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ABSTRACT: A second generation catalytic two-phase 

strategy for the enantioselective synthesis of chiral at P(V) 

compounds is described. This protocol, consisting of a 

bifunctional iminophosphorane (BIMP) catalyzed 

nucleophilic desymmetrization of prochiral, bench stable 

P(V) precursors and subsequent enantiospecific substitution 

allows for divergent access to a wide range of C-, N-, O- and 

S- substituted P(V) containing compounds from a handful of 

enantioenriched precursors. A new catalyst/leaving group 

combination allowed for a far wider substrate scope and 

increased reaction efficiency and practicality over 

previously established protocols. The resulting 

enantioenriched intermediates could then be converted to an 

even greater range of distinct classes P(V) of compounds by displacement of the remaining leaving group as well as allowing for 

even further diversification downstream. Density functional theory (DFT) calculations were performed to pinpoint the origin of 

enantioselectivity for the BIMP-catalyzed desymmetrization, to rationalize how a superior catalyst/leaving group combination leads 

to increased generality in our second-generation catalytic system, as well as to shed light onto observed retention and inversion 

pathways when performing late-stage enantiospecific SN2@P reactions with Grignard reagents. 

INTRODUCTION: 

Compounds containing one or more phosphorus atoms in the P(V) oxidation state are important to chemistry, biology, and 

medicine (Scheme 1A).1,2 These include marketed antiviral drugs such as such as Tenofovir alafenamide3 and Remdesivir, the 

latter being an effective treatment for the Ebola virus4 which was also approved for use against SARS-CoV-2.5,6 Other relevant 

compounds include Fosinopril,7 a compound used to treat hypertension and heart failure and WHO essential medicines listed 

chemotherapy agent Cyclophosphamide.8 In addition to being common APIs, P(V) containing compounds are also highly 

relevant motifs in agrochemistry.9 A representative example is the herbicide Zytron developed by Dow.10 As such, the 

development of efficient methods for the preparation of enantioenriched P(V) containing compounds is crucial.  

Synthetic approaches to enantiopure P(V) compounds can be subdivided into five categories (Scheme 1B).11–16 The first 

approach is classical resolution and/or separation of diastereomers or enantiomers by chromatography (Scheme 1B, i).17–23 A 

second approach revolves around the use of labile chiral auxiliaries which can be displaced by sequential diastereoselective 

nucleophilic additions to afford enantioenriched P(V) species (Scheme 1B, ii).24–54 Thirdly, chiral, yet racemic at P(V) 

electrophiles bearing a single leaving group (and often possessing a chiral sidechain) can be coupled diastereoselectively to 

enantiopure nucleophiles employing chiral catalysts (Scheme 1B, iii).55–64 A subsequent approach involves the direct 

functionalization of secondary phosphine oxides (SPO) by means of a metal catalyst bearing chiral ligands to obtain tertiary 

phosphine oxides.65–92 To date, however, this approach has been limited to the synthesis of all carbon substituted phosphine 

oxides (Scheme 1B, iv). The final strategy is an enantioselective desymmetrization by which prochiral groups linked to a 

phosphorus center are differentiated by a chiral catalyst (Scheme 1B, v). Multiple reactions have been developed using this 

strategy, however, until recently none have involved chemistry occurring at the P atom directly, but rather generate the P 

stereocenter indirectly (through manipulation of enantiotopic side chains) inherently limiting their scope.93–145  

A strategically distinct enantioselective desymmetrization of P(V) species would involve an enantioselective nucleophilic 

substitution of enantiotopic leaving groups. By judicious choice of leaving group, nucleophile, and catalyst the desired 

enantioenriched species could be obtained in high yield and with excellent enantioselectivity (stage 1). The desymmetrized 

substrate would then still possess another leaving group, poised for a second (potentially enantiospecific) nucleophilic 

substitution reaction enabling diverse downstream derivatization opportunities (stage 2). This two-phase strategy would allow 

for a wide range of P(V) compounds to be accessed from a common intermediate, overcoming one of the main limitations of 

current enantioselective desymmetrization approaches (Scheme 1C). 
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Scheme 1. [A] Biologically relevant molecules containing a P(V) stereocenter; Cy = cyclohexyl [B] Classical and modern approaches to enantioenriched P(V) 

compounds; SPO = secondary phosphine oxide; CuAAC = copper catalyzed azide-alkyne cycloaddition; PdAAA = palladium catalyzed asymmetric allylic 

alkylation [C] A distinct catalytic two-phase strategy for the modular synthesis of enantioenriched P(V) compounds; [D] Complementary two-phase strategies 
developed by our own group (D1) and that of Jacobsen (D2), with the limitations of each method highlighted in red; [E] This work: an improved, second 

generation desymmetrization/derivatization strategy for the synthesis of enantioenriched P(V) compounds enabled by a new BIMP catalyst/thiazolidinone 

leaving group combination. 
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Two complementary methods employing this two-phase strategy have now been developed, one by our group146 and the other 

by that of Jacobsen.147 While both methods allow for the enantioselective synthesis of a wide range of enantioenriched chiral 

at P(V) compounds, neither is without limitations.  

In our own work (Scheme 1, D1), phenol nucleophiles were used in the desymmetrization step under ureidopeptide148–154 

bifunctional iminophosphorane (BIMP) catalysis,155–168 however, to obtain high levels of enantioselectivity, phenol 

nucleophiles bearing an ortho-substituent were required, inherently limiting the scope of the reaction. Additionally, the optimal 

leaving group, 2-nitro-6-methyl-phenolate,169 is a relatively weak Brønsted base, rendering the turnover of the optimal 

superbasic BIMP catalyst inefficient, which, in turn, forces an excessive 15 mol% catalyst loading to ensure high conversion 

of the starting material to product. The second stage enantiospecific displacement was also not without its limitations. While 

the remaining nitrophenol leaving group could be smoothly displaced with a variety of biologically relevant alkyl alcohols, 

thiols and amines, reactions with biologically relevant aromatic alcohols as well as displacement with carbon-based 

nucleophiles was either inefficient or led to the formation of significant amounts of byproducts. Finally, the ortho-substituted 

phenols introduced in the first stage could not be easily displaced, most probably due to a combination of steric effects and 

decreased electrophilicity at the now alkyl alcohol derived phosphonate esters. 

Jacobsen offered an elegant and complementary approach employing phosphoryl dichlorides (Scheme 1, D2). Under thiourea 

catalysis, the Jacobsen group was able to displace one of the enantiotopic chlorine atoms with specific amine nucleophiles, 

then, in the same pot a second enantiospecific substitution could take place using a large excess of alkoxide, phenoxide, thiolate 

or organomagnesium nucleophiles, with both steps taking place under high dilution and at cryogenic temperatures. Notably, 

only aryl substituted phosphoryl dichlorides were competent substrates for this transformation, while alkyl substituted 

phosphoryl dichlorides were inefficient substrates under the optimized conditions. The amine substituent of the phosphorus 

stereocenter could then be displaced enantiospecifically with solvent quantities of simple alkyl alcohols (MeOH, EtOH, allyl 

alcohol) under Brønsted acidic conditions. Only after this second, enantiospecific step, the resulting enantioenriched P(V) 

product could be further functionalized enantiospecifically with a variety of nucleophiles depending on the nucleophile 

previously used to displace the second chloride substituent. For example, if phenyl thiolate was employed, it could be replaced 

by more complex alkyl alcohols, if para-CF3-phenoxide was used, it could then be replaced by a Grignard reagent.  

RESULTS & DISCUSSION: 

Cognizant of the strengths and limitations of both systems, the need for an improved second-generation approach was apparent. 

An improved method would consist of a desymmetrization step employing a wide range of (medicinally relevant) phenol 

nucleophiles (not only those which are ortho-substituted) and a derivatization step whereby the second leaving group could be 

displaced directly by complex, biologically relevant nucleophiles (avoiding the need for sequential enantiospecific 

displacements). Ideally, the phenol substituent could itself be replaced to provide access to an even wider range of 

enantioenriched P(V) compounds. 

To achieve this, a full re-optimization of our first-generation method was required employing para-cresol as a model 

nucleophile for non-ortho-substituted phenols. Following an extensive evaluation of new leaving group/ureidopeptide BIMP 

catalyst combinations, the use of thiazolidinone170–173 and B-1 was found to be optimal, utilizing EtOAc as solvent and carrying 

out the reaction at 0 °C (see Supporting Information for full details). The thiazolidinone mimics the previous nitrophenol 

leaving group in that it also bears a Lewis basic functionality which can interact with the ureidopeptide through an analogous 

H-bonding network to obtain the desired products in high enantioselectivity. In addition, due to the higher basicity of the 

thioazolidinone conjugate base (pKa[DMSO] ≈ 20 vs pKa[DMSO] ≈ 12 for the nitrophenol),174 higher reaction efficiency was 

observed, allowing for lower catalyst loadings (Scheme 1, E). 

With the newly optimized conditions in hand, the scope with respect to both the phenol nucleophile and the bis-thiazolidinone 

derived P(V) electrophile was assessed (Scheme 2). Pleasingly, and in contrast to our previously reported method , when using 

phenyl-substituted P(V) electrophile P1, unsubstituted phenol (1, 75% yield, 99:1 e.r. vs 57% yield, 53:47 e.r. under the first-

generation conditions), as well as a wide range of electron donating substituents at the phenol para-position were well tolerated, 

providing desired products (2-4) with high levels of yield and enantioselectivity. When para-fluoro-phenol was employed, 2.0 

equivalents of the nucleophile were required to obtain desired product 5 in 48% yield and 93.7 e.r. Most noticeably, 

nucleophiles bearing additional Lewis basic substituents which could disrupt the non-covalent interactions between the 

substrate and catalyst were well tolerated, namely products derived from phenols bearing a benzylic ester (6) and a pyridine 

(7) were obtained in 74% and 53% yield, and 97.5:2.5 e.r. and 92:8 e.r., respectively. Single crystal X-ray diffraction analysis 

of a suitable crystal of 2 established the absolute configuration of the desymmetrised products as (R). 
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Scheme 2. [A] Phenol nucleophile scope [B] P(V) electrophile scope reactions were carried out on 0.1 mmol scale; all yields are isolated yields; yields for 
related products employing our first-generation method are reported in purple under the relevant examples; e.r. determined by HPLC analysis; 2 is a single 

crystal X-ray structure, H-atoms omitted for clarity; d.r. was determined by 31P{1H} NMR or 1H NMR. 
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Phenols with alternative substitutions patterns were then examined as nucleophiles. Products 8 and 9 bearing only meta-

substituents were obtained in 98% and 76% yield, and 98:2 e.r. and 96:4 e.r., respectively (the corresponding 2-nitro-6-methyl-

phenol analog of 9 was obtained in only 47% yield and 59.5:40.5 e.r. when using our previous method). As with our previously 

described method, ortho-substituted phenols could also be employed, with the derived products (10-12) being obtained in high 

yield and good enantioselectivity. Naphthols could also be employed as nucleophiles (13-14), noticeably 14 was obtained in 

64% yield and 98:2 e.r. representing a drastic improvement compared to our first-generation method where less than 10% 

conversion to product was observed. 

Next, we turned our attention to more complex phenol nucleophiles derived from naturally occurring compounds or 

pharmaceuticals (15-17). Products 15 and 16 derived from monobenzone and sesamol, respectively, were obtained in 97% 

yield and 66% yield, and both in 96:4 e.r. 17 derived from eugenol was obtained in 84% yield and 95:5 e.r. (vs. 81% yield, 

55.5:45.5 e.r. using related guaiacol (2-methoxyphenol) with the first-generation system). Finally, diastereoselective 

phosphorylations were conducted using structurally complex, enantiomerically pure phenol nucleophiles (18-20). Estrone 

derived product 18 was obtained in 97% yield and 97:3 d.r. while estradiol derived product 19 was obtained in 80% yield and 

97:3 d.r. with phosphorylation occurring exclusively at the phenolic site. Compound 20 was obtained from δ-tocopherol in 98% 

yield and 94:6 d.r. Importantly, when these reactions were conducted using an achiral phosphazene base (BEMP; 2-tert-

butylimino-2-diethylamino-1,3-dimethyl-perhydro-1,3,2-diazaphosphorine) the resulting d.r. was always ⁓1:1 indicating full 

catalyst control in the diastereoselective examples. 

Having explored the scope with respect to the phenol nucleophiles, the scope of the P(V) electrophile was then assessed 

(Scheme 2, B). Electron donating (21-22) and electron withdrawing (23) substituents on the aromatic group were well tolerated 

with the desired products being obtained in 63-77% yield and >95:5 e.r. When a very electron poor aromatic group was 

introduced (24), however, lower temperature (–20 °C) and a 72 h reaction time was required to obtain the desired product in 

appreciable yield and 86:14 e.r. On the other hand, when a thiophene substituted electrophile was employed, the desired product 

25 was obtained in 90% yield and 95:5 e.r. Subsequently, P(V) electrophiles bearing alkyl substituents were submitted to the 

optimized desymmetrization conditions. Methyl, ethyl, and n-hexyl derived substrates were all competent electrophiles in the 

desymmetrization with the desired products (26-28) being obtained in 88-97% yields and 90:10-93:7 e.r. Interestingly even 

more sterically demanding substituents on P, such as iso-propyl, could also be accommodated with the resulting 

enantioenriched product (29) being obtained in 79% yield and 94:6 e.r. This result is in stark contrast to the 7% yield and 77:23 

e.r. obtained under the first-generation conditions, which most likely resulted from the steric repulsion arising between the 

hindered ortho-substituted phenol nucleophile and an encumbered electrophile. Use of a substrate bearing a chloromethyl 

substituent afforded the corresponding desymmetrised product 30 in 49% yield and 89:11 e.r., a result of diminished reactivity 

as opposed to the formation of side products. A phenylethyl-derived substrate was also well-tolerated, forming desymmetrised 

product 31 in 69% yield and 94:6 e.r. Benzylic substrates were also compatible with 32 being obtained in 65% yield and 91:9 

e.r. 

For the two-stage strategy to be broadly useful the synthesis of the enantioenriched desymmetrized P(V) compounds would 

also need to be scalable. To our delight, our second-generation protocol could be carried out on gram scale employing just 2.5 

mol% of B-1. After 48 hours, enantioenriched 2 was obtained in 82% yield and 96:4 e.r. which could be further boosted to 

98.5:1.5 e.r. after a single recrystallization (Scheme 3). 

 

Scheme 3. Synthesis of 2 on 3.0 mmol scale with reduced catalyst loading.

With a considerable amount of enantioenriched 2 (98.5:1.5 e.r.) in hand, the scope of the second stage of the strategy, namely 

the enantiospecific substitution of the second thiazolidinone leaving group, could then be explored. In the first instance the 

thiazolidinone was smoothly displaced with a series of complex, medicinally relevant 1° and 2° alcohols (Scheme 4, A). 

Employing 3.0 equiv. of nucleophile and 3.0 equiv. of DBU in THF or DMF at room temperature, the remaining leaving group 

could be displaced with: TBS-deoxycytidine (33), the anti-HIV drugs175 stavudine (34),176 AZT (35), abacavir (36) and 

didanosine (37), the nucleoside fragment of anti-hepatitis C drug sofosbuvir (38)177,178 and the secondary 3’-OH of acetal 

protected D-glucose (39), all in good to excellent yields and with over >95:5 d.r. 
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6 

 
Scheme 4. Reaction scope for derivatization of enantioenriched P(V) phosphonate. Reactions carried out between 0.05 and 0.15 mmol scale (see supporting 
information for more details); All yields are isolated yields; d.r. determined by 31P{1H} NMR; e.r. determined by HPLC analysis. All non-line structures (42, 

46, 50, 56) are single crystal X-ray structures, H-atoms omitted for clarity. aReaction carried out using DMF as solvent; b–78 °C, 2 h; c–78 °C to –40 °C, 16 h. 

Subsequently, the use of phenols as nucleophiles in the second stage enantiospecific nucleophilic substitution was then 

investigated (Scheme 4, B). This was of particular importance as the resulting enantioenriched diaryl phosphonate esters 

represent a class of P(V) compounds previously inaccessible by both our first-generation method and that described by 

Jacobsen. When using 3.0 equivalents of nucleophile and 3.0 equivalents of DBU at in Et2O at 0 °C for 16 hours the remaining 

thiazolidinone could be replaced with a suite of phenols, including medicinally relevant ones. Carrying out the displacement 

with phenol afforded desired product 40 in 77% yield and 94:6 e.r. (91% enantiospecificity). When using sesamol as 

nucleophile the desired product 41 was obtained in 68% yield but with a minor erosion of enantiopurity (81% e.s.). Other 
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biologically relevant nucleophiles were instead better tolerated, with the products derived from Boc-L-tyrosine methyl ester 

(42), eugenol (43) and the antibiotic clofoctol (44), which also exhibits considerable antiviral activity in Vero 81 cells against 

SARS-CoV-2179,180 being isolated in 33-65% yield and ≥ 93% e.s. Product 42 was recrystallized to enantiopurity, and single 

crystal X-ray diffraction analysis revealed that the nucleophilic substitution proceeded with inversion of stereochemical 

configuration at the P(V) center.181,182  

Following the displacement with alkyl alcohols and phenols, the use of amines to displace the thiazolidinone was examined 

(Scheme 4, C). When employing 1.5 equiv. of nucleophile (generated from 1.5 equiv. each of the amines and n-BuLi as base 

at –78 °C in THF) at –40 °C a range of phosphonamidates derived from acyclic (45) and cyclic amines (46-48) could be 

obtained in 50-60% yield and ≥ 95:5 e.r. In addition, the enantiospecific substitution could also be carried out with tricyclic H₁ 

inverse agonist desloratadine, with resulting product 49 being obtained in 43% yield and 97:3 e.r. (97% e.s.). X-Ray diffraction 

analysis of a single crystal of 46 revealed that nucleophilic substitution with amines proceeded with inversion of the P(V) 

stereocenter as well. 

Our attention then turned to the enantiospecific synthesis of phosphinate esters (Scheme 4, D) employing Grignard reagents 

as nucleophiles in the second step. Pleasingly, and in complete contrast to our first generation method where addition of 

Grignard reagents were unproductive and led to the exclusive formation of byproducts, the thiazolidinone leaving group could 

be smoothly displaced by employing 1.1 equiv. of organomagnesium halides in THF at 0 °C for 4 h. Products derived from 

BnMgCl (50), vinyl-MgCl (51), 2-thiophene-MgBr (52) could be obtained in moderate to good yields and ≥ 91% e.s. with only 

minor adjustments to the reaction temperature and time while the enantiospecific displacement with n-BuMgCl could be carried 

out on 0.5 mmol scale affording phosphinate ester 53 in 53% yield and 96:4 e.r. (95% e.s.). Both 50 and 51 were recrystallized 

to enantiopurity and single crystals from these samples were analyzed by X-Ray diffraction. Unlike displacement with 

heteroatom-based nucleophiles, displacement with Grignard reagents took place with retention of stereochemical configuration 

at the P(V) center.183  

Finally, a collection of enantioenriched phosphonothioates was prepared by displacing the thiazolidinone leaving group with 

thiol nucleophiles (Scheme 4, E). Employing 1.0 equiv. of thiol with 1.0 equiv. of t-BuMgCl in THF at –40 °C 

phosphonothioates bearing cyclohexyl (54), n-propyl (55) and benzyl (56) substituents in good yields and with high 

enantiospecificity. X-Ray diffraction analysis of a single crystal of 56 revealed that, as with alcohols and amines, nucleophilic 

substitution with thiols proceeded with inversion of the P(V) stereocenter. 

The possibility of displacing the phenol substituent (introduced in the first step) on 53 by means of a second substitution with 

a different Grignard reagent was then probed, as this would allow access to yet another class of P(V) compounds, namely 

tertiary phosphine oxides. To our delight, when 53 was treated with an excess of Grignard reagent in THF the para-cresol 

substituent on phosphorus could indeed be displaced, affording compound 57 and 58 in 70% yield and 95:5 e.r. (98% e.s.) 

(Scheme 5, left). Interestingly, and in contrast to when Grignard reagents were employed to displace the thiazolidinone leaving 

group, this substitution was found to proceed with inversion of configuration at P (see Supporting Information for further 

details). 

 

Scheme 5. Synthesis of enantioenriched 3° phosphine oxides (left) and dialkyl phosphonate esters (right). All yields are isolated yields; d.r. determined by 
31P{1H} NMR; e.r. determined by HPLC analysis. Ar = 4-Me-C6H4. 

Encouraged by the successful displacement of the para-cresol substituent on phosphorus with Grignard reagents, we 

considered if the products derived from substitution with alkyl alcohols in the second step could be converted to 

enantioenriched bis-alkyl phosphonate esters by means of another stereospecific substitution with biologically relevant 

alcohols. Indeed, employing glucose bearing phosphonate ester 39 as a substrate, the para-cresol substituent could be swiftly 

exchanged with a variety of alkyl alcohol nucleophiles with high levels of enantiospecificity (with inversion of configuration 
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at P). Phosphonate 59, derived from (±)-citronellol was obtained in 63% yield and 97:3 d.r. while 60, which bears an alkyne 

handle for further functionalization through click chemistry184 could be obtained in 33% yield and 98:2 d.r. Finally, 61, derived 

from 3-phenoxy benzyl alcohol (a common motif in agrochemicals)185 was obtained in 70% yield and 97:3 d.r. (Scheme 5, 

right). 

COMPUTATIONAL STUDIES 

To elucidate the origin of enantioselectivity in the catalytic nucleophilic desymmetrization of the prochiral P(V) substrates, a 

density functional theory (DFT) study was performed (Figure 1). As the rate- and enantio-determining step in our previous 

report was the formation of a pentacoordinate anionic intermediate,146 the kinetic preference for the nucleophilic attack was 

examined in this computational study, using the model catalyst B-2, phosphonate ester P1 or P7, and phenol nucleophile. 

Among the located transition states (TSs), the lowest TS structures for the formation of (R)- and (S)-products from P1 were 

TS1-(R) and TS2-(S), respectively (Figure 1, middle). The more favored transition state (TS1-(R)) agrees with the 

experimentally confirmed absolute stereochemical configuration obtained by single crystal X-ray diffraction analysis and is 

computed to be 3.3 kcal mol−1 lower in energy than TS1-(S). Both transition structures engage in several stabilizing non-

covalent interactions (NCIs) such as hydrogen bonding, CH–π, and π–π interactions between the catalyst and the reactants. 

The simultaneous activation of the P(V) electrophile and the phenol nucleophile is promoted by multiple hydrogen bonding 

interactions with the BIMP catalyst. The notable difference which contributes to increasing the energy barrier of TS2-(S) is 

the repulsive interaction between oxygen lone pairs of the phosphonate and thiazolidinone in the substrate. The favored TS 

benefits from dipole minimization rather than being affected by the substituent on the phosphorus atom. This is evidenced by 

the minimal change in energy trend (ΔΔG‡ = 3.1 kcal mol−1) when a phenyl substituent is replaced by a methyl group (Figure 

1, right). 

 

Figure 1. Nucleophilic attack transition state structures (relative Gibbs free energies [kcal mol−1]) for the formation of the (R)- and (S)-products from P1 and 

P7 computed at SMD/M06-2X/def2TZVP//SMD/M06-2X/def2SVP level of theory. Bond lengths (Å) of the TS geometries are provided in the Supporting 

Information. 

A major limitation of our first-generation catalytic method was the requirement for an ortho-substituent on the phenol 

nucleophiles to achieve high levels of enantioselectivity. Our second-generation method, on the other hand, does not. DFT 

calculations were thus utilized to pinpoint the reason for why an ortho-substituent was required in the first-generation method 

but not for our newly established system (Figure 2). In the computed TSs for the first-generation catalytic system, a high 

enantioselectivity is obtained with 2,4-dimethylphenol (ΔΔG‡ = 2.4 kcal mol−1),146 while a dramatic decrease in the energy 

difference is observed in the absence of a 2-methyl substituent (ΔΔG‡ = 0.9 kcal mol−1). The superimposed structures for both 

TSs in Figure 2A strongly imply that there is almost no geometry change with or without an ortho-methyl group in TS5-(R)-

Me and TS5-(R)-H (RMSD = 0.15; RMSD = root mean square deviation), but there is an obvious geometrical distinction for 

the phenol nucleophile in the disfavored transition states TS6-(R)-Me and TS6-(R)-H (RMSD = 0.25). This indicates that the 

steric repulsion between the catalyst and the ortho-substituent of the phenol nucleophile further destabilizes the disfavored 
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transition state structure (TS6-(S)-Me) leading to high levels of enantioselectivity. In comparison, the second-generation 

catalytic system has sufficient space to accommodate the phenol nucleophile approaching the phosphorus atom (Figure 2, B). 

As evidenced by the similar RMSD values in both favored and disfavored TSs with and without the ortho-methyl group (RMSD 

= 0.39 and 0.32), along with the maintained large energy barrier difference in the presence of an ortho substituent (ΔΔG‡ = 2.5 

kcal mol−1), the origin of high enantioselectivity relies soley on positive non-covalent interactions between the BIMP catalyst 

and the P(V) electrophile in the transition state leading to the major enantiomer, rather than relying on an additional 

destabilization between the catalyst and the nucleophile in the disfavored transition state. These insights from the DFT 

calculations shed light on the origins of enantioselectivity for both first- and second-generation catalytic systems in the 

enantioselective nucleophilic substitution at P(V) and provide insight as to why the second-generation system was found to be 

far more general. 

Figure 2. Impact of ortho-substitution in the first- and second-generation systems computed at SMD/M06-2X/def2TZVP//SMD/M06-2X/def2SVP level of 

theory. RMSD = root mean square deviation. RMSDs were calculated by replacing the ortho-methyl groups with hydrogens. 
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An interesting trend was observed when Grignard reagents were examined as nucleophiles for enantiospecific SN2@P reactions 

(Schemes 4 & 5).181-183,186-189 The displacement of the thiazolidinone leaving group took place with retention of stereochemical 

configuration at the P(V) center, whereas phenol displacement took place with inversion of configuration. Thus, we utilized 

DFT calculations to elucidate the origin of these unique pathways using n-BuMgCl as a representative nucleophile (Figure 3). 

First, the substrate 2 chelates the Grignard reagent and generates a stable complex Int1, which undergoes a nucleophilic attack 

at phosphorus center (SN2@P) through the transition state structure TS9 (ΔG‡ = 19.7 kcal mol−1, Figure 3, A). Once the P−C 

bond is formed, the thiazolidinone leaving group is dissociated simultaneously without the formation of a pentacoordinate P(V) 

intermediate. This pathway is referred to as a double-well potential energy surface (PES), and the process, also known as the 

frontside bimolecular nucleophilic substitution at phosphorus (SN2@P4-f), is the favored pathway compared to the backside 

SN2@P4-b.187 Interestingly, the P−C bond formation preferably occurs opposite to the phenoxy group when comparing TS9 

and TS10, and this is due to the stabilization of electron density localized at the apical oxygen atom which can further promote 

the substitution process. In stark contrast, nucleophilic substitution with the Grignard reagent in the absence of thiazolidinone 

leaving group occurs by SN2@P4-b through the most preferred transition state structure TS12 (Figure 3, B). Again, the 

phenoxy group tends to be placed at the apical position at the transition state, and in this case the dissociation of the leaving 

group through the concerted process leads to the formation of the stereochemically inverted product. Taken together, the in-

depth analyses into both catalytic enantioselective and stoichiometric enantiospecific nucleophilic substitution reactions at the 

P(V) center revealed the origin of improved generality and diversifiability of our second-generation protocol. 

 

Figure 3. Rationalization of stereochemical retention [A] and inversion [B] pathways upon nucleophilic substitution with Grignard reagents (relative Gibbs 

free energies [kcal mol−1]) computed at SMD/M06-2X/def2TZVP//SMD/M06-2X/def2SVP level of theory. 
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CONCLUSIONS

A more practical, general, and efficient second-generation enantioselective desymmetrization at P(V) has been developed. 

Through the use of thiazolidinone leaving groups on the P atom and fine tuning of the ureidopeptide BIMP catalyst numerous 

drawbacks of previously established methods have now been overcome. Phenols with a wide array of substitution patterns can 

be readily employed as nucleophiles in the desymmetrization step (vs. only ortho-substituted phenols previously) with both 

aryl and alkyl derived P(V) electrophiles as substrates. The remaining thiazolidinone leaving group can be readily displaced 

by medicinally relevant alkyl and aryl alcohols, amines, Grignard reagents and thiols, providing divergent access to a wide 

range of enantioenriched P(V) species through a single two-phase catalytic platform. In contrast to our first-generation 

approach the nucleophile employed for the desymmetrization could also be displaced enantiospecifically with either Grignard 

reagents to access tertiary phosphine oxides or with alkyl alcohols to access complex enantioenriched dialkyl phosphonates. 

DFT studies were then carried out to investigate the origins of enantioselectivity in the catalyst controlled desymmetrization 

step and to rationalize the superior enantioselectivities arising from the newly established pairing of the ureidopeptide BIMP 

catalyst and the thiazolidinone leaving group compared to the previously employed nitrophenol. Additionally, subsequent 

second and third stage enantiospecific nucleophilic substitutions progressing through either stereoinversive or retentive 

processes were also rationalized. Taken together, the newly developed catalytic platform, and computational insights obtained 

in this study provide a toolbox for the preparation and utilization of enantioenriched stereogenic at P(V) compounds as well as 

a road map for the development of even more general catalytic strategies to access this ever more important class of compound.
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