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Abstract 8 

Introduction: Drug-induced photosensitivity is an adverse event of various agents that are used 9 

in all major specialties of clinical medicine. Apart from the acute condition, an association of 10 

photosensitive events and an increased risk of skin cancer have been repeatedly reported. 11 

However, photosensitizing properties of drugs and chemical compounds are also deliberately 12 

utilized as a treatment modality, for example as photodynamic therapy in oncology. While 13 

certain chemical features have been shown to induce photosensitivity more frequently, the 14 

matter is still not conclusively understood and commonly used photobiological assays are 15 

discussed to be affected by several limitations. In the present work we investigated the 16 

feasibility of predicting photosensitizing effects of drugs and chemical compounds via state-of-17 

the-art artificial intelligence-based workflows. 18 

Methods: A dataset of 2,200 drugs was used to train three distinct models (logistic regression, 19 

XGBoost, and a deep learning model) to predict photosensitizing attributes based on the 20 

SMILES string. Labels were obtained from a list of previously published photosensitizers 21 

resulting in 205 photosensitizing drugs. Data was partitioned using an 80/10/10 training-22 

validation-test split by molecular scaffold. External evaluation of the different models was 23 

performed using the tox21 dataset and included a technical interpretation of prediction scores 24 

as well as a pharmacological interpretation. 25 

Results: ROC-AUC ranged between 0.8939 (deep learning model) and 0.9525 (XGBoost) 26 

during training, while in the test partition it ranged between 0.7785 (deep learning) and 0.7927 27 

(XGBoost). The models were employed to facilitate predictions on the external validation set. 28 

Analysis of the top 200 compounds of each model resulted in 55 overlapping molecules. 29 

Fifteen of those were fluoroquinolones, a class of commonly reported photosensitizers. 30 

Prediction scores in this subset corresponded well with culprit substructures suspected of 31 

mediating photosensitizing effects. 32 
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Discussion: All three models appeared capable of predicting photosensitizing effects of 33 

chemical compounds. However, compared to the simpler model (logistic regression) the 34 

complex models (XGBoost and Chemprop) appeared to be more confident in their predictions 35 

as exhibited by their distribution of prediction scores. The evaluation of the models on external 36 

data further solidified the feasibility of molecular property prediction for photosensitizing 37 

abilities. A qualitative analysis of fluoroquinolones in the external dataset based on available 38 

photobiological evidence showed that their prediction scores corresponded well with their 39 

chemical structure. 40 

41 
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Introduction 42 

Drug-induced photosensitivity generally refers to a cutaneous adverse reaction to systemically 43 

or topically administered pharmaceuticals.1 Photosensitivity reactions are generally classified 44 

as phototoxic and photoallergic, with photo-onycholysis either being described as a special 45 

case of phototoxicity or a distinct adverse effect.2 All photosensitizing molecules act as 46 

chromophores when receiving electromagnetic radiation of a distinct wave length. However, 47 

the subsequent molecular pathways and eventual cellular targets differ among the drugs.3 48 

Photosensitive lesions can only develop in skin areas receiving light and primarily depend on 49 

ultraviolet (UV) A exposure as opposed to regular sunburns that are UVB mediated.2 50 

Phototoxic effects due to systemically administered agents are the most prevalent form of drug-51 

induced photosensitivity.4 The leading symptom is erythema but patients can also present with 52 

burning or prickling skin sensations and even pseudoporphyria.5 53 

However, photosensitizing properties of specific agents are also used therapeutically in 54 

photodynamic therapy. Clinical applications can be found in ophthalmology for age-related 55 

macular degeneration6, in oncology for several types of cancer7,8 and in dermatology for 56 

various indications9–11. Extracorporeal photopheresis with psoralen and UVA (PUVA) is 57 

another distinct treatment modality that is based on the photosensitizing ability of psoralen.12 58 

Photosensitizing effects as an adverse drug reaction are of great clinical interest. This is based 59 

not only on the acute phototoxic or photoallergic reactions but also on a potentially increased 60 

risk of subsequent skin cancer since photocarcinogenic effects have been shown for several 61 

photosensitizing drugs.13 Regulatory bodies such as the Food and Drug Administration (FDA) 62 

or European Medicines Agency (EMA) therefore require photobiological testing upon the 63 

approval of new drugs. The most common assay used is the in-vitro-3T3-NRU test. However, 64 

while being accepted as reasonably sensitive its specificity is debated.14 65 

The inter-disciplinary convergence of chemistry and machine as well as deep learning is a 66 

growing area of research. Cheminformatics aid the comprehension of existing complex 67 
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chemical data and allow designing as well as conducting experiments in silico. The 68 

computational prediction of molecular properties has gained a lot of interest in both biomedical 69 

research as well as in the industrial sector. Instead of screening hundreds or thousands of 70 

molecules and compounds via traditional wet-lab assays, deep chemistry enables rapid 71 

exploration of potential agents with distinct molecular properties.15 72 

In the present project we investigated the ability of different machine and deep learning 73 

algorithms to predict photosensitizing effects of drugs and chemical compounds.  74 
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Methods 75 

Data 76 

The initial training dataset consists of 2,220 drugs from the Human Metabolome Database 77 

(Supplement File 1). The drugs were classified based on their photosensitizing abilities (1 = 78 

photosensitizing, 0 = non-photosensitizing) via string matching of the drug name with a dataset 79 

from a previous project on drug-induced photosensitivity.2 In brief, MEDLINE and professional 80 

drug reaction databases were screened for agents that are reported to cause phototoxic or 81 

photoallergic adverse events. In summary, drugs that were found to have a peer-reviewed 82 

scientific publication addressing their photosensitizing effects were compiled and classified as 83 

photosensitizing. The full dataset included 205 (9.2%) photosensitizing drugs. The data was 84 

partitioned using an 80/10/10 training-validation-test split by molecular scaffold. 85 

Hyperparameter optimization has been performed on the validation set while the final reported 86 

prediction metrics are based on the test set (holdout set). Therefore, no double-dipping into 87 

the training dataset has been performed. External evaluation was performed using the tox21 88 

dataset after removal duplicates already found in the training data. Tox21 dataset is a result of 89 

the Toxicology in the 21st Century project that contains property information on >8,000 90 

chemical.16 91 

Deep learning model 92 

For the present project we used the open-source library Chemprop.17 Chemprop uses a 93 

message passing neural network to learn to predict molecular properties from the graph 94 

structure of a given molecule. The graphs are constructed based on the SMILES string of the 95 

respective molecule. Hyperparameter optimization was performed based on a Bayesian 96 

approach (tree-structured parzen estimator) with 50 iterations. The final set of 97 

hyperparameters used for training is shown in Supplement File 2. The eventual training was 98 

performed with 10-fold cross-validation with ensembles (30 models in total). Furthermore, 99 

Chemprop enables the addition of molecule-, bond- or atom-level features via RDKit. We used 100 

pre-normalized RDKit molecule-level features to further improve model performance. An 101 
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average of the 30 models was then used to for prediction, where each molecule receives a 102 

score between 0 and 1 reflecting its ability to cause photosensitive eruptions (0 = none). 103 

Machine learning models 104 

Molecules represented by SMILES strings in the original dataset were converted to circular 105 

fingerprints of 1024 bits. To compare the performance of algorithms of different complexity, we 106 

decided to train models both via logistic regression and XGBoost. They were applied to the 107 

circular fingerprints with hyperparameter optimization for 100 iterations and 5-fold cross-108 

validation. Hyperparameter tuning included L1, L2, and elastic net regularization for 100, 200, 109 

500, or 1000 iterations applying a random penalty strength between 1e-6 and 100 for logistic 110 

regression. For XGBoost, 20, 50, 100, 200, or 400 boosting trees were built applying different 111 

learning rates, child weights, loss reduction cut-offs, and regularization parameters (L1 and 112 

L2). The models were evaluated based on ROC-AUC. 113 

External evaluation 114 

To simulate a rea-world scenario where a trained model in a controlled environment is applied 115 

on related but external data, we proposed to perform a two-step external evaluation. In the first 116 

step we aimed at testing the generalization capacity of the model by comparing prediction 117 

score distributions on both the controlled environment and external data (tox21).  In particular, 118 

we wanted to investigate whether the model was guessing that an unseen compound 119 

possesses photosensitizing abilities or if it was making an informed decision. In the second 120 

step a pharmacological interpretation was performed relying on published, peer-reviewed 121 

scientific literature.  122 
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Results 123 

Prediction of photosensitizing ability 124 

In total, 1,998 unique SMILES were part of the training and validation set, while 222 formed 125 

the test set. The external evaluation set (tox21) contains 7,831 molecules. However, 771 and 126 

98 were found to be duplicates of molecules in the training and test partition, respectively, and 127 

were therefore excluded for external evaluation. ROC-AUC scores on the training partition 128 

were high (0.89 – 0.94) for the best performing fold for all three models with XGBoost showing 129 

the highest performance. ROC-AUC scores were lower in the test partition but acceptable in 130 

all cases (0.78 – 0.79). (see Table 1) Qualitative analysis of prediction scores was performed 131 

to estimate prediction thresholds in the external evaluation set and account for the imbalanced 132 

frequency of photosensitizing drugs in the training data. Chemprop and XGBoost showed 133 

skewed distributions around the incidence rate of photosensitizing molecules in both partitions. 134 

Logistic regression, in contrast, resulted in normally distributed predictions. (see Figure 1) 135 

Generalization of prediction of photosensitizing ability on external data 136 

Prediction score consistency in controlled and external datasets 137 

The external evaluation was conducted via a two-step approach, a technical analysis and a 138 

pharmacological interpretation. For all models the predictions on the external evaluation set 139 

replicated the distribution of the training and test partitions, thereby exhibiting consistency. 140 

(see Figure 1) The highest prediction scores regarding both maximum and mean were 141 

obtained by logistic regression. However, evaluation metrics could not be calculated since the 142 

external evaluation set contained no ground truth labels, i.e. the only molecules in the tox21 143 

dataset with known photosensitizing abilities prior to the conducted analyses were excluded 144 

as duplicates of the training data. 145 

Pharmacological interpretation 146 

To further explore agents in the external evaluation set, we selected overlapping compounds 147 

from the top 200 predictions of each model. This resulted in 55 agents. The predictions of 148 
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those ranged from 0.658 to 0.864 for the logistic regression-based model, from 0.211 to 0.771 149 

for the XGBoost model, and from 0.336 to 0.682 for Chemprop. Fifteen (27.3%) were 150 

fluoroquinolones and 6 (10.9%) were thiazides, two drug classes commonly reported as 151 

examples of drugs inducing photosensitive reactions. Other drug classes featuring reported 152 

photosensitizers included 2 tetracyclines, 2 coxibs, 2 sulfonamides (all 3.6%), 1 sulfonylurea, 153 

and 1 2-arylpropionic acid derivative (profen) (both 1.8%). Additionally, one of the drugs 154 

(furosemide) was part of the original compilation of photosensitizing drugs but not included in 155 

the training data due to the assembling strategy (see Methods). Literature research regarding 156 

published evidence on photosensitizing effects of the remaining 25 agents was conducted. 157 

However, since the external evaluation data mostly consisted of molecules not used in clinical 158 

medicine most queries had no results. Nevertheless, for rufinamide and meticrane reports on 159 

potential photosensitizing effects were discovered while fomesafen is a light-dependent 160 

peroxidizing herbicide relying on photoactivation. 161 

Fluoroquinolones  162 

Since the cumulative body of evidence regarding photosensitive effects induced by 163 

fluoroquinolones is among the most profoundly investigated in the field, we conducted a 164 

sensitivity analysis on this subgroup of overlapping compounds. It has been previously shown 165 

that the photosensitizing ability of fluoroquinolones is largely mediated by the structural 166 

components at the R118 and R819,20 position. A schematic depiction of the fluoroquinolone core 167 

structure and the R1 and R8 positions is given in Figure 2. Using the mean of all three models 168 

it was observed that the algorithms associate aryl halides incorporating 2 fluor atoms at the R1 169 

position with a higher probability of causing photosensitive eruptions, followed by mono-170 

fluorinated aryl halides at R1, and single fluor atoms at R1 or R8. Absence of fluor often 171 

accompanied by a bond between the R1 and R8 position resulted in lower average predictions. 172 

(see Table 2) Additionally, we conducted an automated interpretation of the molecules to 173 

identify the substructures driving prediction scores of the deep learning model using a Monte 174 

Carlo Tree Search incorporated in Chemprop. The results are shown in Supplementary Figure 175 
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S1. In all cases either the bicyclic core structure or one of the two cyclic components serving 176 

as the foundation of fluoroquinolones were identified as the responsible substructure. This 177 

further validates the feasibility of deep learning models to identify chemical compounds 178 

capable of inducing photosensitive reactions.  179 
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Discussion 180 

Based on the obtained prediction metrics both machine and deep learning models appear to 181 

facilitate molecular property prediction regarding photosensitizing effects. While testing simple 182 

(logistic regression) and complex (XGBoost) machine learning algorithms as well as a deep 183 

learning model (Chemprop) the performances were comparable. XGBoost showed the highest 184 

ROC-AUC both during training and in the test partition. The distribution of prediction scores 185 

was skewed with Chemprop and XGBoost, which indicates that they might pattern match 186 

photosensitizing properties more accurately. With logistic regression the distributions were 187 

normal suggesting that overall, the model is not confident in its predictions, and therefore the 188 

cut-off between photosensitizing and non-photosensitizing features may not be clear for the 189 

model. However, XGBoost also had the biggest difference in performance between training 190 

and test sets. Since the generalization gap can be interpreted as a surrogate for overfitting 191 

during training this might indicate that more complex algorithms are prone to overfitting in the 192 

case of limited datasets as in our study. 193 

After establishing the models, they were applied to a dataset frequently used for external 194 

evaluation (tox21). Analysis of the 200 molecules with the highest predictions for each model 195 

showed some divergence as only 55 (27.5%) overlapping chemical compounds were found. 196 

Thirty of those were drugs that belong to classes frequently reported to induce photosensitivity 197 

reactions such as fluoroquinolones or thiazide diuretics, indicating solid validity. Literature 198 

research on the remaining 25 molecules retrieved sparse results. However, since the majority 199 

of molecules in the validation set are not pharmacological agents used in human medicine, 200 

this is not surprising, and for two drugs (rufinamide and meticrane) not included in the original 201 

dataset that provided classification labels, published evidence was found indicating 202 

photosensitizing abilities. A detailed subgroup analysis of fluoroquinolones in this set showed 203 

the mean prediction corresponded well with structural components of the molecules that have 204 

been reported to induce photosensitizing effects, primarily the halogens at the R1 and R8 205 

positions. Additionally, an atomic bond between those positions was correlated with lower 206 
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predictions. This could be a reflection of limited photosensitizing abilities in the absence of fluor 207 

atoms at the R1 and R8 positions, but it could also indicate that such a structure alters 208 

molecular properties. This could induce further photochemical/-biological exploration. 209 

Limitations of our models are partially based on the workflow. Since labels regarding 210 

photosensitizing effects were compiled from the scientific literature and not photobiological 211 

tests is possible that the list of photosensitizing drugs includes false positives. The low quality 212 

of evidence in this regard has been previously discussed.21 Additionally, fluoroquinolones 213 

constituted approximately 8% of the training. This could result in overweighting their structural 214 

components and thereby increase their prediction scores – the models might be biased 215 

towards them. However, while this might limit the interpretation of prediction scores of 216 

fluoroquinolones in relation to other compounds, the intra-group comparative analysis 217 

corresponded very well with photobiological data showing that within fluoroquinolones lower 218 

predictions might capture a lower risk for photosensitizing effects accordingly. While 219 

establishing models based on quantitative data from photobiological/-dermatological tests 220 

might improve the accuracy of predictions, our work shows that predicting photosensitizing 221 

effects of drugs and chemical compounds based on scientific literature is feasible. 222 

Considering the ongoing quest to optimize photosensitizers for photodynamic therapy from a 223 

pharmaceutical point of view to maximize treatment benefits while mitigating adverse effects22, 224 

the introduction of A.I. assisted molecular property prediction might hold great potential to aid 225 

these efforts.  226 
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Figures and Tables 227 

Figure 1. Histograms of prediction scores for each model in the training/validation set (A), the 228 

test set (B), and the external evaluation set (C). 229 

 230 

Figure 2. Fluoroquinolone core structure with its R1 and R8 positions (based on ciprofloxacin). 231 

 232 
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Table 1. ROC-AUC of different algorithms on the original dataset stratified by partition. 233 

Dataset Model ROC-AUC 

Training XGBoost 0.9425 

Training Logistic Regression 0.9088 

Training Chemprop 0.8939 

Test XGBoost 0.7927 

Test Logistic Regression 0.7859 

Test Chemprop 0.7785 

 234 

Table 2. Fluroquinolones within the set of overlapping drugs with the highest predictions 235 

ranked by mean score of the three models. The table depicts both the prediction scores of the 236 

three models as well as information on their substructure at the first (R1) and eighth (R8) 237 

position and whether there is a bond between them (R1-R8). 238 

Name Formula Log Reg XGBoost Chemprop R1 R8 R1-R8 

tosufloxacin C19H15F3N4O3 0.864 0.771 0.656 Aryl halide (2F) -  

temafloxacin C21H18F3N3O3 0.836 0.760 0.682 Aryl halide (2F) -  

trovafloxacin C20H15F3N4O3 0.843 0.752 0.647 Aryl halide (2F) -  

fleroxacin C17H18F3N3O3 0.790 0.757 0.597 F F  

difloxacin C21H19F2N3O3 0.823 0.707 0.607 Aryl halide (F) -  

sarafloxacin C20H17F2N3O3 0.768 0.667 0.612 Aryl halide (F) -  

rufloxacin C17H18FN3O3S 0.776 0.746 0.502 S - X 

orbifloxacin C19H20F3N3O3 0.743 0.597 0.671 - F  

marbofloxacin C17H19FN4O4 0.746 0.733 0.459 N O X 

danofloxacin C19H20FN3O3 0.774 0.665 0.444 - -  

pazufloxacin C16H15FN2O4 0.774 0.660 0.412 - O X 

ibafloxacin C15H14FNO3 0.741 0.562 0.453 - - X 

nadifloxacin C19H21FN2O4 0.704 0.612 0.365 - - X 

flumequine C14H12FNO3 0.689 0.478 0.504 N - X 

prulifloxacin C21H20FN3O6S 0.705 0.363 0.500 - -  

 239 

Supplementary Figure S1. Automated interpretation of the fluoroquinolones and the 240 

substructure associated with their photosensitizing effects. 241 

242 
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