for the lowest-energy isomeric

forms. In conclusion, we suggest that both the standard and nonstandard CNBs can be

considered as reasonable candidates for future synthesis.

5 Computational Methods

We fully optimized at the GFN2-xTB74,75 level the geometries of all considered CNB isomers,

followed by vibrational frequency analysis for verification of true energy minima. On the

basis of the xTB calculations, we chose the at least 50 lowest energy isomers of each size of

the standard CNBs and those of the nonstandard CNBs for further geometry optimization

and vibrational frequency analysis at the B3LYP76,77/6-31G(d) level that includes Grimme’s

DFT-D3 dispersion correction (with Becke–Johnson damping).78 We have shown in previous

work20 that the DFT method adopted here produces the relative energies for various types

of looped cycloarenes that are in good agreement with the higher level ωB97XD/cc-pVDZ

results. The GFN2-xTB method has also been shown to be reliable for predicting the relative

isomer stability for generalized infinitenes,20 generalized kekulenes,21 and clarenes,21 as well

as different types of CNBs considered in this study (see Figures S14 and S15 in Supporting

Information).
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6 Data and Software Availability

We carried out all xTB and DFT calculations using the xtb 6.3.379 and the Gaussian

1680 programs, respectively. We employed our open-source software EzReson (version

3.0)52,55,81–83 to enumerate the Clar structures and determine the number of Clar sextets.

Most of the data analysis was performed and the resultant graphs were created with the aid

of the MATLAB software,84 The 3D molecular structures were rendered and drawn using

the open-source Jmol software.85

Supporting Information Available

Number of isomers and chirality types for standard CNBs; model predicted relative en-

ergies for CNB isomers; comparison between xTB and HMO HOMO–LUMO gaps; xTB

HOMO–LUMO gaps versus xTB relative energies; comparison between DFT and xTB rela-

tive energies.
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