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Abstract

Chemical reaction neural networks (CRNNs) established as the state-of-the-art tool for autonomous mechanism
discovery. While they encode some fundamental physical laws, mass- and atom conservation are still violated. We
enforce atom conservation by adding a dedicated neural network layer which can be interpreted as constraining
the model to physically realizable stoichiometries. Using the standard test cases of the original CRNN paper, we
show that the resulting atom conserving chemical reaction neural networks improve training stability and speed,
offer robustness against noisy and missing data, and require less data overall. As a result, we anticipate increased
model reliability and greater utilization of the potential of real-world data sets. We also discuss the potential of the
new atom balance layer for other applications in combustion modeling and beyond, such as mechanism reduction
and kinetic surrogate models for reactive flow simulations.

Keywords: Atom conservation, Chemical reaction neural networks, Kinetic model, Mechanism discovery, Physics enhanced
machine learning
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1. Introduction
Machine learning has emerged as an important

tool in combustion chemistry discovery, reduction
and acceleration [1]. The performance of neural net-
works for these applications is significantly improved
by implementing a priori physical knowledge in the
model’s structure. Frequently studied examples in
the combustion context are implementing the overall
mass or species balances [2, 3]. In this work we fo-
cus on implementing the atom balance in neural net-
works. Previously, this has either been done explicitly
through a soft constraint in the loss function [4, 5],
or a post-processing step [6], or indirectly by embed-
ding the stoichiometric matrix into the model’s struc-
ture [7–10]. However, in case of mechanism discov-
ery and reduction, the stoichiometric matrix is gener-
ally unknown and subject to optimization. We pro-
pose a dedicated element balance layer for neural net-
works models of chemical kinetics that enforces atom
conservation as a hard constraint without requiring
the stoichiometric matrix. We implement this layer
into the chemical reaction neural network (CRNN)
recently developed by JI and DENG [11], and demon-
strate that enforcing the atom conservation greatly in-
creases the model’s ability to identify reaction mech-
anisms from low quality data.

The CRNN is a digital twin of the classic chemical
reaction network that encodes the Arrhenius equation
(Eq. 1) and the mass-action law (Eq. 2) in a neural
network

kj = A0 · T β · exp
(
−EA

R · T

)
(1)

rj = kj ·
∏
i

a
νi,j
i (2)

with the rate constant kj of reaction j, the pre-
exponential A0, the temperature T , the temperature
exponent β, the activation energy EA, the universal
gas constant R, the reaction rate rj , the activity ai of
species i and the reaction orders νi,j .

BARWEY and RAMAN used such a digital twin to
accelerate chemical source term evaluations of large
combustion mechanisms to facilitate high-fidelity
simulations of turbulent flames [12]. The main ad-
vantage of the CRNN, however, is the ability to au-
tonomously discover and reduce mechanisms using
readily available integral reactor measurements with
the neural ordinary differential equation (neural ODE)
technique [13]. JI and DENG used this approach to
obtain reaction mechanisms from several chemical
and biochemical engineering systems [11]. It has fur-
ther been applied to biomass pyrolysis [3], decom-
position of energetic materials [14–16], hydrogen as
well as methane combustion [17], and HyChem mod-
els [18].

The current CRNN implementation infringes the
fundamental law of atom conservation. We enforce
this law through our atom balance layer, building on
the original CRNN implementation. The resulting

atom conserving chemical reaction neural networks
(AC-CRNN) increase training stability and speed,
provide robustness against noisy and missing data,
and reduce the overall amount of data required. This
is an important step to learn from imperfect data as
they are typically obtained from experiments.

For simplicity, we will consider the standard exam-
ple systems from JI and DENG [11]. We showcase the
superior AC-CRNN performance under the influence
of three realistic imperfect data scenarios: 1. limited
data availability, 2. noisy data and 3. systematic mea-
surement errors.

2. Atom Conserving Chemical Reaction Neural
Networks

Conventional CRNNs find the stoichiometric coef-
ficients of a reaction mechanism by freely optimiz-
ing the weights of their output layer. However, not
all combinations of stoichiometric coefficients satisfy
the fundamental law of atom conservation. A phys-
ically realizable set of stoichiometric coefficients νi
fulfills the equation

0 =
∑
i

Nk,i · νi (3)

with the molecular matrix N that contains the num-
ber of atoms of type k per species i [19]. In other
words: All physically realizable vectors ν are in the
null space of N. A basis B of this null space is conve-
niently computed by the MATLAB function null or
the Julia function LinearAlgebra.nullspace
which are based on singular value decomposition.
Now all valid sets of stoichiometric coefficients can
be expressed as a weighted sum of the basis vectors

ν = B · w. (4)

A neural network that learns the weights w and mul-
tiplies them with the basis B to obtain stoichiomet-
ric coefficients will always fulfill atom conservation.
We implement Eq. 4 by adding a dedicated element
balance layer to the CRNN (Fig 1) and call the re-
sulting architecture atom conserving chemical reac-
tion neural networks (AC-CRNN). The matrix B has
Nkey = Nspecies − rank(N) columns, which is fewer
than the total number of species present in the reac-
tion system Nspecies [20]. Therefore, the element bal-
ance layer does not only enforce atom conservation
but also reduces the number of trainable parameters.
In our AC-CRNN, the stoichiometric coefficients are
further used to derive the reaction orders of the reac-
tants using the ReLu function

ReLu(x) = max(x, 0) (5)

To further increase the interpretability of the AC-
CRNN, we propose to apply the concept of key
species by converting the null space basis matrix B
into reduced column echelon form. This means that
the first Nkey rows contain a identity matrix. The ma-
trix conversion can be conveniently achieved using
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Fig. 1: Schematic representation of an AC-CRNN reaction
node. It encodes the law of mass action, the Arrhenius law
and in contrast to the original CRNN also the atom conserva-
tion. Latter is achieved by multiplication of the key species
coefficients with the conservation matrix B∗. Multiple such
reaction nodes are combined in a single hidden layer to build
up a chemical reaction neural network. Trainable parameters
are highlighted in red.

the rref function in MATLAB or the Julia library
RowEchelon.jl. We call this basis the atom conserva-
tion matrix B∗. For test case 1,

B∗ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

−1/3 −2/3 −1/3 −1/3

 (6)

Here, the first Nkey weights w are directly mapped
to the first Nkey stoichiometric coefficients. We call
those species whose coefficients are identical to the
learned weights w the key species. Which species
are treated as key species can be chosen by the user
through the order of the species in the vector ν. Al-
ways the first Nkey species are treated as key species.
The coefficients of the other species are a weighted
sum of the key species coefficients.

Altogether, implementing the element balance
layer adds a minimum amount of additional code to
the original CRNN. The matrix B* is computed in a
fully automated preprocessing step. The code for this
step is supplied in the appendix. Due to the reduced
number of trainable parameters and the regularization
provided by the additional physical constraints, AC-
CRNNs generally train faster than the corresponding
CRNN. All results presented in this work are obtained
using the basis B∗. It has been found, that the AC-
CRNN that uses B∗ shows better performance than
the one using the unconverted basis B. Further, the
performance depends on the choice of the key species.

3. Methods
In practice, species concentrations at certain posi-

tions of the reactor are measured instead of source
terms. Therefore, the CRNN is trained in the con-
text of a neural ODE [13], i.e. wrapped with an
ODE solver. The resulting CRNN concentration pro-
files cCRNN(t) are compared to the provided concen-
tration data cdata(t). We use the Julia language im-
plementation of CRNN available at https://gi
thub.com/DENG-MIT/CRNN. It uses the differ-
ential programming package DifferentialEquations.jl
[21] to enable backpropagation of gradients through
the ODE solver. The mean absolute error MAE loss
(Eq. 7) of the normalized concentrations (Eq. 8) is
used and minimized using the ADAM optimizer [22]
to adjust the CRNN parameters.

loss = MAE
(
cCRNN

norm (t), cdata
norm(t)

)
(7)

cnorm =
c(t)

range(cdata(t))
(8)

In test case 1 the initial CRNN parameters are ran-
domly drawn from a standard normal distribution and
divided by 1000. The ADAM algorithm is used for
15 000 epochs with a learning rate of 0.001, an ex-
ponential decay for the first (0.9) and second (0.999)
momentum estimate and a weight decay of 10−8. In
test case 2 the initial CRNN parameters are randomly
drawn from a normal distribution and divided by 10,
for lnA0 and activation energies 0.8 is added and ab-
solute values are used for activation energies. The
ADAM algorithm is used for 10 000 epochs with a
learning rate of 0.005, an exponential decay for the
first (0.9) and second (0.999) momentum estimate and
a weight decay of 10−6.

4. Results and Discussion
We demonstrate, that embedding the atom balance

into neural networks facilitates mechanism discov-
ery. Test case 1 is a demonstration system consider-
ing mass conservation to reduce the required amount
of training data. Test case 2 is a realistic example
of biodiesel production kinetics where embedding the
atom balance increases the model’s robustness against
noise and offsets in the training data. Finally, we dis-
cuss further applications in surrogate modeling and
mechanism reduction.

4.1. Test Case 1 - Trimerization
Test case 1 is a representative example for mech-

anism discovery introduced by SEARSON et al. [23]
and describes the trimerization of a generic molecule
A. This could for example be the formation of ben-
zene from ethyne or the homotrimerization of pro-
teins, such as porins [24] or hemagglutinin [25]. The
reaction system consists of five species called A, A2,
A*, A**, and A3 that are involved in four reactions:
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Fig. 2: Predicted concentration profiles obtained by fitting standard CRNN and atom conserving CRNN (AC-CRNN) to 20
synthetic integral reactor experiments with 10 noisy concentration measurements each are compared with the reference model
(groud truth). The CRNN overestimates the consumption of species B and looses about 2% of the total mass. The AC-CRNN is
biased towards a physically plausible solution by the embedded element balance and therefore hardly distinguishable from the
exact solution.

2A
k1−−→ A2

A
k2−−→ A∗

A∗ k3−−→ A∗∗

A2 +A∗∗ k4−−→ A3

The rate constants k1 − k4 are not temperature de-
pendent and are assumed to have the values 0.3, 0.1,
0.2, and 0.13 respectively. Initial concentrations of
species A and A2 are randomly chosen with uniform
distribution between 0.2 and 1.2, the other species
are not present in the initial mixture. Experimen-
tal concentration measurements are emulated by in-
tegrating this initial value problem with the Tsitouras
5/4 Runge-Kutta method [21] up to a reaction time of
40 s, sampling data at equidistant time intervals and
adding 5% gaussian noise.

JI and DENG showed that CRNNs are able to re-
cover the mechanism from 20 of those simulated
isothermal experiments with 100 data points each
[11]. We test the CRNN performance for even fewer
data (10 points per experiment), increasing the prob-
lem difficulty significantly. To tackle this problem,
we introduce atom conserving CRNN (AC-CRNN)
that embed the atom conservation matrix B∗ into the
CRNN (Fig. 1). The conservation matrix is obtained

Table 1: The molecular matrix shows the composition of the
species of the trimerization case.

A
A 1
A2 2
A* 1
A** 1
A3 3

as the reduced column echelon form of the null space
basis of the molecular matrix (Tab. 1) using the MAT-
LAB functions null and rref.

In this example, the rank of the molecular matrix is
one, so there will be one dependent species and four
key species. Without loss of generality, we choose
species A3 as the dependent species. The resulting
atom conservation matrix (Eq. 6) is used to calculate
the stoichiometric coefficient of A3 as a weighted sum
of the coefficients of the other four species. This guar-
antees atom conservation and reduces the number of
trainable parameters.

Figure 2 shows that the original CRNN models
tends to overestimate the formation of the interme-
diate species. Resulting inconsistencies in the sto-
ichiometric matrix of the model lead to a violation
of atom conservation. The AC-CRNN, however, is
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Fig. 3: Fraction of successful mechanism discovery attempts psuccess of atom conserving AC-CRNN compared to standard
CRNN in various scenarios of realistic data flaws. Due to the additional physical bias (here, atom conservation), AC-CRNN are
much more robust against left: reduced data availability middle: systematic measurement errors and right: lower data quality.

forced to obey atom conservation and therefore much
more likely to identify the correct mechanism. For
example, AC-CRNN solutions that overestimate the
formation of intermediate species automatically un-
derestimate other species and are therefore penalized
with a higher loss.

To further characterize the performance of the net-
works, we discuss the success probability psuccess of
the training, see Saerson et al. [23]. It is defined
as the fraction of successful mechanism discovery at-
tempts from different initial model states. Here, we
consider a mechanism discovery attempt successful,
if every estimated stoichiometric coefficient differs by
less than 0.1 from the ground truth. The success prob-
ability of the original CRNN drops from 25% using
100 data points to 4% using only 10 data points per
experiment (Fig. 3). Enforcing atom conservation in-
creases the success probability to 44% and 12% re-
spectively.

4.2. Test Case 2 - Biodiesel Production
Test case 2 considers biodiesel production, as stud-

ied by BURNHAM et al. [26]. DARNOKO and
CHERYAN [27] described the transesterification of
palm oil derived palmitin glycerides (TG, DG, and
MG) with methanol MeOH to smaller methyl esters
RCO2Me by three consecutive reactions:

TG+MeOH
k1−−→ DG+RCO2Me

DG+MeOH
k2−−→ MG+RCO2Me

MG+MeOH
k3−−→ GL+ RCO2Me

The temperature dependence of the rate constants is
described by the arrhenius equation with the preex-
ponentials A0 (18.60, 19.13, and 7.93), the activa-
tion energies EA (14.54, 14.42, and 6.47) kcal/mol
and a temperature exponent of 0 for all three reac-
tions. The Tsitouras 5/4 Runge-Kutta method with
automatic switching to an order 2/3 L-Stable Rosen-
brock method [21] is used to integrate the potentially
stiff initial value problem.

A CRNN is used to identify reaction orders, sto-
ichiometric coefficients, activation energies and the

preexponential factors. For this, 20 experiments with
random initial concentrations between 0.2 and 2.2
arbitrary units at temperatures randomly chosen be-
tween 323K to 343K are provided. Each experiment
consists of 50 noisy (5% gaussian noise) concentra-
tion measurements taken after a time step of 1 seconds
each. Collecting such an amount of precise measure-
ments is experimentally very challenging, so after we
showed with test case 1 that AC-CRNN provide ac-
curate results even with small amounts of data, we
now test the robustness against systematic measure-
ment errors in the provided training data in form of a
sensor offset that overestimates the concentrations of
species TG by 0.2.

Table 2: The molecular matrix shows the elemental compo-
sition of the species of the biodiesel production case.

C H O
TG 51 98 6
MeOH 1 4 1
DG 35 68 5
MG 19 38 4
GL 3 8 3
RCO2Me 17 34 2

The system contains six species and can be bal-
anced in terms of the three elements carbon, hydrogen
and oxygen (Tab. 2). Without loss of generality we
choose methanol, the di- and the triglyceride as key
species. The stoichiometric coefficients of the other
three species are inferred from the key species coeffi-
cients using the atom conservation matrix

B∗ =


1 0 0
0 1 0
0 0 1
−3 1 −2
2 −1 1
0 −1 0

 (9)

where the rows correspond to all species (TG, MeOH,
DG, MG, GL, and RCO2Me) and the columns corre-
spond to the key species (TG, MeOH, and DG). Bal-
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Fig. 4: Biodiesel production concentration profiles obtained from mechanism discovery by standard CRNN and atom conserving
CRNN (AC-CRNN) using synthetic measurements from 20 integral reactor experiments. To mimic realistic concentration
measurements the data given for model training (”Experiment”) are perturbed by 5% gaussian noise. The triglyceride data are
additionally shifted by an offset of 0.2. As the CRNN adapts to the artificially high concentrations in the reactant (TG), too much
of the glyceride products (DG and MG) is formed, resulting in a significant deviation from the element balance. The AC-CRNN
is constrained by the embedded element balance and therefore not affected by the sensor offset.

ancing in terms of molecular groups such as glycerol,
acid rest, and methyl rest would lead to the same con-
servation matrix.

Figure 4 shows a typical CRNN prediction in case
of a sensor offset. As the model adapts to the erro-
neously high concentrations of the reactant TG, an
excessive amount of the other glycerides DG and MG
is formed. This leads to an error in the atom bal-
ance by more than 20%. The AC-CRNN has 37.5%
fewer parameters to optimize and trains correspond-
ingly faster. Further, it is stable towards the sensor
offset (Fig. 4) and shows a perfectly closed atom bal-
ance. It successfully recovers the correct mechanism
in 70% of the runs, whereas the original CRNN is not
successful in any out of 60 runs. Similarly, increasing
the amount of gaussian noise applied to the concen-
tration measurements from 5% to 40%, the success
probability of the standard CRNN drops to 0%, while
the AC-CRNN is remains successful in 60% of the
runs (Fig. 3). Here, mechanism discovery is consid-
ered successful, if every estimated stoichiometric co-
efficient differs by less than 0.2 from the ground truth.

4.3. Applications of the atom balance layer beyond
CRNNs

Because the proposed atom balance layer can be
combined with any feed forward neural network that
predicts kinetics, it should find widespread use in

combustion and beyond, for example in surrogate
modeling and mechanism reduction.

Aside from CRNN, our element balance layer
should be useful in conjunction with other network
structures that discover reaction mechanisms and thus
lack an a priori stoichiometric matrix. One example
is the PolyODEnet by WU et al. [28].

The proposed key species approach can be applied
intuitively to small reaction systems without explic-
itly using the matrix B∗. This is a common way to
achieve atom conservation in surrogate models of cat-
alytic systems [29–33]. Our element balance layer
formalizes this approach, allowing its application to
more complex systems.

Finally, our approach is easily extended to also im-
plement the charge balance relevant for redox- and
electrochemical reactions.

5. Conclusion
Chemical reaction neural networks (CRNN) have

established as the most advanced tool for autonomous
mechanism discovery and are used in many fields,
such as (bio-) chemical engineering, pyrolysis, and
combustion. While they encode the law of mass ac-
tion as well as the Arrhenius law, mass- and atom con-
servation are still violated.

We enforce the fundamental law of atom conser-
vation by adding a dedicated neural network layer
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which can be interpreted as constraining stoichiomet-
ric coefficients to physically realizable combinations.
The resulting atom conserving chemical reaction neu-
ral networks (AC-CRNN) improve training stability
and speed, offer robustness against noisy and missing
data, and require less data overall. As a result, we an-
ticipate increased model reliability and greater utiliza-
tion of the potential of real-world data sets. Our pro-
posed element conservation layer is compatible with
any feed forward neural network that predicts kinet-
ics and should therefore be useful also for surrogate
modeling and mechanism reduction.
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Appendix

The generation of the atom conservation matrix B∗

from the molecular matrix N is demonstrated using
the following MATLAB code using the example of
test case 1:

N = [1,2,1,1,3]’;
B_star = rref(null(N’)’)’
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[31] F. A. Döppel, M. Votsmeier, Efficient neural network
models of chemical kinetics using a latent asinh rate
transformation, Reaction Chemistry & Engineering
8 (10) (2023) 2620–2631. doi:10.1039/D3RE
00212H.
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