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Abstract: Porphyrins have emerged as versatile and highly effective photosensitizers in the 

field of photodynamic therapy (PDT). This promising therapeutic approach relies on the light-

induced generation of reactive oxygen species (ROS) by photosensitizing agents. This 

comprehensive review explores the multifaceted role of porphyrins across various PDT 

applications, encompassing anticancer PDT, immuno-PDT, antimicrobial PDT, and antiviral 

PDT. Porphyrins exhibit the potential to serve as organic supramolecular platforms for 

developing various photosensitizers (PSs) tailored for specific PDT modalities. The 

exceptional capacity of porphyrins to specifically accumulate in target cancer cells or 

microorganisms, their proficiency in generating ROS upon exposure to light, and their 

capability to amass within cell mitochondria to facilitate apoptosis establish porphyrins as 

invaluable assets in a wide array of therapeutic applications. Ongoing research endeavours and 

clinical investigations continually unveil the vast potential of porphyrin-based PDT in 

combatting a wide range of diseases, spanning from cancer and infections to viral ailments. 

Furthermore, porphyrins hold promise in addressing drug-resistant cancers and antimicrobial 

resistance through non-invasive PDT, offering efficient alternatives to commercially available 

PDT drugs. In the context of advanced cancer management, porphyrin-based PDT offers the 

prospect of combinatorial therapy, enabling a sequence of immunogenic post-PDT actions that 

can effectively overcome anticancer resistance and tackle metastatic cancers. The future of 

PDT appears promising, with porphyrin scaffolds expected to play pivotal roles in advancing 

this field. 

INTRODUCTION: Heliotherapy or phototherapy as a therapeutic model traces its origin back 

to ancient Indian, Chinese, Greek, and Egyptian civilisations.1-2 The earliest example of the 

treatment of vitiligo in India through the use of photochemotherapy involved the ingestion of 

leaves of Psoralea corylifolia by the patients followed by exposure to solar radiation, the 

therapeutic effect being mediated by furocoumarins present in the leaves. Physicians across 

other ancient civilisations also realised the healing effect of solar radiation in the treatment of 

skin diseases like psoriasis, vitiligo, rickets, cancer, and psychosis.3 Heliotherapy was used as 
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a tool by Hippocrates, an ancient Greek physician, in developing treatment regimens for a 

variety of skin diseases.4 In 18th and 19th century France, exposure to sunlight was part of a 

standard treatment protocol for diseases like tuberculosis rickets, scurvy, rheumatism, and 

muscle weakness, among others.3 The 1903 Nobel prize awardee Niels Finsen applied red light 

to treat smallpox pustules successfully; he used UV–radiation to treat cutaneous tuberculosis. 

He also has been credited to have developed the use of carbon arc therapy for the treatment of 

cutaneous tuberculosis. However, Oscar Raab, under the supervision of Professor Herman von 

Tappeiner, discovered that paramecium exposed to acridine was susceptible to light exposure 

5 and thus laid the foundation stone for modern scientific explorations of photodynamic 

therapy.  The observed effect, greater than that of acridine or light alone, was labelled as 

“Photodynamische” or “Photodynamic effect” by Tappeiner. Tappeiner and Jesionek were able 

to treat skin tumours using a combination of eosin and white light.6 Ledoux-Lebards first 

demonstrated that molecular oxygen was an essential requirement in such processes,7 followed 

by Walter Straub and Tappeiner (together with Jodlbauer), independently.8 One of the most 

significant findings in developing PDT was the discovery of Hp by Scherer.4 He achieved its 

isolation from dried blood through the addition of H2SO4. Subsequently, Thudichun (1867) 

described the spectral properties of the mixture of compounds.4 The name hematoporphyrin 

(Hp) was coined by Hoppe-Seyler.4 The effect of light on microorganisms, erythrocytes, 

animals and humans in the presence of Hp was studied between 1908 and 1913. Experiments 

on white mice by Hausman led him to realise that the phototoxic effect was dependent on the 

PS and light. Consequently, he hypothesised that the peripheral tissue damage was linked to 

the observed phototoxic effect.4, 9 A German doctor, Friedrich Meyer Betz (1912), 

intravenously injected himself with 200 mg of Hp and experienced oedema and 

hyperpigmentation for months.4, 10-11 Policard (1925) through his experiments on experimental 

rat sarcomas and porphyrins observed the characteristic brick red fluorescence post excitation 

with white light.4, 11 Progress in PDT thereafter remained dormant for several decades partly 

due to the synthetic challenges to obtain alternatives of Hp. Porphyrins and their derivatives 

have gained widespread usage as photosensitizers (PSs) in cancer treatment due to their 

favourable characteristics, including long-lived triplet excited states, a visible absorption 

spectrum, and efficient phototoxicity against cancer cells.12 Their clinical application dates 

back to the 1940s when they were employed in disease diagnosis and demonstrated an affinity 

for accumulating in tumour tissues.13-18 A mention must be made here of Auler and Banzer 

(1942), who reported the localisation of porphyrins in tumours in tumour-bearing rats and the 

lymph nodes.13 Research studies by Figge et al.14-16 and Rasmussen-Taxdal et al.17 accurately 
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determined tumours in patients and tumour-bearing animals by exploiting the fluorescence 

properties of natural porphyrins. The same was achieved by Winkelman (1961) using 

hematoporphyrin derivatives (HpD) and synthetic porphyrins.19-20 However, Kelly and Snell 

were credited with the first human study on the selective accumulation of 

tetraphenylporphinesulfonate in cancerous bladder cells and the subsequent elimination of 

tumorous tissue through illumination with light.21 Further, Dougherty et al. successfully treated 

a variety of cutaneous lesions using HpD as PSs and a light source.22 Since then, the 

development of better synthetic methods for obtaining porphyrins and other tetrapyrrolic PSs 

and their multifunctional derivatives and research into the applications of PDT to cancer, anti-

microbial and antiviral therapeutics have garnered much-needed attention.23-25 

1.1.1 Cancer Photodynamic Therapy: 

PDT in the modern essence involves the synergistic action of three essential components, viz. 

an appropriate light source, a photosensitiser (PS) and molecular dioxygen to bring about 

tumour ablation and destruction of unwanted cells.2, 23, 26-29 The primary process in PDT begins 

with the administration of PS to a patient’s body. The PS is selectively up-taken by the rapidly 

dividing malignant cells, following which a radiation source of a specific wavelength irradiates 

the affected tumorous area. The absorption wavelength of the PS must be complementary to 

the wavelength of light used.30 This radiation exposure activates the PS, which converts 

physiological dioxygen to ROS through either an energy transfer or an electron transfer 

process, as described in more detail in section 1.2. The ROS produced, in turn, brings about 

cell death through a combination of the apoptotic and necrotic pathways.27, 31-34 PDT can induce 

an acute inflammation that can activate an immune response against the tumour cells and also 

lead to the destruction of tumour vasculature, disrupting oxygen and nutrient supply, thereby 

creating a hypoxic environment which ultimately leads to cell death.27, 35 The link between 

induction of immune response (in vitro and in vivo) and cell-death mode has been investigated 

by many a research groups with contradictory outcomes. While some reports indicated an 

apparent efficacy of apoptotic cells at inciting an immune response,27, 32-33 others suggested 

that necrotic tumours cells performed better at eliciting an immune response.27, 31, 34 Necrosis 

afflicted cells release their cytoplasmic content into extracellular space through the damaged 

plasma membrane invoking an inflammatory response that attracts leukocytes into the tumour 

environment thereby boosting anti-tumour immune response.27, 35 In apoptotic cells, however, 

these contents are caged within the intact plasma membranes and subsequently phagocytosed 

by macrophages.27, 35 PDT thus affects tumour cells through three main pathways, viz. i) ROS 
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production that kills cancer cells, ii) production of acute inflammation triggering an immune 

response against the tumour and iii) destruction of tumour vasculature, creating an environment 

that is inconducive to cellular growth and development.27, 35 The effect of PDT is a result of all 

three therapeutic pathways combined together.27, 35 Central to an effective PDT treatment 

regime are PSs, a majority of which use the porphyrin macrocycle as a template. This is because 

of the ease of tunability of the photochemical and thus photobiological aspects of the 

macrocycle through structural modifications, high biocompatibility, and selective cellular 

uptake.36-37 An ideal PSs should preferentially accumulate in the tumours, have a high quantum 

yield of 1O2 generation, have low dark cytotoxicity, high phototoxicity, be amphiphilic and 

preferentially absorb in the therapeutic window (600-900 nm) region.35, 38-43 

1.1.2 Anti-microbial Photodynamic Therapy: 

The applications of porphyrins as anti-cancer Photodynamic Therapy (cPDT) agents have been 

extensively researched upon.35, 37, 44-46 Several research groups have devised porphyrin-based 

photosensitisers (PSs)36-37, 47-48 and multifunctional nanoparticles (NPs)37, 49-52 that have shown 

promising results in treating specific cancer cells in vitro as well as in vivo. Parallel to the 

development of cPDT, in the last decade, another potential application of porphyrins has gained 

ground in the form of antimicrobial photodynamic therapy (aPDT).53-57 The principle is like 

cPDT, the difference being that the target species here are microbes. Microbial strains tend to 

develop resistance to prolonged and recurrent usage of antibiotics.53 This has become a serious 

global public health problem, leading to the failure of many a treatment for infectious diseases. 

aPDT can address this issue of drug resistance since this technique utilizes light energy for the 

destruction of microbial cells.58 The key element responsible for a successful aPDT effect is 

the PS. Like in cPDT, the chief factors that are considered when deciding upon an ideal PS 

include sufficiently strong absorption in the visible region, photostability, high quantum yield 

of 1O2 generation, ease of synthesis and biocompatibility. Porphyrin and its analogues score on 

all counts; they have unique tunable physiochemical properties that make them ideal for use as 

PSs. Moreover, the microbicidal effects of these PSs are manifested through the generation of 

ROS that affects multiple targets on pathogens, thereby eliminating the possibility of antibiotic 

resistance.59 The tetrapyrrolic macrocycles can be derivatised by modifying their meso or β-

pyrrolic positions or through the insertion of para or diamagnetic metal ions in their central 

core, which alters their properties and increases their efficiency as PSs.37, 60  
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1.1.3 Anti-viral Photodynamic Therapy: 

Akin to the therapeutic developments of cPDT and aPDT, the applications of PDT against 

viruses have gained much ground.61-63 Porphyrin derivatives have been reported to show 

excellent dark toxicities against viruses like HIV, HSV-1 and 2, equine herpesvirus type 1, and 

Zika virus among others.64-74 This naturally spurred research into viruses' photodynamic 

inactivation (PDI).59, 75 The first report of a PDT-based inactivation of enveloped viruses was 

published in 1990.75 The authors studied photoinactivation of HSV-1 and HIV-1 using 

sapphyrin and dihematoporphyrin (DHE). The results indicated a 50% HIV-1 eradication with 

sapphyrin at a test concentration of 4 M, at 16 M concentration, the compound affected a 

complete photo-annihilation of HIV-1. The inhibitory effects were like DHE. None of the 

compounds was toxic against the uninfected test H9 leucocyte cells in the absence of light. 

However, significant dark toxicity was also observed in HIV-1-infected H9 cells. Since then, 

several research groups have explored PDI of viruses using a diverse range of compounds like 

curcumins, perylenequinones, hypocrellins and related compounds, metal oxides and inorganic 

materials, FDs, porphyrin and porphyrinoids, psoralens, riboflavin and others.61-62 Most of the 

reports cite some degree of increased antiviral activity on irradiation and rely heavily on the 

hypothesis of light-induced damage to vital biomolecules.62 In some cases, ROS produced as 

a result of photosensitisation most likely brings about the viricidal effect, yet other reports 

indicate oxygen-independent anti-viral activities. The situation is complicated by a class of 

compounds showing light and dark toxicity effects. However, the mechanism of PDI of viruses 

still requires firm experimental verification. 

1.2 Photodynamic Therapy: Process 

Photodynamic therapy (PDT) employs a combination of light, molecular oxygen and a PS to 

selectively terminate cancerous cells and tissues.35 A typical PDT treatment involves the 

injection of a PS into a patient’s body. Preferential accumulation of the drug takes place in 

abnormal rapidly dividing cells. It is followed by irradiation of the affected area with radiation 

of a suitable wavelength. The chain of events commences with the absorption of light by the 

PS, followed by several radiative and non-radiative processes that help generate ROS, 

ultimately instrumental in inducing cell death and tissue damage. The various processes 

involved in PDT have been outlined in Figure 1.5.1. 
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Figure 1.2.1: Processes involved in photodynamic therapy. 

The primary event, applicable to cPDT, aPDT or PDI of viruses, is the excitation of the PS to 

a singlet excited state (S1) on irradiation with a suitable wavelength. The lifetime of the S1 state 

is of the order of nanoseconds, making the species too short-lived to affect any significant 

molecular damage. The S1 state decays either by a radiative singlet to singlet process 

(fluorescence) or via a non-radiative inter-system crossing (ISC) from S1 to excited triplet state 

(T1). The T1 state has a comparatively longer lifetime, typically in the micro–millisecond range, 

and as such the T1 excited sensitiser has greater potential to participate in the photodynamic 

process. The “photodynamic effect” is modulated by energy or electron transfer from the 

photosensitiser to the organic substrate or molecular oxygen. Quenching proceeds either by a 

Type I mechanism involving electron transfer leading to the generation of ROS like peroxide 

(O2), superoxide (O2•) and hydroxyl radical (HO•) or a Type II mechanism involving energy 

transfer to triplet state molecular oxygen (3O2) that results in the formation of reactive 1O2.
35, 

76 The photoproducts are cytotoxic, and they initiate biochemical events that eventually result 

in the destruction of target species (tumour cells, microbes or viruses) through the multimodal 

mechanism.35 PDT induces cell death through apoptosis and/or necrosis.27, 35 PDT also causes 

shut down of tumour microvasculature, creating hypoxia conditions that are not conducive to 

tumour cells’ growth. At the same time, PDT results in acute inflammation, which triggers an 

immune response.27, 35 PDT-induced immune response may either be immunosuppressive or 
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immunostimulatory, depending upon the treatment regimen.35 Usually, topical administration 

of PS, high fluence rate and a large area of illumination is associated with 

immunosuppression.35, 77 In contrast, immunostimulatory effects can be seen in non-topical 

PDT treatment regimes.35  

Apoptosis, a mode of programmed cell death, is characterised by cessation of cellular growth 

and division ultimately resulting in controlled cell death with no spillage of cytoplasmic content 

in an extracellular environment.27, 35, 78 It is an energy-dependent and genetically regulated 

process.35, 78 Distinguishing feature of apoptosis include enzyme-dependent biochemical 

processes, cell shrinkage, membrane wrinkling, and the formation of apoptotic bodies, the 

plasma membrane remains intact during the process.35 Necrosis, on the other hand, involves 

uncontrolled cell death, rupture of the plasma membrane and spillage of cytosolic content into 

the extracellular environment. Tissue damage and loss of homeostasis result in acute 

inflammation commenced by the releasing of inflammation promoters like cytokines, growth 

factors and protiens.27, 35 These in turn, draw the host’s immune cells like neutrophils, mast 

cells, macrophages, and dendritic cells, into the damaged tissue in order to restore homeostasis. 

Macrophages phagocytise the damaged tumour cells. Macrophages also present antigens to 

CD4 helper T lymphocytes, which subsequently activate CD8 cytotoxic T lymphocytes, which 

can identify and neutralize any tumour cell and remain in circulation for long periods, thereby 

ensuring long term anti-tumour immunity.27, 35, 77 

Not all drugs qualify as suitable photosensitiser to be used in PDT; PSs should meet specific 

criteria: The PS should be (1) chemically stable, (2) amphiphilic, (3) capable of generation of 

1O2 in high quantum yield (ΦΔ), (4) non-cytotoxic in the dark, (5) having high affinity for 

tumour cells, and (6) capable of rapid accumulation in cancerous tissues. Besides, rapid 

clearance from patients and a high molar absorption coefficient (ε) in the biological window35, 

38-43 (600–900 nm) region are an added advantage. Absorptions at longer wavelengths (>650 

nm) ensure deeper tissue penetration.35-36, 40, 79-81 

PDT has expanded in the last two decades to include two new treatment modalities: aPDT, and 

PDI of viruses.25-26, 61, 75, 82-83 Like in cPDT; the photodynamic effect depends on ROS 

generation through a type-I or type-II mechanism, which destroys target entities. The target 

structure could be bacterial cell membranes, lipid bilayers or protein envelopes of viruses, 

protein capsids and nucleic acids.61 Factors affecting photodynamic inactivation include net 

charge, and structural features of the PSs, the wavelength of irradiation, effective uptake of PSs 
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and availability of molecular oxygen.84 One of the most significant advantages of aPDT and 

PDI of viruses is the non-dependence of treatment protocol on any specific receptor 

interaction.61 The consequence is the inability of the treated bacteria (or viruses) to develop 

resistance against the mechanism of action.61, 85 

1.3 Photosensitisers: 

 

PSs are specific molecules that mediate energy or electron transfer processes. In terms of PDT, 

PSs absorb suitable radiation and generate ROS or radicals by specific pathways (Fig 1.5.1); 

the ROS or radicals generated are primarily responsible for initiating cell damage. Over the 

years, a wide range of molecules have been employed as PSs, however, the tetrapyrrolic 

macrocycles have been the most studied and most applied.35-36, 79-81 This is due to specific 

properties like selective uptake in cancerous tissue, absorption in the therapeutic window 

region,35, 38-43 and low dark toxicity. The porphyrins constitute the first-generation PSs; these 

had adsorption in the lower wavelength side of the biological window. The second-generation 

PSs include porphyrin derivatives and synthetics made from the 1980s onwards. These had 

absorptions at a comparatively longer wavelength in the biological window region. The third-
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generation PSs, on the other hand, are multifunctional entities with improved tumour targeting 

capability, generally achieved by conjugation of a PS molecule with antibody conjugates or 

through nanoencapsulation, or moieties capable of performing therapeutic, diagnostic as well 

as targeting functions.35, 86-98 

Ideal PSs are molecules that can be activated by specific wavelengths of light, typically in the 

visible or near-infrared range, to produce reactive oxygen species (ROS) that can destroy target 

cells or tissues. The characteristics of an ideal PS can vary depending on the specific 

application, but generally, it should possess the following attributes: 

1. High absorption in the therapeutic window: Ideal PSs for cancer photodynamic therapy 

(PDT) should possess a high absorption capacity in the therapeutic window range of 

600-800 nm. This allows for deeper tissue penetration and minimizes damage to 

surrounding healthy cells. 

2. Efficient generation of reactive oxygen species (ROS): PSs should have excellent 

efficiency in generating reactive oxygen species upon light activation. ROS, such as 

singlet oxygen, are responsible for inducing cytotoxic effects and damaging cancer 

cells. 

3. Selective accumulation in cancer cells: The PSs should possess properties that enable 

preferential accumulation in cancer cells rather than normal cells. This can be achieved 

through active targeting mechanisms, such as conjugation with tumour-specific 

antibodies or peptides, or passive targeting based on the enhanced permeability and 

retention (EPR) effect. 

4. Rapid clearance from normal tissues: After PDT treatment, the PSs should be rapidly 

cleared from normal tissues to minimize potential side effects and phototoxicity to 

healthy cells. 

5. Low dark toxicity: PSs should exhibit minimal toxicity in the absence of light activation 

to avoid unnecessary damage to healthy tissues. This ensures that the PSs remain inert 

until activated by light. 

6. Stability and biocompatibility: Ideal PSs should be stable, both chemically and 

photochemically, under physiological conditions. They should also be biocompatible 

to minimize immune responses and adverse reactions. 

7. Easy synthesis and modification: PSs should have a straightforward synthesis route, 

allowing for cost-effective production. Moreover, they should be amenable to 
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modification, facilitating the incorporation of targeting ligands or other functional 

moieties to enhance their specificity and efficacy. 

8. Photostability: PSs should exhibit high photostability, meaning they can withstand 

repeated cycles of light activation without undergoing photodegradation or loss of their 

photodynamic properties. 

9. Non-toxic degradation products: Upon light activation and ROS generation, the PSs 

should ideally degrade into non-toxic by-products that can be easily eliminated from 

the body. 

10. Compatibility with various light sources: PSs should be compatible with a range of light 

sources, including lasers and light-emitting diodes (LEDs), to allow for flexibility in 

clinical settings. 

Porphyrin and its structural analogues like chlorins and bacteriochlorins are among the most 

widely used PSs in PDT.35, 37, 49, 53, 61, 63 Over the years, a wide range of synthetic formulations 

of porphyrins have been synthesised, isolated, and evaluated for their biological activities. The 

common strategy for derivatisation included substitution reactions at the four meso- and eight 

-pyrrolic positions or addition across the -pyrrolic C=C bond, independent of the porphyrin 

electron delocalisation pathway.37 Moreover, the inner pyrrolic core of porphyrins is well 

suited for complexation with metal atoms resulting in the formation of metalloporphyrins. The 

synthetic modifications of the porphyrin macrocycles illustrate properties that are well-suited 

for the requirements of PDT. Tunable absorption (high molar extinction coefficient) and 

emission properties, coupled with a high knack for efficient electron−, energy− or hydrogen− 

transfer, superior 1O2 generation capacity under photoirradiation, selective uptake by tumour 

cells and biocompatibility make these macrocycles very attractive targets for biomedical use.37, 

53 Many porphyrin-based PSs have been approved for clinical use,37 and the synthesis and 

applications of many more have been extensively reviewed in the literature.23, 53, 61-62, 79, 99-103 

Rendering porphyrins amphiphilic through the incorporation of ionic as well as lipophilic 

groups at meso- position enhances their PDT efficacy,26, 104-106 so does functionalisation of 

porphyrins with plasmonic NPs (NPs),86, 89, 107-110 magnetic NPs,96-98, 111-114 mesoporous silica 

NPs,115-120 block copolymers,37, 121-125 supramolecular polymers37, 126-131 and carbon-based NPs 

like C60, C70, graphene oxide etc.132-143 Strategies like nano-encapsulation37, 106, 144-145 has been 

developed to address localisation of otherwise hydrophobic PSs in tumour sites. The quantum 

of progress achieved in porphyrin-based PDT is huge and commensurate with the progress in 

synthetic aspects made in the last couple of decades. Detailed reviews have highlighted various 
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aspects of scientific developments. In the work presented in the current thesis, we have focused 

on the derivatisation of porphyrins through cycloaddition reactions and hydrophilisation of the 

derivatives to explore their potential as agents for PDT. 

Figure 1.3.2: Porphyrins employed as PSs in PDT. 

Several review articles have given a comprehensive account of PSs developed over the last two 

decades for use in PDT along with their mode of function.26, 35, 44, 61-62, 80, 146 The development 

has been porphyrin centric, with various PSs based on porphyrin and its derivatives approved 

for clinical use or clinical trials.35 The list includes porphyrins, chlorins, bacteriochlorins, 

texaphyrins and pro-protoporphyrin drugs like 5-aminolevulinic acid (ALA) (Figure 1.6.1).35 

Apart from these, a host of other cationic, anionic and neutral PSs have been evaluated for their 

efficacy as PSs for PDT. A brief description of developments in this regard is included below: 

1.3.1 Cationic porphyrin PSs: 

Cationic porphyrin (CP) PSs mainly comprise meso-tetra-aryl substituted porphyrins or 

molecules having variable meso-substitution patterns bearing a net positive charge (Figure 

1.6.1.1-1.6.1.5).26, 66-67, 147-151 The simplest of the cationic PSs is 5,10,15,20-tetra-(4-
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methylpyridinium) porphyrin (TMPyP) with four meso-(4-methylpyridinium) substituents. 

Several synthetic methods have been reported in the literature to synthesise TMPyP, with the 

compound most commonly reported as an iodide, chloride or tosylate salt.152-154 TMPyP is 

among the most widely studied PSs.155-161 The compound reportedly has DNA intercalation 

properties and promotes apoptosis in a PDT treatment regime.62, 155, 160, 162 However, the high 

affinity of TMPyP for all kinds of nucleic acid is disadvantageous for it to be an ideal PS for 

cPDT, as is its lack of selectivity.26 As such, several approaches have been explored to enhance 

its therapeutic outcome in PDT, including PS formulations containing combinations of TMPyP 

and other hydrophilic PSs,151, 159 conjugations of TMPyP with graphene oxide,158, 163 Au,164-165 

Ag,166-167 iron oxide NPs,168-169 nanoencapsulation170 and metalation with biologically active 

metals.156, 171-174 

 

Figure 1.3.1.1: Tetra-cationic porphyrins used as PSs in PDT. 

TMPyP has a net charge of four units which imparts to its necessary hydrophilicity for 

photobiological applications. However, numerous publications have suggested that PSs bear a 

combination of high cationic charges and that added lipophilicity usually translates to better 

therapeutic efficacy.26, 67, 175 Other tetra cationic PSs used for in vitro trials and/or DNA binding 

studies include 5,10,15,20-tetra(4-N,N,N-trimethylammoniumphenyl) porphyrin 

(TMAP4+),176-180 5,10,15,20-tetrakis[4-(3-N,N,N-trimethylammoniumpropoxy)phenyl] 

porphyrin.176 CPs bearing a blend of cationic- and neutral meso-substituents (Figure 1.6.1.2 

and 1.6.1.3 and several others149, 174-175, 181) have shown promising PDT-based activity against 

cancer cells, microbes and viruses in vitro.26, 61, 66-67, 147-148 

Amphiphilic porphyrins bearing meso-(4-nitrophenyl) substituents in combination with meso-

(4-methylpyridinium) were reported by our research group (Figure 1.6.1.3) as dual inhibitors 
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of HIV and cancer (A549 lung cancer cells), the latter under PDT conditions.67 The best 

inhibitory effects, in either case, were shown by the Zn complex compound 8 (HIV entry 

inhibition >99%, 4 M, IC50 = 1.1 M) with three meso-(4-nitrophenyl) and one meso-(4-

methylpyridinium) substituent indicating that the presence of the nitrophenyl groups added 

amphiphilic characteristic to the compound. This, along with the mono-cationic meso-(4-

methylpyridinium) moiety, helped in the effective cellular uptake of the PSs, enhancing the 

therapeutic outcome. Interestingly, while the anti-cancer activities of the compounds were 

manifested under photo-illumination, the inhibitory effects against HIV were observed in the 

dark. 

 

Figure 1.3.1.2: Cationic porphyrins used as PSs in PDT studies.182 
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Figure 1.3.1.3: Cationic porphyrins used as PSs in PDT and/or anti-HIV studies.66-67, 147-148, 183 

Our research group was also the first in the world to report di- and mono-cationic meso-(2-

methylthiophenium) substituted porphyrins (Figure 1.6.1.3). The compounds T2(OH)2MZn, 

T2(OH)2M and T(OH)3MZn, T(OH)3M bearing meso-(4-hydroxyphenyl) in addition to the 

thiophenium moieties proved to be effective against A549 lung cancer cells under PDT 

conditions and in the dark against HIV, S. Aureus and E. Coli. The results we obtained have 

opened the possibility of creating a library of new cationic compounds that could be an 

alternative in biomedical uses compared to the well-popular nitronium counterparts.147 In either 

of the reports,66-67, 147 a precise amplification of inhibitory effects is apparent upon Zn 

complexation. Apart from these, we were also able to demonstrate that the placement of 

positively charged meso-substituents independent of the porphyrin aromatic ring current 

enhances the PDT activity of such PSs. The compound B.3 (Figure 1.6.1.3) with a pyridinium 

group strategically placed in direct conjugation with a porphyrin ring and three distal 

pyridinium groups placed independent of the porphyrin electron delocalisation cycle had better 
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photosensitising abilities than TMPyP (IC50
B.3 = 0.66 μM, IC50

TMPyP
= 1.49 μM, A549 lung 

cancer cell line).183 

 

Figure 1.3.1.4: Cationic amphiphilic porphyrins: ZnTnHex-3-PyP; TMPyP4-C14; TFAP(3+). 

Other than applications as PSs for cPDT, CPs have also shown noteworthy photodynamic anti-

microbicidal and virucidal effects.26, 61, 174, 179, 184 CPs are effective against both Gram (+ve) 

and Gram (−ve) bacteria and a host of viruses.26, 84 The mechanism of action involves the 

excitation of PSs by absorption of light and subsequent quenching through either an oxygen-

independent electron transfer (a type-I mechanism) or an oxygen-dependent energy transfer 

(type-II mechanism) process resulting in the generation of cytotoxic ROS and 1O2, respectively. 

These interact with the pathogens (e.g. bacteria, fungus, yeasts, viruses etc.), resulting in 

oxidative stress that ultimately brings about a “killing effect”.26, 185 Susceptible species include 

S. aureus, methicillin-resistant S. aureus (MRSA), Streptococcus mutans, E. faecalis, E. 

faecium, E. Coli, Pseudomonas aeruginosa, Helicobacter pylori, Candida albicans, HIV, 

HSV, T4 and T7 bacteriophages and others.26, 84, 186-187 Non-development of antibiotic 

resistance is one of the most significant advantages of aPDT,26, 61, 84 While disadvantages 

include limited systemic applications, lack of solubility, target selection, aggregation of PSs 

leading to self-quenching and low ROS generation, and economic viability.84 

As such, the search for new and better PSs for applications in cPDT, aPDT and PDI of viruses 

continues through structural modifications and/or nano-conjugation, assuring targeted delivery 

and specificity in target interaction. The functionalisation of PSs with bioactive molecules is 

also an attractive field that requires thorough investigation. 
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Figure 1.6.1.5: Cationic porphyrins used as PSs in aPDT.186-187 

1.3.2 Anionic porphyrin PSs: 

Anionic porphyrin (AP) PSs have been extensively used for biomedical applications owing to 

their far-reaching biochemical functions.108, 187-193 APs play crucial roles in natural systems,194 

examples include Fe-metal complexes like hemin, hematin and protoporphyrin-IX (PPIX) 

(Figure 1.6.2.1).195-196 PPIX is the biosynthetic precursor of hemes and chlorophylls and 

performs various biological functions.196-197 Coordination of PPIX with iron (II) results in the 

formation of heme, a constituent of homeoproteins including haemoglobin and cytochrome 

P450 enzymes which are important agents for oxygen transport, cellular oxidations and 

reductions, electron transport, and drug metabolism.197-200 While Fe (III) coordinated hemin (a 

chloride of heme) is the prosthetic group for a large number of proteins. It serves as a co-factor 

for enzymes in living cells,201 hematin (a hydroxide of heme), also coordinated to Fe (III), is 
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known to inhibit porphyrin synthesis and boost the production of globins.202 PPIX, because of 

its bio-compatibility, has been extensively used as a PS in cPDT. The usual mode of 

administration is either endogenous through administration of ALA which is biosynthesised 

into PPIX in mammalian cells203-204 or exogenous, wherein the compound PPIX itself is 

administered directly.205 PPIX-based PDT treatments have been successfully used to treat 

cutaneous cancerous lesions.206 Other reports indicate the efficacy of the drug and its 

derivatives in mitigating human oesophageal carcinoma cells, lung cancer cells (in C57BL 

mice) and cervical cancer.205, 207-208 The fluorescence properties of the compound have been 

explored as a tool for detecting of cancer cells.209-211 Apart from that, with the advent of 

nanotechnology, several PPIX-nanoparticle conjugates have been developed as effective PSs 

for PDT in the last two decades.207, 212-215 

 

Figure 1.3.2.1: Some natural and synthetic anionic porphyrins. 

Other anionic PSs derived from natural sources include the hematoporphyrin derivative (HpD) 

and its derivatives. HpD has been effectively used for PDT-based treatment of brain, laryngeal, 

lung, skin, gastric, and oesophageal carcinomas. Photofrin®, a first-generation PS, is a 

proprietary combination of monomers, dimers, and oligomers of HpD. Often referred to as the 
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“gold standard” for non-cutaneous derived cancers, Photofrin® is among the most approved for 

clinical PDT.36, 146, 216 Though HpD and Photofrin® were successful PDT agents, certain 

limitations like their complex structure, absorption at lower wavelengths limited their use to 

cutaneous tissues mostly. This led to the development of chemically pure second-generation 

PSs with light absorption at longer wavelengths facilitating the treatment of deep-seated 

tumours. 

 

Figure 1.3.2.2: Some anionic porphyrins clinically approved for cPDT. 

The most common synthetic APs used in PDT are 5,10,15,20-tetra-(4-carboxyphenyl) 

porphyrin (TCPP) and 5,10,15,20-tetra-(4-sulfonatophenyl) porphyrin (TSPP) and their metal 

complexes.94, 108, 217-225 In contrast to the CPs which tend to localise in mitochondria, APs tend 

to localise in lysosomes.226 Among other factors, the cellular uptake of the PSs depends on the 

pH of the tumour tissue (pH 6.4) and normal tissue surrounding the tumour (pH 7.4).226 APs 

are also known to interact with DNA and bind to G-quadruplexes with high selectivity.194, 227-

228 TCPP, as well as TSPP, have been used to prepare novel derivatives and multifunctional 

NPs for better tumour internalisation, higher photocytotoxicity, targeted drug delivery and 

multi-therapeutic treatment regime.94, 142, 219, 221, 224-225, 229-237 Apart from applications as cPDT 

agents, APs have also been evaluated as agents for PDT-based microbicidal effects.53, 192, 238-

239 APs are most effective against Gram (+) bacteria, the negatively charged 

lipopolysaccharides in the cell wall of Gram (−) bacteria act as a deterrent to effective 

interaction between the porphyrins and bacterial cells.53, 240 However, the use of membrane 

disorganizing agents like polymyxin B nonapeptide (PMBN) or ethylenediaminetetraacetic 

acid (EDTA), derivatisation with cationic polypeptides and conjugation with monoclonal 

antibodies or bacteriophages has been successfully employed to circumvent the limitation.53 

Additionally, several reports indicate that APs bearing carboxyphenyl or sulfonatophenyl 
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moieties have prominent anti-HIV activity.68, 103, 241-243 The inhibitory effects are manifested as 

a result of the interaction of APs with positively charged V3 loop of  HIV-1 gp120 glycoprotein 

thereby preventing interaction of the virus with CD4 cell receptors.68, 103, 241-243 

1.3.3 Neutral porphyrin PSs: 

Apart from CPs and APs, porphyrin PSs having no net charge have been explored as possible 

PDT agents under in vitro conditions (Figure 1.6.3.1).97, 244-253 The most commonly used 

neutral porphyrins are 5,10,15,20-(tetraphenyl) porphyrin (H2TPP), 244-250 and 5,10,15,20-

tetra-(4-hydroxyphenyl) porphyrin (THPP).254-260 The tetra-symmetric chlorin 5,10,15,20-(3-

hydroxyphenyl) chlorin (Foscan®) presents one of the more successful examples. It has been 

approved for clinical use and was effectively employed to treat a wide variety of cutaneous 

lesions, pulmonary, oesophageal, gastrointestinal and head and neck tumours.146 As with APs 

and CPs, neutral porphyrins conjugated to NPs exhibit enhanced photodynamic effect, greater 

selectivity towards cancer cell lines and higher cellular uptake.138, 254-261 

Several publications have reported alternatives to the synthesis of the popular compounds with 

interesting physiochemical, spectroscopic and/or photobiological outcomes.90, 97, 234, 252, 262-263 

Sengupta et al.252 reported synthetic alternatives to photobiologically inert (NPh)TPyP264 

which bears three meso-(4-pyridyl) substituents attached directly to the porphyrin ring along 

with a lone meso-(4-nitrophenyl) substituents. In contrast, the new 

synthons P3N and P3NZn had the pyridyl groups placed at a distal position through ester 

linkages. This rapture in -conjugation rendered the molecules amphiphilic, and consequently, 

the PSs exhibited ROS-mediated anti-cancer activity against A549 lung cancer cells in vitro 

under PDT conditions. Kirar et al.145 reported an A4 amphiphilic porphyrin, 5,10,15,20-

tetrakis(4-pyridylamidephenyl) porphyrin, having similar rapture in -conjugation. When 

doped into gelatin NPs, the compound exhibited higher hydrophilicity and biocompatibility. 

The PS-doped gelatin NPs induced photodamage to the breast cancer cell line (MCF-7) and 

human embryonic kidney cell line (HEK-293), in vitro, under LED excitation. 

Various research groups have reported the antimicrobial activities of non-ionic porphyrins.145, 

156, 258, 265-267 The susceptible species include S. Aureus, E. faecalis, E. Coli, P. aeruginosa and 

fungal strains.145, 156, 258, 265-270 For an effective interaction nano-conjugation (e.g. with 

cyclodextrins, gelatin)145, 236 or targeted delivery using natural deep eutectic solvents (NADES) 

has been explored.53, 145, 156, 258, 265-270 However, neutral porphyrins on their own are much less 
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effective at bringing about an effective aPDT response as compared to CPs and APs.53 Very 

few reports of non-ionic porphyrins acting as antivirals could be found in the literature, photo-

irradiation being required in each case for effective viricidal activity.61, 83, 271-272 

 

Figure 1.3.3.1: Some neutral porphyrin PSs used as PDT agents. 

1.4 Zn-incorporated porphyrins as PSs for PDT applications: 

Zn, an essential trace element, is a co-factor for over 300 enzymes involved in DNA, RNA 

replication and protein synthesis.273-274 Zn has an immunostimulatory effect and its deficiency 

has the potential to affect host immunity adversely.273, 275-277 Owing to its biological 

significance, Zn-incorporation has been a common strategy to obtain PSs with better 

photobiological outcomes.66-67, 147, 252, 278-280 Zn insertion is usually accompanied by 

stabilisation of the porphyrin ring structure280 and quenching of fluorescence.147, 281-283 The 

reduction in fluorescence intensity can be attributed to the “heavy atom effect”.147, 281-283 The 

incorporation of Zn2+ in the porphyrin core most likely enhances ISC from singlet excited state 

to triplet excited state, thereby leading to the observed decrease in fluorescence. A higher triplet 
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state population ensures a longer triplet lifetime, thereby ensuring more effective interaction 

with molecular oxygen resulting in the production of cytotoxic 1O2.
284-286 

 

Figure 1.7.1: Zn-porphyrin PSs used as PDT agents.278, 287 

Zn porphyrin PSs (ZnPPSs) show enhanced interactions with cell membranes and exhibit 

higher cellular uptake with a global distribution.280, 288 The cationic charge and amphiphilicity 

however play a major role in determining cellular uptake and subcellular localisation. 

Ezzeddine et al.288 demonstrated that hydrophilic tetra-cationic ZnPPSs bearing meso-N-

methylpyridinium substituents preferred lysosomal localisation. In contrast, the amphiphilic 

meso-N-hexylpyridinium derivatives were localised in mitochondria, endoplasmic reticulum, 

and plasma membrane. The effect of lipophilicity rendered through variation in the length of 

the alkyl chain has been reported earlier, with longer alkyl chain PSs favouring a mitochondrial 

uptake.280 Zn2+ ions in the PS core can also interact with the phosphate group of phospholipids 

and show a better binding capability to both synthetic and biological membranes. Several 

studies have reported that ZnPPSs have shown higher ROS generation and/or 1O2 generation 

capability than their free-base counterparts.252 A preference for ZnPPSs for 1O2 generation has 

been established through photophysical experiments.278, 287 These factors make ZnPPSs an 

attractive drug target in cPDT, aPDT and the inactivation of viruses.66-67, 147, 185, 252, 278-280, 288 

COMBINATORIAL PDT TO PROMOTE IMMUNO-PHOTODYNAMIC THERAPY 

(IPDT) 

Integrating porphyrins into immunotherapy offers new prospects for immuno-photodynamic 

therapy (IPDT).289-292 Recent advancements in cancer immunology have led to the emergence 

of cancer immunotherapy, a promising approach to combat this disease.293-295 This innovative 
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therapy focuses on harnessing the body's immune system to identify, attack, and eliminate 

cancerous cells, offering the potential for long-term disease control.289, 293-295 

Immunotherapeutic strategies, including immune checkpoint blockade (ICB) therapy, chimeric 

antigen receptor T cells (CAR-T) therapy, and cancer vaccines, have been developed to mimic 

the body's natural antitumor immune defences.296-298 While these approaches have shown 

promise, they face challenges related to the limited immunogenicity of solid tumours and low 

clinical response rates, rendering them ineffective for all patients.295, 299-303 

There is a growing interest in combinational strategies like immuno-photodynamic therapy 

(IPDT) to address these limitations and enhance immunogenicity for more efficient cancer 

immunotherapy.304-307 IPDT has gained prominence due to its ability to induce antitumor 

immune responses through a mechanism known as immunogenic cell death (ICD).304-305, 308-309 

This approach aims to complement the shortcomings of individual therapies and activate the 

immune system effectively in cancer treatment. 

During IPDT, photosensitizers are activated by specific wavelengths of light in the presence of 

oxygen, generating cytotoxic reactive oxygen species (ROS).304-305, 308-309 These ROS play a 

crucial role in inducing apoptosis in cancer cells. However, the immunosuppressive tumour 

microenvironment (ITM) limits the effectiveness of PDT-induced cell death. Therefore, to 

enhance PDT's efficacy, there is a need to strengthen ICD with synergistic tumour therapies.308, 

310-314 

IPDT has emerged as a promising strategy, leveraging PDT to stimulate the immune response 

and combining it with immunotherapy.304, 310-311, 313, 315-316 This approach aims to transform 

immune-OFF tumours into immune-ON ones, fostering a systemic immune response and 

preventing cancer recurrence.304 

In the context of immunity, the source of tumour immunogenicity stems from the dying cancer 

cells, which provide the essential antigens capable of triggering tumour-specific immune 

responses.317 This phenomenon underscores the significance of immunogenic cell death (ICD) 

as an alternative approach for activating adaptive immune responses in hosts with normal 

immune function.318-321 ICD, characterized as a successful interaction between dying tumour 

cells and a properly functioning immune system, bridges the gap between photodynamic 

therapy (PDT) and immunotherapy. It rejuvenates the patient's immune system via immuno-

photodynamic therapy (IPDT), offering a comprehensive approach to cancer treatment.304 
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Evidence has demonstrated that upon PDT, dying cells actively upregulate immune responses. 

However, the extent of immunogenicity and the subsequent molecular pathways largely depend 

on the induction of cell death.{Ahmed, 2020 #1221}{Galluzzi, 2017 #1222} Therefore, 

understanding the mechanisms of IPDT-induced ICD at the cellular level is crucial to 

comprehend how the immune system gets activated and, ultimately, to enhance the feasibility 

of IPDT.304, 322 Apoptosis is a caspase-dependent process of programmed cell death that plays 

a crucial role in development, homeostasis, and immunity in multicellular organisms. 

Facilitating apoptosis represents one of the most active regulatory pathways to induce ICD 

effectively.304, 323 Cancer cells exhibit higher sensitivity to reactive oxygen species (ROS) than 

normal cells, making apoptosis induced by IPDT particularly effective while avoiding 

overtreatment.304, 323 Key features of IPDT-induced apoptosis include chromatin condensation, 

cellular fragmentation, and protease activation. Tumour cells undergoing apoptosis-initiated 

ICD are often linked to the localization of photosensitizers (PSs), such as the mitochondria-

mediated pathway, oxidative stress-induced DNA damage, and endoplasmic reticulum (ER) 

stress.324 Among these, PSs localized in the mitochondria have been widely studied for their 

ability to induce apoptosis. When exposed to irritant signals like ROS, the mitochondrial outer 

membrane becomes permeable, releasing hemeprotein cytochrome C, activating caspase 

proteases responsible for the apoptosis process. Another well-known signal transduction 

pathway is ER stress-induced apoptosis, whereby toxic stress and environmental changes affect 

the ER, potentially leading to cell apoptosis.304 Key proteins involved in apoptosis, including 

caspase-3, caspase-7, GRP78, and CHOP, serve as critical mediators, influencing reactions 

such as cell migration and differentiation, ultimately provoking ICD.325 

Necroptosis represents a form of lytic-regulated cell death characterized by cytoplasmic 

swelling, plasma membrane disintegration, and intracellular content leakage induced by 

specific stressors.326-328 This inherently immunogenic form of cell death is accompanied by the 

disintegration of intact cytosolic components, triggering various inflammatory responses. 

Typically, necroptosis-induced ICD occurs in the presence of photosensitizers targeting the 

cell membrane.329 The photoreaction facilitates the assembly of kinases RIPK1 and RIPK3 into 

the necrosome, causing rapid loss of membrane integrity and the release of immunogenic 

DAMPs (damage-associated molecular patterns). This robustly activates the innate and 

adaptive immune systems.304 
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Additionally, death receptors like tumour necrosis factor-alpha (TNF-α), interferon-gamma 

(IFN-γ), and toll-like receptor 4 (TLR4) are continuously activated, positively correlating with 

tumour cell immunogenicity. Notably, necroptosis is found to be more efficient in IPDT-

induced ICD compared to apoptosis. This efficiency boost in antitumor immunity is attributed 

to the direct release of tumour-specific antigens without exposure to further oxidation and 

proteolysis by organelles.304 This contributes to antigen uptake by tumour-associated 

macrophages, DCs (dendritic cells) maturation, efficient CD8+ T cell cross-priming, activation 

and differentiation of antigen-specific native CD8+ T cells into cytotoxic T lymphocytes, 

ultimately participating in antitumor immunity.304 Thus, targeted induction of necroptosis in 

dying tumour cells represents a promising approach in cancer therapy, particularly for 

apoptosis-resistant tumours.304, 330 

One notable porphyrin PS is Chlorine6 (Ce6), known for its rapid generation of cytotoxic 

reactive oxygen species (ROS) when exposed to red-light irradiation, enhancing 

immunogenicity.331 This, in turn, promotes dendritic cell (DC) maturation and the infiltration 

of T cells into tumour sites, bolstering the effectiveness of tumour immunotherapy. Encouraged 

by these advantages, Peng et al. introduced a multifunctional nanomedicine termed SPM-P/C, 

incorporating a plasmid DNA encoding the catalase gene (pDNA-cat) and Ce6.304, 332 SPM-

P/C demonstrated the ability to stimulate robust immunity, including DC maturation and 

antitumor T cell infiltration through hypoxia-relieving PDT. 

Zheng and colleagues harnessed the potential of Ce6 to develop an oxygen-self-sufficient 

nanocarrier (C@HPOC) for IPDT.333 This innovative approach facilitated tumour-targeted co-

delivery of PSs and oxygen, alleviating tumour hypoxic conditions. The increased oxygen 

improved PDT efficacy and enhanced the infiltration of cytotoxic T lymphocytes and natural 

killer (NK) cells, resulting in a potent antimetastatic and abscopal effect. 

In light of the essential role played by the endoplasmic reticulum (ER) in maintaining cellular 

signalling, the development of ER-targeting porphyrin agents emerges as a promising strategy 

for effective IPDT. For instance, Deng et al. engineered an intelligent ER-targeted porphyrin 

encapsulated in a reduction-sensitive polymer.334 Under near-infrared (NIR) light irradiation, 

these Ds-sPNPs induced ER stress, triggered immunogenic cell death (ICD), and promoted the 

release of DAMPs. Furthermore, the secretion of cytokines and the infiltration of CD8+ T cells 

at the tumour site increased, highlighting the potential of this combined PDT strategy to 

activate immune cells and enhance immunotherapy efficacy. 
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Beyond porphyrins, phthalocyanines, another class of PSs, exhibit superior photo properties 

that render them highly attractive for PDT. BAM-SiPc, a silicon(IV) phthalocyanine, was 

found to induce immunogenic necroptosis in tumour cells.335 Additionally, Yoon's group 

reported on the self-assembly of morpholine-substituted silicon phthalocyanine with albumin 

for fluorescence imaging and IPDT.304, 336 This approach hinged on the acid-induced abolition 

of the photoinduced electron transfer effect and the breakup of the nanostructure, resulting in 

a fluorescent turn-on. This innovation provided high signal-to-noise ratios and tumour-targeted 

imaging. With a superior immunogenic PDT NanoPcM effectively combating solid tumours, 

the combination of NanoPcM-based PDT with αPD-1-induced immunotherapy demonstrated 

the ability to inhibit tumour growth, reduce spontaneous lung metastasis, and trigger abscopal 

effects. This research opens new avenues for selecting PSs in the design of nanomaterials for 

promising photo theranostics in cancer imaging and IPDT. 
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