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Fuzhan Rahmanian (fuzhan.rahmanian@tum.de)16

Abstract17

Predicting and monitoring battery life early and across chemistries is a significant challenge due18

to the plethora of degradation paths, form factors, and electrochemical testing protocols. Existing19

models typically translate poorly across different electrode, electrolyte, and additive materials,20

mostly require a fixed number of cycles, and are limited to a single discharge protocol. Here,21

an attention-based recurrent algorithm for neural analysis (ARCANA) architecture is developed22

and trained on a unique, ultra-large, proprietary dataset from BASF and a large Li-ion dataset23

gathered from literature across the globe. ARCANA generalizes well across this diverse set of24

chemistries, electrolyte formulations, battery designs, and cycling protocols and thus allows for25

universal extraction of data-driven knowledge of the degradation mechanisms. The model’s adapt-26

ability is further demonstrated through fine-tuning on Na-ion batteries. ARCANA advances the27

frontier of large-scale time series models in analytical chemistry beyond textual data and holds28

the potential to significantly accelerate discovery-oriented battery research endeavors.29

1 Introduction30

Lithium-ion batteries (LIBs) enable the electrification of everything, yet there is a maze of challenges31

that must be navigated in order to optimize the batteries of the future 5, 61, 51, 15. Critical to the32

advancement of battery research is the rapid understanding of why and how some batteries degrade33

and what needs to be changed to prevent premature capacity fade 54. Material degradation can occur34

due to numerous factors, including unpreventable solid electrolyte interphase growth, loss of active35

material, and other electrochemical phenomena 31. However, investigating battery degradation is a36

time-consuming task, as non-linear capacity loss can occur over hundreds or thousands of cycles 6.37

Another challenge in early lifetime prediction is the diversity of battery chemistries in the anode,38

cathode, and electrolyte, along with various form factors and testing protocols.39

Battery lifetime can be evaluated through various methods, such as conventional cycling until end of40

life (EOL) under constant current-constant voltage (CC-CV) conditions or cycling for a predetermined41
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number of cycles. From these data, measures such as coulombic efficiency (CE) can be calculated 62
42

and correlated to more in-depth techniques such as electrochmical impedance spectroscopy (EIS) 46 to43

fundamentally assess the underlying degradation mechanisms. Accurate measurement of CE 18, 52 does,44

however, require bespoke instrumentation and a considerable amount of time, i.e. cycling a battery45

for 1000 cycles at 1C/1D takes approximately 11 weeks. Reducing the required number of cycles46

by a factor of 10, while maintaining a high level of fidelity, is therefore of great interest 7. Machine47

Learning (ML) and Deep Learning (DL) can accelerate testing by lowering the number of cycles48

required to understand the underlying chemistries 3. An example of predicting EOL of batteries using49

initial discharge capacity curves was demonstrated by Severson et al. 51, who used regression models.50

They integrated data generation with data-driven models to forecast the lifetime of LFP/graphite cells51

based on ∆Q(V ) and classified their longevity. In further work, Attia et al. 7 employed a Bayesian52

algorithm to accelerate the optimization of fast-charging protocols. By using early-cycle data for low-53

fidelity predictions, the approach enabled the optimization of high-fidelity experimental outcomes, thus54

significantly reducing the experimental duration from 500 to 16 days.55

The most reliable models do not, however, merely predict just predict a quantity but also allow as-56

sessment of the model’s uncertainty. Emblematic of this is the work by Tong et al. 56, who introduced57

ADLSTM-MC, a hybrid predictive model using adaptive dropout long short term memory (LSTM)58

with Monte Carlo simulations. This approach, which requires minimal training data, enhances robust-59

ness through Bayesian-optimized dropout rates and improves the remaining useful life of two types60

of LIBs. In a correlative study 47, a recurrent autoregressive deep ensemble network with aleatoric61

and epistemic uncertainties was developed along with saliency analysis to assess the impact of input62

parameters on output prediction. This provided an intuitive understanding of feature importance.63

Another advantage of using DL algorithms is their ability to use raw data, which has gained interest in64

the estimation of battery State of Health (SOH). For instance, Yang et al. 63 developed a novel hybrid65

convolutional neural network architecture with parallel residual connections, which utilizes raw data66

across multiple dimensions. By incorporating attention mechanisms, their model achieves remarkable67

accuracy in predicting the early stages of degradation. Although these approaches are applied in bat-68

tery research 27, 68, their prominence is not as widespread as in other scientific fields. However, this69

lesser emphasis provides an opportunity for further exploration and discovery. Beyond these early life-70

time prediction models, sequence-to-sequence (Seq-to-Seq) models have been used to monitor battery71

lifetime and SOH 27, 34, 20. They leverage intrinsic temporal dependencies in degradation data, provid-72

ing high predictive accuracy and computational efficiency. Li et al.34 developed a one-shot LSTM-based73

Seq-to-Seq framework which not only predicts future capacities, but also identifies knee points in the74

degradation curve, maintaining stability even in the face of stochastic disturbances. Although Seq-to-75

Seq models demonstrate robust predictions, they also exhibit limitations in generalization and require76

large and diverse datasets to enhance performance 15.77

Despite the promises made by ML and DL for lifetime predictions 11, 24, 55, these models, while78

robust, face challenges of precision and trustworthiness 36. Existing models often focus on single-task79

learning, neglecting the potential benefits of multi-objective learning for various predictive settings 15.80

In particular, data-driven approaches 40 tend to overlook the inherent variations between, for ex-81

ample, production batches or individual cells 9. Such discrepancies, originating from manufacturing82

processes or aging mechanisms, can profoundly impact lifetime predictions. Addressing these varia-83

tions for accurate forecasting remains a central yet unresolved research question. Furthermore, despite84

the assertions of recent studies that they are chemistry-agnostic 47, 48, they often require enhanced85

explainability to optimize their effectiveness in various chemistry settings. Transfer learning offers a86

promising solution to the challenge of scarce data, but requires more investigation for transparency87

and interpretability 30. The acquisition of extensive datasets, essential for DL algorithms 64, remains a88

significant hurdle 22, 40, 59. Nevertheless, innovative strategies, such as the use of common features in89

databases and the documentation of various chemistries and protocols 35, establish the foundation for90

more in-depth research 64. Our goal is to develop a model that is not only universally applicable, but91

also robust, with the capability to provide both uncertainty quantification and explainability. Such a92

model would be invaluable to the academic community and would find marketable applications in the93

real world 64, accelerating battery design and data collection based on active learning.94
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2 Results95

2.1 Data resources96

Developing a model that generalizes well necessitates a diverse and large dataset 40 that ideally covers97

a spectrum of chemistries and formats given high-dimensional correlations and cell variations 66, 30,98

obtained from various laboratories and measured under different operating conditions 7. Data diversity99

not only ensures an accurate representation of different cycling behaviors, but also tames the irreducible100

uncertainty in the predictions while mitigating the risk of overfitting. However, the scarcity of large101

and comprehensive datasets 36 that include both high and low-performing cells creates a challenge102

for training generalized models, i.e., to overcome a positive bias 45, 30. Available data often exhibit103

noise, discontinuities, and varying formats that require extensive curation, adding a layer of complexity.104

Initiatives such as Battery Archive 19 or other cloud services 32 are therefore commendable in promoting105

Findable, Accessible, Interoperable, and Reusable (FAIR) data 23, 58 handling in battery research 22, 59.106

In this study, we develop a model trained on ca. 17400 batteries from BASF research laboratories107

that covers a diverse range of LIBs chemistries and multiple cycling protocols. Exposure of our model108

to such a wide variety of data enables robust generalization. Utilizing our pre-trained model on a109

unique set of unseen data, we effectively predict the early degradation trajectory. The ultimate test110

of our model, therefore, is to apply it to data from cells produced in a different location and with111

varying chemistries. Due to intellectual property constraints that prevent the authors from making112

the model trained on the BASF dataset openly accessible, we have retrained our model by leveraging a113

diverse array of publicly available datasets from respected institutions and research groups, including114

the Toyota Research Institute (TRI) in partnership with MIT and Stanford 2, 1, NASA 50, the Center115

for Advanced Life Cycle Engineering (CALCE) 29, Karlsruhe Institute of Technology (KIT) 69, Hawaii116

Natural Energy Institute (HNEI) 21, and Sandia National Laboratories (SNL) 21. Furthermore, we have117

incorporated data from our in-house cycled cells 67, 38, 39, 42 with successful and failed experiments, to118

further enrich model training and reduce bias. In the Supplementary Section 1 we provide an overview119

of all datasets; we include a brief summary in table 1 with an indication of which datasets were used120

during training and which remained completely unseen for model testing. This approach ensures a121

thorough understanding of the data sources, thus improving the transparency and reproducibility of122

our research.123

124 2.2 Architecture Overview125

Central to this study is the Attention-based ReCurrent Algorithm for Neural Analysis with LSTM126

(ARCANA) model. This is an attention-based Seq-to-Seq architecture specifically engineered to assess127

early stage battery degradation and perform lifecycle monitoring. The model demonstrates superior128

multitasking capabilities, supported by its high modularity and dynamic adaptability. It is designed to129

utilize a flexible range of past battery cycle data, known as historical temporal segments, for input. In130

addition, the model includes predetermined parameters for future conditions, such as discharge rates131

and cycle numbers. These parameters are known in advance of the experiment, i.e. they are controlled132

by the measurement device and are referred to as encoded temporal segments. This dual capability133

offers multifaceted advantages, from cost and time savings to improved material selection and protocol134

optimization.135

The ARCANA model is augmented with additional features such as the attention mechanism,136

which provides insight into the decision-making process of the model. This feature distinguishes137

between predictions based on underlying patterns and those arising from stochastic variability. Saliency138

analysis is additionally performed to emphasize the relative importance of each parameter through a139

computation of the absolute gradient of the model output relative to the input of the test set. It140

quantifies the sensitivity of the input parameters, revealing how minor variations significantly alter the141

output results 47, thus aligning the internal logic of the model with domain-specific knowledge. Adding142

another layer of robustness is uncertainty quantification, which is valuable not only for understanding143

the reliability of cycling protocols, but also for assessing material performance across different battery144

chemistries.145

As illustrated in the Unified Modeling Language (UML) diagram (Fig. 1), the ARCANA model146

consists of four principal classes, each performing a different function, and is designed to accept raw147

data, thus negating the need for preliminary feature engineering. This design versatility extends148

to its operational modes with Naive Training for initial experiments, Dynamic Tuning for real-time149
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Table 1: An overview of the collected cycling data utilized for training and testing. The model M(B),
was trained with data provided by BASF, and the model M(P ) was trained with publicly available
data. The model M(P )f represents a fine-tuned version of M(P ) for lithium-ion coin cell data.
M(P )Na and M(B)Na models are fine-tuned M(B) and M(P ), respectively, adapted for sodium coin
cells.

Location Cell form Cell chemistry Protocol
Charge\Discharge

No. Cell Cycle range Nominal
capacity
[Ah]

Usage

BASF Coin heterogenous multimodal 17400 multimodal multimodal M(B)
Train\Val

TRI 2 Cylindrical
commercial

LFP\graphite CC1(Q1)CC2,
CC − CV @1C, 4.2V

\CC@4C

124 169− 2235 1.1 M(P )
Train\Val

TRI 1 Cylindrical
commercial

LFP\graphite CC1(20%)CC2(40%)
CC3(60%)CC4(80%),
CC − CV @1C, 4.2V
\CC − CV @4C, 2V

233 100− 862 1.1 M(P )
Train\Val

CALCE 29 Prismatic
commercial
CX2

LCO\graphite CC − CV @0.5C, 4.2V ,
\CC@(0.5C, 1C)

6 781− 1082 1.35 Testing

CALCE 29 Prismatic
commercial
CS2

LCO\graphite CC − CV @0.5C, 4.2V ,
\CC@0.5C

6 1701− 2016 1.1 M(P )
Train\Val

KIT 69 Cylindrical
commercial

NCA\graphite-Si CC − CV
@(0.25C, 0.5C, 1C), 4.2V ,

\CC@1C

58 29− 800 3.5 M(P )
Train\Val

KIT 69 Cylindrical
commercial

NCM\graphite-Si CC − CV
@(0.25C, 0.5C, 1C), 4.2V ,

\CC@1C

55 43− 1277 3.5 M(P )
Train\Val

KIT 69 Cylindrical
commercial

NCM+NCA\graphite CC − CV @0.5C, 4.2V ,
\CC@(1C, 2C, 4C)

9 912− 1031 2.5 Testing

KIT 67 Coin
self-made

LNO\graphite CC − CV @1C, 4.2V ,
\CC@1C

43 82− 505 0.004618 60% for M(P )f ,
40% Testing

KIT 38 Coin
commercial

LCO\graphite CC − CV @1C, 4.25V ,
\CC − CV @1C, 2.75V

26 150− 600 0.045 M(P )
Train\Val

KIT 39 Coin
self-made

NMC622\graphite CC − CV @1C, 4.2V ,
\CC@1C

11 228− 501 0.00328 Testing

KIT 42 Coin
self-made

Na0.9[...]O2 \graphite CC@1C \CC@1C
or C-rates test

44 40− 140 0.00015 60% for M(P )Na

and M(B)Na,
40% Testing

NASA 50 Cylindrical
commercial

NCA\graphite CC − CV
@0.75C, 4.2V ,

\CC@(0.5C, 1C, 2C)

34 24− 196 2.0 M(P )
Train\Val

HNEI 21 Cylindrical
commercial

LCO-NMC\graphite CC − CV @0.5C, 4.3V ,
\CC@1.5C

14 1102− 1133 2.8 M(P )
Train\Val

SNL 21 Cylindrical
commercial

LFP\graphite CC − CV
@0.5C, 4.2V ,

\CC@(0.5C, 1C, 2C, 3C)

28 2621− 19174 1.1 M(P )
Train\Val

SNL 21 Cylindrical
commercial

NCA\graphite CC − CV
@0.5C, 4.2V ,

\CC@(0.5C, 1C, 2C)

24 463− 7877 3.2 M(P )
Train\Val

SNL 21 Cylindrical
commercial

NMC\graphite CC − CV
@0.5C, 4.2V ,

\CC@(0.5C, 1C, 2C, 3C)

25 388− 11149 3.0 M(P )
Train\Val
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Figure 1: An UML diagram of the computational framework, designed around three principal class clusters. The first in-
cludes a ConfigHandler engineered to manage a comprehensive set of user-defined configurations and establishes a blueprint for
handling various subconfigurations such as general settings, data properties, and model specifications. During hyperparameter
optimization tasks, ConfigHandler interfaces with the Optuna optimization library to adaptively create and update the tuning
configuration. The second key class structure includes TrainProcedure which serves as an architectural template for the train-
ing process. Its attributes are employed throughout the computational pipeline, starting with data preparation and extending
to instantiation of specialized loss functions and Seq2Seq models via the LossFactory and Seq2SeqFactory. FineTuning, is a
specialized subclass that inherits from TrainProcedure while TuneProcedure and PredictProcedure, the latter of which uses the
QuantilePredictor, are incorporated into the pipeline depending on the desired use case and settings. The tuning operates on
single trials with a TPESampler when multiple runs are desired. Lastly, Seq2SeqFactory is engineered to govern the instan-
tiation of encoder-decoder architectures. Depending on the user-defined configurations, it can orchestrate a multihead or an
additive encoder-decoder mechanism. The inclusion of custom attention mechanisms within the architecture is handled by the
AdditiveDecoder class or the MultiheadDecoder, conditional upon the configuration stipulations.

adaptability via extensive hyperparameter optimization, Fine-Tuning for integration of a pretrained150

model with selective gradient updating, and Prediction for efficient inference. Through modularity, a151

logging mechanism ensures data integrity and traceability, adhering to FAIR data principles 58. The152

open source codebase uses the PyTorch library 43 for model development and the Optuna library 4 for153

hyperparameter optimization.154

The Encoder-Decoder Framework155

The encoder (Fig.2a) initiates the Seq-to-Seq model in the ARCANA framework by processing156

historical temporal segments of the past battery life cycles. Employing a LSTM network, it is designed157

to capture complex, non-linear relationships and time dependencies inherent in sequence data. The158

encoder processes the input tensor to accommodate sequences of different lengths, employing a padding159

mechanism that enables the LSTM to efficiently process these sequences without being constrained160

by their varying lengths. Within the LSTM, the temporal data is transformed into a new tensor,161

constructing hidden and cell states that capture sequential information. A skip connection incorporates162

the initial input into the LSTM output, thus preserving crucial temporal features and stabilizing163

the learning process. Layer normalization, when applied to the LSTM output, not only accelerates164

convergence but also leads to robust performance, mitigating the challenges associated with long-165

sequence dependencies 17. The encoder returns a rich latent representation of the historical data,166

consisting of the output tensor and the updated hidden and cell states, which are then utilized by the167

decoder to enable accurate forecasting in subsequent steps.168

The decoder (Fig. 2a) takes on the task of generating future state predictions. It is initialized with169

the hidden and cell states from the encoder and begins by processing the most recent historical cycle170

data. The model then integrates its own previous predictions and known future conditions, such as171

the expected discharge current and the cycle number. These two inputs are temporally encoded to172

capture their positional relevance 65, ensuring that the decoder is informed of the predefined condition173

and the timing of each data point within the life cycle. The decoder employs an attention mechanism174

that can dynamically adjust sequence weights, identifying critical information at each prediction step.175

This approach overcomes the limitations of static-length vector representation in conventional encoder-176
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Figure 2: Architectural overview of Seq-to-Seq model. a) Presents the detailed architecture of the encoder and decoder
components. The LSTM-based encoder processes historical temporal segments to capture the intricate pattern of battery life
cycles. It integrates a skip-connection and layer normalization to preserve and stabilize essential key temporal features. The
decoder is initialized with the encoder’s final states and applies an attention mechanism to focus on relevant temporal features
from the encoder output and enrich the context of its predictions. The attention-enhanced representations are combined with
the initial decoder input and subsequently propagated through LSTM layers. A fully connected layer with leaky ReLU activation
and a dropout layer - used solely during training and inactive during inference - for regularization, follow the LSTM outputs. The
model outputs are then fed into three separate fully connected layers for predicting a specific quantile of the future distribution
based on the pattern learned during training, thus providing a probabilistic characterization of the forecast. b) Illustrates the
integrated Seq-to-Seq model flow, depicting the progression from encoding historical data to multi-output future forecasts. It
highlights the sliding-window approach that underpins the model’s capability to handle both the tail-end of historical data
and the integration of self-generated forecasts with known future conditions. This process also captures the dynamic training
process, which incorporates teacher forcing to enhance the predictive fidelity of the model.
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decoder models 8, allowing the decoder to focus on the most relevant parts of historical data. The177

attention mechanism then computes a context vector associated with the encoder’s output, which178

highlights the encoder sequences with the highest relevance to the current decoding task. This context179

vector, combined with the current input, forms a feature-rich tensor that is subsequently processed by a180

LSTM layer. Post-LSTM, the output layer is passed through a fully connected layer with a leaky ReLU181

activation function, crucial in maintaining network stability, and enhanced with a dropout layer placed182

to reduce overfitting risks. The culmination of this process is a decoder that generates forecasts for the183

0.1, 0.5, and 0.9 quantiles. These provide a probabilistic range indicative of the inherent uncertainty184

and offer a statistical interpretation of the potential future states of the degradation profile.185

Seq-to-Seq Integration186

In the broader Seq-to-Seq model, the encoder and decoder are orchestrated to facilitate the overall187

predictions, as can be seen in Fig. 2b. Here, the model processes the temporal data using a sliding188

window approach that enhances the ability to discern local patterns within long input sequences 65.189

This technique allows for the integration of the last observed data or transition to the decoder’s self-190

generated predictions, supplemented with temporally encoded future conditions. During training, a191

dynamic teacher forcing strategy is employed, in which actual target outputs are used as inputs in192

lieu of previous predictions to promote model convergence, prediction fidelity, and generalizability193

in the model. This hybrid training strategy allows effective learning from the ground truth while194

gradually becoming equipped for self-guided predictions. At the end of the processing of this sequence,195

quantile-based predictions are collected into a stack of tensors, encapsulating a comprehensive forecast196

for subsequent decision-making processes. Thus, this forward pass provides fine-grained, probabilistic197

understanding of the evolving battery life-cycle stages, with the potential to inform risk assessment198

and optimize operational efficiency.199

2.3 Experimental configuration200

This study evaluates the ARCANA architectural model through a two-stage experimental process. Our201

aim is to present findings that resonate across multiple disciplines, highlighting both the complexity202

and versatility of our approach. The first stage involved training the model M with the coin cell203

dataset B from BASF. The resulting trained model is here denoted M(B). We encoded predetermined204

parameters, including cycle number and discharge current, into temporal segments to capture past205

and future discharge conditions. The training used an additive attention mechanism in the ARCANA206

architecture for initial learning, with a detailed explanation in Sec. 4.1. In the second stage, the model207

M is re-trained from scratch, with publicly available datasets as mentioned in Table. 1, and denoted as208

M(P ). This entails various cell types, including 26 coin cells and 6 prismatic cells with Lithium-Cobalt-209

Oxide (LCO) cathodes, with the majority being cylindrical cells with Lithium-Iron-Phosphate (LFP),210

Nickel-Manganese-Cobalt (NMC), and Nickel-Cobalt-Aluminum Oxide (NCA) cathode materials. To211

address these cell chemistry variations, we introduced an additional predefined parameter, the nominal212

capacity of each cell in logarithmic format. This inclusion was critical for the model to effectively213

differentiate and interpret response characteristics 53. The public dataset selected for M(P ), was214

significantly smaller, comprising 627 cell entries and accounting for only 3.35% of the total data size215

of the initial model M(B). The dataset was distributed with 65% for training, 30% for validation, and216

5% for testing.217

To emphasize generalizability and test model performance, we incorporated four distinct test218

datasets, each sourced from different locations and created by various experts. The first two test219

sets, denoted (DLNO) and DNMC , comprise coin cell measurements made at the Institute of Physical220

Chemistry (IPC) of KIT, featuring the Lithium-Nickel-Oxide (LNO) and NMC materials, respectively.221

The third dataset consisted of cylindrical cells from Institute of Applied Materials (IAM) of KIT,222

containing NMC blended with NCA cathode materials (DNMC+NCA). The final dataset involved223

prismatic cells of the CALCE institute, with LCO materials (DLCO). The complete description of224

these cells is provided in the Supplementary Section 1. This approach in dataset selection and testing225

allowed an in-depth evaluation of M(P ) for its adaptability to various cell types and experimental226

setups.227

The publicly available data for M(P ) presented unique challenges as they included prematurely228

failed cells and high experimental noise, in contrast to the high-quality data used for training M(B).229
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These complexities required a change from an additive to a multihead attention mechanism in M(P ).230

We also encountered a wide range of cycles, from as few as 196 to as many as 19176. However, most of231

the tests we considered had fewer than 500 cycles. This variability posed a potential risk of gradient232

instability and inconsistent learning in the training process. To mitigate the risk of poor convergence233

and the possibility of overfitting, we adopted a standardization approach in which all cells were limited234

to a maximum of 500 cycles, ensuring better balance in the training data and reducing bias, thus235

increasing reliability.236

Both M(B) and M(P ) focused on predicting three parameters, which were selected for their estab-237

lished significance in the existing literature and their availability across the datasets. They included238

discharge capacity, crucial for understanding the SOH 51, CE, as emphasized in studies by Burns et239

al. 13, 14 as the key to understanding the impact of electrode additives and electrode materials on240

battery long-term performance, and the voltage drop during the relaxation phase between charging241

and discharging cycles. The last parameter is less explored but, as described by e.g. Zhu et al. 70, it242

offers valuable insights independent of the charging process. This parameter is easily calculated from243

cycling data, even if the studies where the data originated did not directly measure it. In this section,244

we evaluate our model’s performance on various scenarios, focusing on the impact of data quality on245

model generalization and interpretability, investigating its adaptability to different chemistries, and246

deriving insights from attention mechanisms and saliency analysis.247

2.4 Model performance across battery types248

The hyperparameters of M(P ) were selected using Optuna’s hyperparameter tuning with 250 trials249

and are described in the Supp. 3. The model generalization is evaluated on two datasets; cylindrical250

cells of DNMC+NCA and prismatic cells of DLCO, neither of which were seen by the model during251

training. Here, the objective was to determine how effectively the model generalizes across different252

battery configurations despite the presence of noisy data.253

As shown in Fig. 3, the model handles multidimensional predictions for both DNMC+NCA and254

DLCO well. For DNMC+NCA, it accurately forecasts up to 500 cycles based on 24 input cycles (see255

Panel I, Fig. 3) even though the extracted data exhibits occasional jumps, despite the discharge256

current remaining constant throughout. Given that these unexpected jumps are not annotated in the257

original dataset, we have chosen to acknowledge their presence, but not alter them for the sake of258

data integrity. Aggregated attention weights in early cycles indicate their importance for long-term259

forecasting. Emblematic is DLCO, that starts from a 23 cycle profile (Panel II, Fig. 3); the model260

demonstrates robustness even in the presence of more complex noise patterns. Here, the attention261

weights are distributed not only in the initial cycles but also in later cycles, proving the necessity of262

incorporating an attention mechanism.263

Illustrating the model’s generalization capabilities, a detailed analysis of Qdis in Fig. 4 is presented.264

In both DNMC+NCA and DLCO, there is good agreement between the model’s predictions and actual265

values (Panel I & II, Fig.4a), as complemented by the density graphs in Fig.4b. For DNMC+NCA, the266

predicted and actual densities closely overlap. For DLCO, the predicted density is highly similar, with267

a slightly skewed distribution towards lower Qdis. The better density distributions for DNMC+NCA268

are likely attributable to the larger proportion of cylindrical cells in the training data, which accounts269

for 94.9% of the total.270

A detailed evaluation of the uncertainty of the model M(P ) is provided in Fig. 4c-e for both271

datasets. Panel I & II of Fig. 4c evaluate the calibration by comparing the observed quantile proportions272

to the expected proportions under the assumption of a normal distribution. This continuous curve273

indicates the model’s general performance across the entire probability distribution. The miscalibration274

area, quantified by the degree of deviation from the ideal diagonal line, represents the aggregate of275

discrepancies 28. For DNMC+NCA, the predicted distribution of Qdis is well calibrated around the276

median but diverges at the tail, with calibration points showing underconfidence at higher quantiles.277

For DLCO the individual calibration points suggest a slight overconfidence in the 10th-50th percentile278

and underconfidence in the ranges 50th-90th and 10th-90th percentile. The miscalibration areas for279

DLCO is 0.16, which is slightly higher than DNMC+NCA, likely due to noisier data. The overall280

calibration performance across both datasets is comparable. Fig. 4 e) shows a histogram of prediction281

interval quantiles, revealing the spread between the 10th and 90th percentiles and evaluating the282

concentration of its predictive distribution as indicated by sharpness. The lower values suggest higher283

confidence in the prediction 25. For DNMC+NCA, a bimodal distribution highlights variable prediction284
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Figure 3: ARCANA’s predictive performance on two datasets, namely cylindrical DNMC+NCA in Panel I and prismatic
DLCO in Panel II, when predicting battery behaviour over 500 cycles for three predictors of Voltage drop [V], CE and Qdis

[Ah]. The model emphasizes its robust noise filtering and adaptive attention mechanism across different data characteristics.

certainty across cycles, suggesting potential fluctuations in battery behavior. DLCO shows two clusters285

of distributions, mostly around a central quantile with a sharpness of 0.19, indicative of consistent286

uncertainty. Fig. 4d further supports these findings by illustrating the model’s median prediction287

uncertainty and the variability of these predictions by interquantile range (IQR). Here, DNMC+NCA288

in Panel I shows varying IQR, suggesting changes in model confidence over lifespan. In contrast,289

DLCO maintains a more uniform IQR, indicating steady prediction uncertainty and aligning with the290

model’s attention on later cycles to contend with the increased complexity and noise. These metrics291

complement the information provided in Fig. 4c-e, serving as a benchmark for the model’s reliability292

and its capacity to generalize within a precise estimate range.293

The multitasking capabilities of M(P ) are further highlighted by its performance in predicting294

the second parameter, voltage drop (SI). The model exhibits strong prediction accuracy with both295

datasets. DNMC+NCA shows a smaller range of predictions over increasing cycles, and DLCO shows296

a stable range with decreasing median intervals, while the calibration accuracy and the reliability of297

the predictions remain high across both datasets. The performance on the third predictor, CE (SI),298

shows consistency and low prediction uncertainty, although the high measurement noise present in this299

dimension poses a challenge and makes convergence more demanding 26. The evaluation metrics for300

M(P ) (Supp, Table. 1) demonstrate its predictive strengths for both DNMC+NCA and DLCO. For301

the DLCO dataset, the voltage drop is predicted with root mean square error (RMSE) of 0.0335 and302

mean absolute percentage error (MAPE) of 6.6052. However, DNMC+NCA outperforms in CE with303

significantly lower error rates of 0.0256 and 0.2489 for the RMSE and MAPE, respectively. However,304

both datasets present higher error rates in the predicted discharge capacity. To counteract the impact305

of systematic noise, Median Absolute Error (medAE) is used along with MAE for a more robust error306

analysis. These metrics highlight M(P )’s versatile predictive capabilities, in handling diverse dataset307

requirements for multiple features and long-term predictions 15, 33.308

We further examine M(P )’s performance on unseen coin cell datasets, DLNO and DNMC . The309

model predicts the voltage drop and CE well, but shows limitations and high uncertainty when pre-310

dicting the discharge capacity with an RMSE of 0.5827. This may stem from the low representation311

of coin cells in the training data; just 4.1% of the total. To alleviate this problem, we fine-tuned the312
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Figure 4: Comparative analysis of model predictions and its uncertainty and calibration for Qdis for two datasets;
DNMC+NCA (Panel I) and DLCO (Panel II), where a) depicts the relationship between predicted and actual values of Qdis,
with the diagonal dashed line indicating perfect prediction accuracy, b) illustrates the density distributions of predicted versus
actual Qdis. The calibration plot in c) assumes a normal distribution, where the mean and standard deviation are estimated
from the 10th, 50th, and 90th percentiles of predictions. It depicts the cumulative proportion of actual Qdis values that fall
at or below the predicted quantile values, rather than within symmetric intervals around the predictions. The ideal diagonal
line represents perfect calibration with the shaded area indicating the degree of miscalibration, denoted A. The approximately
diagonal trend of the calibration line up to the 0.5 quantile shows that data with residuals below the median are well described
by the predictive distribution. The jump from 0.5 to 1 indicates that the predictive distribution extends further to positive
values than the observed distribution of residuals; almost all test data are already covered by the predicted 0.6 quantile for both
datasets. However, the overall miscalibration areas for both datasets are quite similar, indicating that despite different patterns
of over- and underconfidence at specific quantiles, the general calibration performance across both datasets is comparable. Box
plots at d) show the prediction intervals over multiple cycles, demonstrating the median and variability of the model prediction
uncertainty over the battery’s lifespan. e) provides histograms that depict the quantile-based prediction interval width between
the 10th and 90th percentiles, as a measure of sharpness. The red dashed line indicates the sharpness as the mean interval
width and shows the concentration of the predictive distributions that indicate narrower distribution and consequently higher
confidence in predicting Qdis for DNMC+NCA in Panel I.

decoder weights of M(P ) using the data of 17 coin cells from DLNO, resulting in an updated model,313

M(P )f . This fine-tuning process is detailed in Supp. 14, and led to a substantial improvement in314

predicting Qdis, dropping the RMSE to 0.0002, indicating a significantly enhanced precision. M(P )f ’s315

performance will be compared with M(B), trained with the BASF dataset B, in the following section.316

2.5 Model Performance on Coin Cell Data for Generalization Insights317

While comparing the predictive performance of models M(B) and M(P )f on subsets of unseen DLNO318

and DNMC dataset (Supp. 15), M(P )f demonstrates reliable predictive alignment for voltage drop,319

CE, and Qdis. In contrast, M(B), shows a divergent pattern in voltage drop predictions, which may be320

due to its training on data with inherently long relaxation time profiles compared to those in DLNO,321

where measurements are taken shortly after state changes. However, it maintains consistency in CE322

predictions and adjusts Qdis predictions in response to changes in the test protocol. The performance323
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comparison for DNMC using these two models can be further explored in Supp. 21 and Supp. 23.324
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Figure 5: Performance analysis of M(P )f (Panel I) and M(B) (Panel II) on DLNO for Qdis prediction. Plots a) illustrate the
relationship between models’ predictions and the actual Qdis with the diagonal line representing perfect prediction accuracy,
plots b) compare the density distribution of actual and predicted Qdis , plots c) present calibration curves that reflect the
degree of alignment between predicted probabilities and observed frequencies under a normal distribution assumption. The
discrete points on the calibration curve show the observed proportions of actual values that fall within three specific intervals
based on the quantiles: between the 10th and 50th, 50th and 90th, and 10th and 90th percentiles. Model M(P )f shows a
high level of calibration for predicting Qdis of DLNO samples with a minimal miscalibrated area of 0.022. The points for 10th
and 50th and 50th and 90th percentiles lie close to the diagonal line, indicating a nearly perfect calibration for these intervals.
M(B) exhibits a slight overconfidence by deviating from the ideal line, with a miscalibration area of 0.16. The three calibration
markers for M(B), are all positioned just below the diagonal line, showing uniform overconfidence across these quantile ranges,
yet they remain close to this line, indicating a generally well-calibrated model. Plots d) show the prediction intervals across
lifespan cycles, highlighting models’ uncertainty over time and plots e) detail the distribution of prediction intervals’ quantiles
between the 10th and 90th percentiles, which convey the models’ prediction uncertainty; a distribution skewed towards the lower
quantiles suggests a higher confidence in predictions at these quantiles. The sharpness, as a measure of mean interval width, is
approximately similar for both models at 3.7 × 10−4 and 3.5 × 10−4 for M(P )f and M(B), respectively. Together, these plots
demonstrate the M(P )f ’s precision in capturing discharge capacity behavior and M(B)’s robust generalization.

Table 2: Summary of evaluation metrics for DLNO

M(P )f M(B)

Metrics Voltage drop CE Qdis Voltage drop CE Qdis

RMSE 0.0703 0.0331 0.0002 0.1247 0.0588 0.0003
MAPE 9.2285 1.1922 20.7946 34.8638 4.4560 8.8914
MAE 0.0353 0.0076 0.0001 0.0867 0.0335 0.0002
medAE 0.0181 0.0021 0.0001 0.0513 0.0104 0.0001

In our analysis of DLNO for Qdis, Fig. 5 demonstrates that M(P )f achieves high predictive fi-325

delity. This is evident from the dense alignment of the predictions with the actual values in the scatter326
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plot (Fig. 5a), and the significant overlap in distributions seen in the density plot (Fig. 5b). The327

model’s precision is further highlighted by concentrated prediction intervals and a calibration curve328

that closely traces the diagonal (Fig. 5c-e). It achieves a high proportion of data points within the pre-329

dictive bounds, indicative of accuracy, without excessively wide intervals that could decrease the utility330

of the predictions. Panel II for M(B) also demonstrates a close tracking of the actual values, with331

a marginally broader prediction interval and higher miscalibrated area of 0.16 compared to M(P )f ’s332

of 0.022 (Panel I). Despite this variance, M(B) maintains a reasonable estimate range. Qualitatively333

(Table 2), M(P )f achieves better accuracy in predicting Qdis with a lower RMSE and MAE. M(B)334

shows higher RMSE, especially in voltage drop, and lower MAPE in Qdis (8.8914) suggesting effective335

capture of proportional changes in the data, despite a larger absolute error. Detailed analyses of addi-336

tional predictive dimensions for DLNO for both models and the complete dataset DNMC are available337

in the supplementary materials. Despite the DLNO data originating from another institute, the gen-338

eralization of M(B) highlights the potential of well-trained DL models to overcome the variability of339

data sources.340

2.6 Achieving chemical agnosticism341
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Figure 6: Analysis of M(P )Na’s predictive accuracy and input sensitivity on Na-ion data. Plot a) presents the C-rate profile
for cycling one battery, while plots b), c), and d) compare the model’s prediction to actual data, showing consistency and
adaptability. Sensitivity to input parameters across predicted cycles is analyzed in plots e), f), and g) on a logarithmic scale.
The color intensity in these plots denotes the specific cycles from which the input parameter originates. Plots h), i), and j) show
the sum of the logarithmic contribution of each input parameter towards predicting future cycles with a selective representation
of three past cycle data. These visualizations confirm the model’s attentive adjustment to the latest available input data and
its capacity for generalization, despite the high experimental noise and limited battery performance.

ARCANA was so far demonstrated to generalize well across battery formats, electrolyte formu-342

lations, cathode chemistries and cycling procedures for LIBs. The ultimate generalization would be343

achieved if the model could also be deployed to Na-ion batteries. Since the underlying degradation344

mechanism of Na-ion batteries is very different, we performed fine-tuning to test whether M(B) and345

M(P ) are capable of achieving ”true chemistry agnosticism” 30, 16. These fine-tuned models are de-346

noted M(B)Na and M(P )Na, and are trained on Na-ion cycling data with CC-CV and pulse discharge347
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settings. Details on the fine-tuning parameters are available in SI.348

In Figures 6 and 7, we evaluate the fine-tuned M(B)Na and M(P )Na models on an unseen C-rate349

test protocol (Fig. 6a and Fig. 7a). Both models demonstrate flexibility in adjusting to changes in350

C-rates, with voltage drop, CE and Qdis depicted in Fig. 6b-d and Fig. 7b-d. The model M(B)Na351

shows narrower prediction intervals, indicative of lower uncertainty and greater predictive robustness.352

This trend is consistent across all predictive dimensions and the model is probably benefiting from the353

larger initial dataset on which it was trained, since it provided a richer learning environment for the354

model to become more ’protocol-agnostic’. Its precision is especially notable in predicting the voltage355

drop and CE estimations, closely following the ground-truth despite the substantial experimental noise.356

The aggregated attention mechanism in M(B)Na (Fig. 7d) also appears more fine-tuned, with greater357

weights on the latest cycle data, which is consistent with its precise predictions. While M(P )Na is358

adaptable, it shows a marginally wider uncertainty (Fig. 6b-d).359
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Figure 7: Evaluation of M(B)Na’s predictive performance and input sensitivity on our own Na-ion data. Plot a) shows the
discharge current profile, while plots b), c), and d) depict the predictions for voltage drop, CE and Qdis against the ground
truth. The colorbar here shows the aggregated attention weights across the input data. Plots e-g) provide a detailed logarithmic
sensitivity analysis per predictive cycle for each input parameter, and plots h-j) aggregate these sensitivities, highlighting the
model’s focus on different input cycles, especially the most recent ones, reflecting M(B)Na’s protocol adaptability and robust
response to experimental noise.

Sensitivity analysis, as shown in Figures 7e-g and 6e-g evaluates the input parameter influence360

on future predictions for M(B)Na and M(P )Na. Both models demonstrate increased sensitivity to361

the most recent input data, i.e. cycles 7 to 9 in this provided example, aligned with their attention362

distributions, with cycle 9 receiving the highest attention. This increased emphasis on the last input363

cycles corresponds to the rapid degradation patterns in this sodium coin cell. As the model receives364

each successive cycle, the most recent data, here cycle 9, becomes important in shaping its predictions,365

allowing the model to more accurately predict ongoing trends.366

In Fig. 7, M(B)Na shows a greater overall sensitivity across input cycles, particularly for the di-367

mensions of voltage drop and Qdis. This is further illustrated in sensitivity profiles and cumulative368

plots (Fig. 7h-j) highlighting a refined input-response relationship and a lower uncertainty interval in369
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the primary prediction (Fig. 7a-c). Such a distinct sensitivity indicates M(B)Na’s ability to precisely370

identify and respond to subtle variations. Despite the high experimental noise and limited battery per-371

formance, the saliency and attention trends of both models remain remarkably similar. This suggests372

that both mechanisms are intrinsic to the model’s architecture, enabling them to perform consistently373

at diverse scenarios.374

To further substantiate our initial findings, the plots in Fig. 8, show both models’ Qdis predictions375

aligning well with the ground-truth. M(P )Na exhibit a tighter clustering around the actual values,376

while M(B)Na exhibits a broader spread. The prediction intervals and the distribution of quantiles377

across the 10th and 90th percentile for both models confirm their consistency and calibrated confi-378

dence. These evaluations provide insights into the model’s robustness. The performance of M(B)Na’s379

especially underscores the advantage of extensive and diverse pretraining datasets in enhancing model380

generalization across different battery chemistries.381
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Figure 8: comparative Qdis prediction analysis for Na-ion batteries using M(P )Na (Panel I) and M(B)Na (Panel II). The
scatter plots a) illustrate the models’ alignment with actual measurements. Density plots b) compare the distributions of
predicted and actual values, demonstrating the models’ accuracy in estimating Qdis. Calibration plots in c) depict how well
the predicted probabilities match the observed outcomes against the benchmark line, with the discrete points representing the
observed proportions of actual values that fall within three quantile intervals. Both models demonstrate a pattern of marginal
overconfidence below the 70th percentile and a slight underconfidence above this percentile, as evidenced by the calibration
points’s positions beneath and above the diagonal line, respectively. M(P )Na shows a larger area of divergence, A = 0.06, while
M(B)Na presents a closer fit with a miscalibration of 0.053, highlighting both models’ well-calibrated prediction capabilities
across different chemistries. Boxplots d) visualize the spread and consistency of prediction intervals across predicted cycles.
Histograms in e) represent the distribution of the quantile intervals of the models’ prediction, highlighting uncertainty; these
distributions indicate where, within the prediction range, the models’ confidence is concentrated, with sharpness values of
1.7 × 10−5 for M(P )Na and 2.0 × 10−5 forM(B)Na, demonstrating a precise estimation of uncertainty.
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3 Discussion382

We demonstrated the chemistry-, format- and cycling procedure-agnostic ARCANA framework, and383

its ability to reliably monitor battery life and SOH by utilizing multitask learning with an atten-384

tion mechanism. ARCANA excelled across three predictive settings, demonstrating that augmenting385

the model with diverse knowledge streams enhances its generalization across virtually all variations386

possible in batteries such as anode, cathode, electrolyte and shuttle ion chemistry and format. The387

ARCANA model integrates uncertainty quantification and attention mechanisms for each and every388

cycle to elucidate the model’s focus for each prediction and is essential for uncovering complex patterns389

associated across multiple factors. Further evaluation involves saliency and sensitivity assessments, al-390

lowing us to understand the impact of perturbation of input parameter on output predictions. By391

examining whether saliency and attention are directly correlated or orthogonal to each other, we gain392

a comprehensive understanding of input-output relationships, increasing the model’s explainability393

and reliability in extrapolation. Incorporating raw data and failed experiments, as suggested in prior394

studies 45, 15 is a deliberate strategy to teach our models to recognize variations across similar cell395

types and manufactures. This inclusion not only enables uncertainties to be quantified more accu-396

rately but also deepens reliability insights, reduces bias, and offers a more meaningful understanding397

of the data. A conceptually straightforward extension to this work would be to incorporate additional398

features, such as the rate of change of voltage with respect to capacity (dQ/dV) 35, 12, and leverage dif-399

ferent characterization methods like spectroscopy, to enhance the predictive power of the models.This400

will not only enhance multi-feature predictions, but also deepen the understanding of degradation401

processes 15, 33, 51.402

We observed thatM(P ), trained on public data, offers broader generalization across various battery403

types and protocols, albeit with increased uncertainty. M(B), trained on a more extensive dataset,404

demonstrates a lower uncertainty. This further motivates the importance of data sharing and man-405

agement. Our findings also reveal that fine-tuning the models with few labels significantly improves406

their generalization to new chemistries, especially for M(B). The methodology outlined in this pa-407

per presents an opportunity for other researchers to create their own high-performance models. By408

retraining or fine-tuning with different datasets, researchers can tailor these predictive models to their409

specific experimental setups and desired outcomes. This flexibility allows for the exploration of differ-410

ent perspectives and approaches, facilitating the development of more accurate and specialized models.411

One could envision a model-sharing and transfer-learning community similar to those found today in412

the fields of computer vision and language modeling. Furthermore, the performance metrics explored413

here raise the tantalizing prospect of further improving model quality via a federated learning ap-414

proach. This could enable researchers from diverse backgrounds and institutions to pool their data415

and expertise, leading to more powerful models.416

The modular design of the ARCANA pipeline enables real-time monitoring of battery degradation417

profiles, promoting timely and cost-effective interventions. This proactive approach prevents prolonged418

suboptimal testing conditions, improving the R&D process, and contributes to more informed mate-419

rial selection and protocol optimization. By automating data collection, processing, and analysis,420

researchers can streamline their experimental workflows and reduce human error. Furthermore, ML421

models can continuously learn from new data, adapt to evolving experimental conditions, and provide422

real-time insights. This integration of ML and laboratory workflows has the potential to transform bat-423

tery research, enabling researchers to make data-driven decisions, uncover novel insights more rapidly424

and accelerating the pace of discovery.425

Overall, we demonstrated that incorporating multitask learning with an attention mechanism cre-426

ates a framework that can achieve chemistry agnosticism as envisioned by Battery 2030+ 5 and the427

interesting fact that a DL architecture trained on a smaller, noisier, but more diverse dataset yields428

better generalization at the cost of higher uncertainty. We hope that the pipeline will emerge as an429

indispensable and transformative tool to bridge the gap between lab-scale research and commercial430

viability, and will become essential for development of applications and insightful predictive models in431

the energy storage field.432
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4 Methods433

4.1 Model compartments Dynamics434

In the following section, some of the key components of the ARCANA framework are explained to underscore435

their contribution to the overall efficacy and reliability of the model. This includes an exploration of attention436

mechanisms, a teacher forcing scheduler, methods to quantify predictive uncertainty, a strategic early stopping437

protocol, a training procedure, and evaluation metrics.438

Attention mechanism439

Within the proposed ARCANA framework, two distinct attention mechanisms are implemented. The first,440

termed additive attention, is also known as Bahdanau attention 8. This mechanism aligns the hidden state of441

the decoder ht at each time step t with the hidden states of the encoder (hs), thus producing a context vector442

that encapsulates the weighted relevance of each historical temporal segment from the past cycles. This vector443

provides a dynamically focused representation of the input sequence pertinent to the current decoding step.444

This mechanism is functional through a parameterized attention model. The model calculates an attention445

score ets (Eq. 1) for each encoder state hs given by:446

ets = vT tanh(W1ht + w2hs) (1)

where W1 and W2 are the weight matrices that transform the respective hidden states into a common447

feature space and v is a weight vector that projects the activated sum into a scalar score. Attention weights448

αts are then determined by normalizing these scores using the softmax function (Eq. 2).449

αts =
exp(ets)∑Te

k=1 exp(etk)
(2)

here, Te is the total number of time steps in the encoder sequence.450

The context vector ct results from aggregating the encoder hidden states, each weighted by its respective451

attention weight, as can be seen in Eq. 3, and can improve the model’s capacity for handling Seq-to-Seq452

predictions 41.453

ct =

Te∑
s=1

αtshs (3)

Another attention mechanism that can be employed within the ARCANA architecture is multihead attention.454

This mechanism expands the model’s capacity to focus on different positions of the input sequence simultane-455

ously 49, which is crucial for capturing a wider range of dependencies inherent in battery lifetime data. This456

attention mechanism operates by projecting the decoder’s hidden states and the encoder outputs, representing457

the past cycle’s information, into multiple subspaces. This is formulated as: (Eq. 4)458

MultiHead(Q,K, V ) = Concat (head1, . . . , headh)W
0 (4)

headi = Attention
(
QWiQ,KWiK , V WiV

)
(5)

where each head (headi) captures different aspects of the input data and is computed as shown in Eq.5.459

The operation applied in each head is defined by the attention of the scaled dot product and is presented in460

Eq. 6.461

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (6)

Here, Q, K, and V are the query, key, and value matrices, respectively. Q is generated from the hidden462

states of the decoder, while K and V are derived from the encoder outputs. This arrangement enables the463

decoder to integrate the current state information with historical data provided by the encoder. The parameter464

matrices WQ
i , WK

i , and WV
i for each head i, along with the output weight matrix W 0, are optimized during the465

training process. These matrices are instrumental in transforming the input data into different representational466

subspaces to capture various aspects and dependencies within the data. The parameter dk, representing the467

dimension of the key vectors, scales the dot product within the attention mechanism. In Eq. 6, the softmax468

function is applied to these scaled attention scores, which originate from the interactions between the query469

and key matrices. This process results in the production of a context vector, which integrates information from470

different representational subspaces and allows the model to consider multiple aspects of historical data 65, 60.471
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Teacher forcing472

Teacher forcing optimizes the learning of temporal dependencies. By integrating the real data from previous473

time steps, the technique promotes rapid stabilization and convergence of the model. In the present study,474

the implementation of the teacher forcing strategy is applied through a calculated division of training epochs.475

This division is reflective of the model’s incremental improvement in processing sequences with varying lengths476

over time by prioritizing shorter sequences at the early stages of training to ensure intensive guidance. This477

preferential focus ensures that the model does not prematurely plateau when learning to predict longer-term478

dependencies.479

To quantitatively define this approach, the training period consisting of E epochs is divided into D equal480

segments s .Within the i-th segment, the teacher forcing ratio is adjusted through a decay parameter λ, which481

represents how quickly the training procedure switches from using real data as decoder inputs to using model482

predictions from the previous cycle, as depicted in Fig.2b. The allocation of epochs per division di is calculated483

as can be seen in Eq. 7484

di = round

(
s · e−λi∑D−1

j=0 s · e−λj
· E

)
(7)

Following this, the teacher forcing ratio for the t-th epoch in the i-th segment is linearly reduced from a485

starting ratio Rstart to an ending ratio Rend, using the following equation, Eq. 8.486

A =

(
Rstart −Rend

di + ϵ

)
Rti = Rstart −A · t

(8)

Here, Rti indicates the teacher forcing ratio at epoch t for the i-th segment. The expression A represents487

the decrease per epoch in that segment. To ensure numerical stability and avoid division by zero, a small488

constant ϵ, set to 10−8, is included in the calculation as indicated in Eq. 8. The teacher forcing ratio, as489

a probabilistic measure, represents the likelihood that the model will utilize the actual observation from the490

training data at a given prediction step. This approach modulates the ratio to facilitate a smooth transition491

from guided to self-generated sequence prediction. The adjusted ratios are indicative of the model’s learning492

trajectory, enhancing its independent predictive accuracy across different sequence lengths.493

Uncertainty quantification494

The pinball loss, in this study, provides a robust metric for predicting a range of potential outcomes, rather495

than a single point estimation. This is an effective measure for forecasting scenarios where the impacts of496

overprediction and underprediction are asymmetric 57. It is defined for a set of quantiles Q =
{
q1, q2, q3

}
497

where q1 < q2 < q3 and in this study, we select Q =
{
0.1, 0.5, 0.9

}
corresponding to the 10-th, 50-th, and498

90-th percentiles, respectively. For a given predicted value ŷ and the actual target value y, the pinball loss for499

a single quantile q is calculated as:500

Lq(ŷ, y) =

{
(1− q) · (ŷ − y) if y < ŷ

q · (y − ŷ) if y ≥ ŷ
(9)

In the implementation of this loss function, a mask is provided and applied to each quantile’s loss to501

selectively evaluate certain predictions, allowing for the exclusion of outliers. The total pinball loss for multiple502

quantiles is then the sum of the individual losses for each quantile, averaged over all predictions, as shown in503

Eq. 10, reflecting the model’s performance across the specified range of quantiles.504

L(Q, Ŷ , Y ) =
1

N

N∑
i=1

∑
q∈Q

Lq(ŷqi, yi) (10)

Here, N is the number of observations, Ŷ is a stack of vectors, with each vector containing the predictions505

for all observations at one of the specified quantiles, and Y is the vector of the true target values. Each506

element ŷqi in Ŷ denotes the predicted value for the i-th observation at quantile q. This configuration not507

only facilitates efficient computation of the loss function across multiple quantiles and observations, but also508

captures the central tendency and variability of the predictions, making it a comprehensive loss function for509

probabilistic forecasting 57, 37.510
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Early stopping511

To optimize training, a rigorous early stopping approach is incorporated. This method was originally512

proposed by Prechelt et al. 44 and combines criteria to prevent overfitting while ensuring substantial training513

progress, especially in the presence of noisy data. Here, a dual-criteria strategy is implemented. The first514

criterion assesses the ratio between generalization loss (GL) and training progress, which is shown in Eq.11,515

where Eval represents the validation error at the current epoch, Emin val is the lowest validation error obtained516

up to the current epoch, and Etrain strip denotes the training errors within a recent sequence of epochs. This517

sequence, or strip, is a designated period in which progress quotient (PQ) is measured. If the generalization-518

loss-to-progress-quotient-ratio (GL/PQ) surpasses a predefined value, it may indicate that further training will519

not be beneficial for the model’s generalizability.520

GL = 100 ·
(

Eval

Emin val
− 1

)
PQ = 1000 ·

(
Mean(Etrain strip)

Min(Etrain strip)
− 1

) (11)

The second criterion implements a conventional check and is applied to monitor the trend in validation521

error. An increased trend over the epoch sequence suggests that overfitting could be occurring. Training522

is discontinued when both the ratio criterion and the error-trend criterion indicate that further training is523

unlikely to yield significant gains. In general, this strategy offers a control mechanism that aligns the duration524

of training with the achievement of a well-generalized model capable of accurate predictions.525

Training Procedure526

Expanding on Seq-to-Seq integration, the training phase begins by initializing the data loaders for batch527

processing and configuring the parameters of the Seq-to-Seq model, the loss criteria, the optimizer, and a528

dynamic learning rate scheduler 26. Hyperparameter optimization, through a series of trials using Optuna’s 4
529

Tree-structured Parzen Estimator (TPE) Sampler, employs a probabilistic model to specify the most promising530

parameter configuration, navigating the search space while balancing exploration and exploitation within a531

complex and high-dimensional domain 10. Training unfolds over several epochs, with each iteration starting532

with a reset of the model’s hidden states and zeroing gradients to ensure clean computation for the forward533

pass. The pinball loss function is selected for its effectiveness in probabilistic forecasting, eliminating the need534

for a presumptive data distribution model 37 unlike traditional metrics 57, which are more sensitive to noise and535

anomalies. These asymmetric and non-parametric criteria assess forecast accuracy by penalizing deviations536

from three targeted quantiles, namely 0.1, 0.5, and 0.9, enhancing robustness to outliers and the efficacy for537

LSTM-based networks 57. At the same time, a masking technique 33 is implemented to filter out padding-538

induced distortions from the loss calculation, ensuring the integrity of the learning signal. Backpropagation539

follows loss computation, incorporating gradient clipping to prevent divergence and gradient explosion in540

recurrent network architectures. Additionally, learning rate adjustments encourage robust convergence. The541

validation phase alternates with training, where performance is assessed and early stopping criteria are applied542

to mitigate overfitting. Optuna enhances optimization by pruning the less promising trials. Once the training543

is completed, the model parameters are saved and a comprehensive report is generated detailing the training544

results. The training procedure steps described are schematically depicted in Supp.1545

Evaluation metrics546

For this study, the following metrics are implemented, including both average errors and variability of indi-547

vidual predictions, to evaluate the performance of the model. These metrics are RMSE (Eq. 12) which provides548

a measure of the magnitude of prediction errors, MAPE (Eq. 13) which measures the average magnitude of549

errors as a percentage, medAE (Eq. 14) to capture the median error, reducing the influence of outliers, and550

mean absolute error (MAE) (Eq. 15) which represents the mean absolute differences.551

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (12)

MAPE =
100%

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (13)

medAE = median(|yi − ŷi| : i = 1, 2, . . . , n) (14)

MAE =
1

n

n∑
i=1

|yi − ŷi| (15)
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Data and code availability552

Open source data supporting the findings of this study are available online, with ac-553

cess details provided in Table. 1. The ARCANA framework can be installed using pip554

install arcana or cloned from https://github.com/basf/ARCANA. In addition, pub-555

lic pre-trained model weights can be accessed at https://doi.org/10.5281/zenodo.10293072.556
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