
Object-detecting deep learning for mechanism discernment in 
multi-redox cyclic voltammograms 
Benjamin B. Hoar,1,† Weitong Zhang,2,† Yuanzhou Chen,2,† Jingwen Sun,1 Hongyuan Sheng,1 Yucheng 
Zhang,3 Jenny Y. Yang,4 Cyrille Costentin,5,* Quanquan Gu,2,* Chong Liu1,6,* 

1 Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United 
States 
2 Department of Computer Science, University of California Los Angeles, Los Angeles, California 90095, United States 
3 The Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, 78712, 
United States 
4 Department of Chemistry, University California Irvine, Irvine, California 92697, United States 
5 Université Grenoble-Alpes, DCM, CNRS, 38000 Grenoble, France. 
6 California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States. 
* Correspondence to: cyrille.costentin@univ-grenoble-alpes.fr (C.C.); qgu@cs.ucla.edu (Q.G.); chongliu@chem.ucla.edu 
(C.L.) 
† Denotes equal contribution 

ABSTRACT: In electrochemical analysis, mechanism assignment is fundamental to understanding the chemistry of a system. The 
detection and classification of electrochemical mechanisms in cyclic voltammetry set the foundation for subsequent quantitative 
evaluation and practical application, but are often based on relatively subjective visual analyses. Deep-learning (DL) techniques 
provide an alternative, automated means that can support experimentalists in mechanism assignment. Herein, we present a custom 
architecture based on Faster R-CNN (Regional Convolutional Neural Network), dubbed as EchemNet, capable of assigning both 
voltage windows and mechanism classes to electrochemical events within multi-redox cyclic voltammograms. The developed 
technique detects over 96% of all electrochemical events in simulated testing data and shows a classification accuracy of up to 97.2% 
on redox events with 8 known mechanisms. Further, the overall 
inference F1 score, a combined measure of accuracy and sensitivity in 
statistical analysis, achieves 0.937, relaying high reliability for 
detecting and classifying all electrochemical events within 
complicated voltammograms. This newly developed DL model, the 
first of its kind, proves the feasibility of redox-event detection and 
electrochemical mechanism classification with minimal a priori 
knowledge. The DL model will augment human researchers’ 
productivity and constitute a critical component in a general-purpose 
autonomous electrochemistry laboratory. 

INTRODUCTION 
Cyclic voltammetry is one of the most popular analytical 

electrochemical techniques. 1-4 In fact, there is no need to look 
beyond the cover of many electrochemistry textbooks to see the 
famous “duck-shaped” plots of cyclic voltammograms. 2-5 The 
relationship between current density (i) and applied potential (E) 
as a function of multiple, n-numbered scan rates (v), represented 
as {v, i(E)}n, is necessary for a descriptive identification of 
reaction mechanisms with z-numbered redox events, in which 
each includes the combinations of electrochemical (Estep) and 
possibly chemical (Cstep) reaction steps. 2, 3, 6 Such a mechanistic 
identification is a prerequisite for downstream quantitative 
analyses hence the extraction of thermodynamic and kinetic 
information within reaction steps. 7 Despite voltammetry’s 
foundational place in the pantheon of electroanalytical tools, 
there is no consistent heuristic of visual inspection for 
voltammograms’ use in mechanism assignment – perhaps the 

most common use of cyclic voltammetry. 8 Manual visual 
inspection of the scan rate’s influence on voltammetric 
responses under different chemical concentrations remains the 
primary means of mechanism assignment. Reliance on manual 
inspection precludes any application in high-throughput 
systems, limits its utility for both experts and non-experts, and 
renders analysis intractable when cyclic voltammograms 
increase in complexity and noise. 8-10 

Recent advances in machine learning and artificial 
intelligence offer a new perspective on voltammogram 
inspection and mechanism assignment. 8-10 Machine-learning 
techniques have been applied to mechanistic classification of 
single-redox voltammograms, 11-13 and numerical fitting of 
voltammogram data under a pre-determined mechanistic 
assignment. 14-16 It is proposed that machine learning’s expertise 
in pattern recognition and feature extraction17 is complementary 
if not substitutive to manual inspection of electrochemical
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Figure 1. A, the comparison of different approaches to the analysis of cyclic voltammograms (CVs), including the deep-learning (DL) 
architecture based on Faster R-CNN (Regional Convolutional Neural Network) dubbed as EchemNet. B, the classes of electrochemical 
mechanisms included in EchemNet. C, exemplary illustration of simulated multi-redox CVs used as training set in this study. Each data point 
in the training set contains a set of multi-redox CVs with n-numbered scan rates and z-numbered redox events ({v, i(E)}n, n = 1 to 6; z = 1 to 
4). ResNet, Residual neural network. 

data. 11, 12, 18 For example, our recent work reported a deep-
learning (DL) model based on the architecture of ResNet 
(Residual Neural Network) 19 that automatically analyzes cyclic 
voltammograms (Fig. 1A), assuming the presence of only one 
redox event, and designates the probable mechanism among 
five of the most common ones in homogeneous molecular 
electrochemistry. 12 The ResNet model yields a probability 
distribution for five mechanisms, represented as a vector y = {yi} 
(i = 1 to 5) in which yi refers to the mechanistic propensity of 
the i-th mechanism. Such a probability-driven analysis provides 
a more satisfying accommodation given the finite amount of 
available electrochemical data and the finite measurement 
resolutions of instrumentations. We envision that the 
deployment of DL-based analysis algorithm not only heralds 
automated electrochemical analysis with high data throughput, 
but also opens the opportunities of simultaneous data analysis 
for multiple electrochemical techniques, a feat untenable by 
humans owing to the data’s nature of high dimensionality. 8 

However, to date, the developed machine-learning models all 
require one piece of important a priori information, namely that 
the number of redox event z is presumably known (z = 1 in 
previous reports11-13), which renders the DL models not entirely 
on par with manual inspection. In a typical manual inspection 
of voltammograms without any a priori information, human 
researchers first identify and locate any redox events in the 
voltammogram, i.e. a task of object detection, then determine 
the mechanism type for each redox event, i.e. a task of 
classification, before potentially establishing any correlation 
among redox events in search of causality. While reported 
algorithms are capable of mechanistic classification for single-
redox events in voltammograms, 11-13 a DL algorithm, tasked 

with both object detection and classification, remains to be 
developed for automated analysis of cyclic voltammetry. As DL 
architecture such as Faster R-CNN (Regional Convolutional 
Neural Network) 20 has been widely used for the recognition and 
classification of two-dimensional images in a wide range of 
applications, we envision using Faster R-CNN architecture to 
develop a voltammogram-reading DL model with the 
functionalities of both redox-event detection and mechanism 
classification.  

Here we report a custom-designed DL architecture based on 
Faster R-CNN, the first of its kind and dubbed as EchemNet, 
capable of both redox-event detection and mechanism 
classification for multi-redox cyclic voltammograms with 
minimal a priori information (Fig. 1A). As voltammetry data 
{v, i(E)}n  are intrinsically sets of one-dimensional (1D) vectors 
instead of two-dimensional images, a custom-designed model 
of 1D Faster R-CNN architecture is developed to locate the 
potential window for up to 4 redox events (z ≤ 4) and designate 
the probable mechanism in a probabilistic manner (Fig. 1A). 
The EchemNet is trained by simulated multi-redox 
voltammograms of up to 6 scan rates and up to 4 independent 
redox events ({v, i(E)}n, n = 1 to 6; z = 1 to 4), categorized in 8 
different reaction mechanisms spanning homogeneous, 
heterogeneous, and surface electrochemistry (Fig. 1B). The DL 
model exhibits an overall F1 score, a statistical combined 
measure of binary classification in accuracy and sensitivity, 21 
of up to 0.937 towards redox-event detection and mechanism 
classification among simulated voltammograms, while 
preliminary testing with experimental data are satisfactory as 
well. Our work showcases the feasibility of a DL algorithm for 
voltammogram analysis without the need for any a priori 
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knowledge, hence the genesis of a general-purpose autonomous 
platform of electrochemical research that augments the 
productivity of human researchers. 

 
RESULTS 
Training set of multi-redox voltammograms. The dataset 

that yields EchemNet includes simulated multi-redox 
voltammograms, conducted via finite-element methods using 
COMSOL Multiphysics v5.5 (Supplementary Note 1). What we 
sought is to establish a dataset of simulated voltammograms 
that sample the majority of if not the whole numerical parameter 
space for each mechanism as defined in textbooks2, 3 
(Supplementary Note 2). Each data point in the dataset includes 
voltammograms of up to 6 scan rates and up to 4 redox events 
({v, i(E)}n, n = 1 to 6; z = 1 to 4). 8 common mechanisms in 
electrochemistry (Fig. 1B) have been included following the 
textbook definitions (Supplementary Note 3): 2, 3 (1) the single-
electron quasi-reversible homogeneous electron transfer (E); (2) 
a single-electron quasi-reversible homogeneous oxidative 
electron transfer followed by a chemical reaction of the oxidant 
in the solution (ECa); (3) a single-electron quasi-reversible 
oxidative electron transfer preceded by a chemical reaction of 
the reductant in the solution (ECb, the anodic variant of the 
classical CE mechanism in Savéant’s textbook3 that is the 
counterpart of ECa); (4) the single-electron heterogeneous 
electron transfer following the Tafel kinetics (T); (5) the two-
electron homogeneous electron transfer, in which a single-
electron transfer is followed by an irreversible chemical and a 
disproportionation steps (DISP-1); (6) a similar two-electron 
homogeneous electron transfer, in which a single-electron 
transfer is followed by an irreversible chemical step and a 
thermodynamically less demanding single-electron transfer 
(ECE); (7) the homogeneous electrocatalysis, in which a single-
electron transfer is followed by a chemical step that regenerates 
the redox-active catalyst (ECcat or EC’); (8) the interfacial 
single-electron transfer when the redox species follows the 
Butler-Volmer kinetics and is bound on the electrode surface 
(SR). Here the categorization of ECa and ECb mechanisms, 
instead of the classical EC and CE ones in textbooks2, 3, is 
because an anodic/cathodic EC mechanism is mathematically 
equivalent to a cathodic/anodic CE one, respectively.  

A multi-step process is developed to establish the dataset of 
simulated multi-redox voltammograms. First, the parameter 
space of each mechanism, for example the value ranges for scan 
rate (v), exchange current density (i0), equilibrium constant (K), 
and forward kinetic rate constant (kf) in the ECa mechanism, is 
carefully defined following textbooks and prior literature2, 3 
(Table S1, Supplementary Note 3). Second, we randomly 
sampled about 3,000 parameter combinations following the 
constraints defined in Table S1, for each mechanism type with 
up to 6 different scan rates (n = 1 to 6). Third, from the available 
8 mechanisms and about 24,000 (= 8 × 3000) parameter 
combinations, we randomly selected no more than 4 parameter 
combinations (z = 1 to 4) and deployed finite-element 
simulations to yield simulated multi-redox voltammograms, 
with randomized redox sequences, voltage spacings among 
every redox event, and relative concentrations of redox species 
that dictate the current densities i among different redox 
features (Fig. 1C). While in principle there could be about 
24,000P4 ~ 1017 different permutations, about 80,000 data points 
of simulated multi-redox 6-scan voltammograms ({v, i(E)}n, n 
= 6; z = 1 to 4), about 480,000 (= 6 × 80,000) voltammograms 
in total, were generated, among which 90% of these data points 
are the training data and the rest 10% are the test data 

(Supplementary Note 1). As shown below, such a relatively 
small amount of data is sufficient for the DL model’s 
establishment.  

As we aim to demonstrate the DL’s feasibility in analyzing 
multi-redox voltammograms first, the voltammograms in the 
proof-of-concept training set assume that each redox event is 
independent to each other (Supplementary Note 2). We also 
ensure that the training set includes well-separated redox peaks, 
and the current densities of redox peaks are on the same order 
of magnitudes among all redox events (Supplementary Note 4). 
As the training of object detection algorithm requires the 
“ground truth” of the location for each redox event, a custom 
protocol is implemented to yield the voltage window, presented 
as the cathodic and anodic voltage bounds (Elow and Ehigh, 
respectively), for each redox event in the simulated 
voltammogram (Supplementary Note 4). The use of Elow and 
Ehigh to represent the voltage window without information of 
current density i is consistent with our design of one-
dimensional (1D) object-detection model (see below). Last, a 
certain extent of Gaussian noise, with a dimensionless standard 
deviation σtrain = σtest = 0.01 unless otherwise noted, was applied 
to the normalized current density inormalized (Supplementary Note 
5) following the same protocol as our previous work. 12 The 
voltammogram data {v, i(E)}n and the corresponding ground 
truth Elow and Ehigh were normalized before being deployed for 
the model’s training, validation, and testing (Supplementary 
Note 5).  

Design of deep-learning (DL) architecture. A custom-
designed Faster R-CNN architecture was needed to establish 
the EchemNet model. The presence of multiple electrochemical 
mechanisms within a single cyclic voltammogram precludes the 
use of image classification algorithms such as ResNet19 alone. 
Alternatively, convolutional layer-based algorithms, 
specifically object detection algorithms, can be considered as a 
mature technology for the elucidation of electrochemical 
mechanisms contributing to a convoluted {v, i(E)}n output. One 
such architecture, Faster R-CNN, 20 is selected for three reasons: 
(1) its online region proposal network (RPN) enables end-to-
end training on detection and classification tasks; (2) the 
deployment of feature pyramid networks22 promotes multi-
scale detections; (3) the architecture’s alignment algorithm of 
region of interest (RoI), generated from RPN, provides 
generally high fidelity between known and predicted event 
bounds – in our case the voltage windows (Elow and Ehigh) 
containing redox events. However, although typical algorithms 
of Faster R-CNN are developed for the analysis of two-
dimensional (2D) images, 20 object detection in voltammograms 
is intrinsically a one-dimensional (1D) task, because from 
chemistry perspective the location of every redox event should 
only be E-dependent in voltammograms. A deployment of 2D 
RoI in voltammograms will explicitly introduce the magnitude 
of current density i as a criterion of redox-event detection, 
inadvertently position a bias towards large redox events and 
significantly decrease the detection sensitivity towards small 
ones. Therefore, the intrinsic feature of voltammograms, and 
more broadly electrochemical data in general, calls for a 1D 
adaptation of the DL architecture.  

Hence, we employed the tools in Faster R-CNN with the 
custom implementation of a 1D RPN and 1D RoI align 
algorithm to obtain a highly effective means of mechanism 
enumeration from complex voltammogram data (Fig. 2A and 
S1, Supplementary Note 5). In typical 2D image recognition, 
the algorithm evaluates the performance of object detection 
with the term named as Intersection over Union (IoU), which is 
calculated as the ratio of the overlap area (“Intersection”) to the
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Figure 2. A, The input, output, and general architecture of the deep-learning (DL) model, “EchemNet”, tailored to the analysis of multi-
redox cyclic voltammograms (CVs). B, Highlights in the custom-designed model that includes one-dimensional (1D) regions of interest 
(RoIs) and the calculation of intersection over union (IoU), in comparison to the default two-dimensional (2D) one used in image recognition. 
The use of 1D RoI ensures that object detection will not be inadvertently affected by the magnitude of current density i and will not lose 
sensitivity towards small redox features. 

combined area (“Union”) between an algorithm-detected object 
and the corresponding ground truth in a 2D image (hence IoU 
∈ [0,1]) (Fig. 2B). In accordance with the 1D adaptation of RPN 
and RoI, to assess the quality of object detection, 1D IoU was 
calculated as the ratio of the overlap voltage range to the 
combined one between algorithm-yielded voltage window (Elow 
and Ehigh) and the corresponding ground truth (IoU ∈ [0,1] as 
well) (Fig. 2B). The algorithm also deploys ResNet, as reported 
in our previous work12, for the classification in each RoI among 
the aforementioned 8 mechanisms and the null class (φ) that 
indicates the voltammogram background without any 
designated redox events (Fig. 1A). As exemplified in Fig. 2A, 
the developed EchemNet after satisfactory training (Fig. S2) is 
designed to discern multi-redox voltammograms and enumerate 
the voltage window of the z-th detected redox event (RoIz) 
represented as normalized voltage values (Elow and Ehigh), the 
corresponding mechanistic propensity distribution yz = {yz,i} (i 
= 1 to 9) towards the trained 8 redox mechanisms plus φ class, 
and the assignment of the most probable mechanism.  

Performance evaluation. There are two separate yet related 
metrics for the evaluation of a DL model for both object 
detection and classification: Metric I, the effectiveness of the 
RPN to detect events independent of their mechanism, i.e. 
performance in object detection alone; Metric II, the overall 
inference performance which is the combination of object 
detection (matching of predicted voltage windows with the 
ground truth) and classification (matching of the predicted most 
probable mechanism with the ground truth) of the RoIs 
provided by the RPN (Fig. S1). In the evaluation of object 
detection alone (Metric I, Fig. 3A), 3 different outcomes are 

possible through the course of region proposal and object 
detection: RoIs represented as Elow and Ehigh predicted by the 
RPN could ultimately align with ground truth of redox bounds 
(object detection true positive, tp1; IoU ≥ 0.75) or not (object 
detection false positive, fp1), and regions where known true 
redox bounds were not detected were assigned as false 
negatives (fn). In the evaluation of overall inference 
performance (Metric II, Fig. 3A), a true positive (tp2) is logged 
when the ground truth mechanism i for the z-th detected redox 
is confidently denoted as the most probable mechanistic 
propensity in yz vector (yz,i ≥ 0.7) with good overlap with the 
redox’s voltage bounds (IoU ≥ 0.75); while the false positives 
are further categorized based on whether the model-yielded 
RoIs detect a real redox event (fp2) or merely detect φ 
background (fp3) (Fig. 2A). There is no delineation between the 
false negatives (fn) between object detection (Metric I) and 
overall inference (Metric II), hence the fn sub-population 
remains the same to the evaluation of object detection and 
overall inference metrics. 

The developed DL model was evaluated for its performance, 
in a protocol similar to our previous report, 12 after being trained 
by simulated multi-redox voltammograms ({v, i(E)}n, n = 6; z 
= 1 to 4; σtrain = 0.01). The test set for the DL model includes 
about 8,000 points of 6-scan voltammograms, 10% of the whole 
dataset, that were not exposed to the developed DL model 
during the training process. The DL model exhibits an average 
IoU of 0.966 among the test set, where unity constituted a 
perfect overlap of predicted bounds with ground truth voltage 
windows. Following the protocol of statistical analysis in image 
recognition and more generally binary classification, 21 the
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Figure 3. A, Explanations to the true positives, false positives, and false negative in the established EchemNet model for both redox-event 
detection and mechanism classification, along with the definitions of metrics for performance evaluation. B, The assay of test-set 
voltammograms and the DL model’s performance. The test set is roughly 10% of the whole dataset of simulated voltammograms 
(Supplementary Note 1). C, Confusion matrix from the test-set assay for the whole test set (left) and within the cases of true positive 1 (tp1) 
after redox-event detection (right). Row count, the number of encounters when the corresponding mechanism on the row of “True label” 
were analyzed in the test set. 

precision (P) and recall (R) of both metrics are calculated to 
evaluate the predictability and sensitivity, respectively, of the 
DL model (Fig. 3A). Calculating the harmonic means of P and 
R in both metrics lead to the F1 scores, an overall measure of a 
model’s performance21. As shown in Fig. 3B, the F1 scores in 
Metrics I and II reach 0.952 and 0.937, respectively, illustrating 
strong performance by the RPN (Metric I) and overall balanced 
performance with high values of both precision and recall 
(Metric II). Such a performance is satisfactory to say the least, 
based on the standard of image recognition, 21 within our 
aforementioned assumptions and our dataset of simulated 
voltammograms.  

We also evaluated the class-by-class accuracies from the 
developed EchemNet model. As the developed ResNet 
classifies RoI into not only the 8 designated electrochemical 
mechanisms but also the null class (φ), i.e. the background 
without any redox events, we first established a confusion 
matrix that includes 8 mechanisms and the φ events with tp1, fn, 
fp1, and fp3 events highlighted (left in Fig. 3C). The number of 
encounters for each mechanism in the test set (“Row counts” in 
Fig. 3C) is relatively homogenous among all mechanisms, 
illustrating a fair and balanced test to the DL model. Practically, 
the DL’s functionality in the context of mechanism 
classification will not be affected by the presence of fp1 cases 
with φ prediction (hence fp3), contributing to 39% of total fp1 
cases, when the DL algorithm unnecessarily yet correctly 
identifies a voltage window in the voltammogram that does not 
have any redox events and can be easily dropped in our model. 
Therefore, we plotted a revised confusion matrix among all tp1 
cases, with a tp2 accuracy of 97.2%, presumably better 
reflecting the model’s utility in mechanistic analysis (right in 
Fig. 3C). Our results suggest that DISP-1 mechanism is the 
most confused one, evident from non-negligible probabilities of 
mis-assigning a DISP-1 mechanism as ECa/ECb, or vice versa. 
Such phenomenon is similar to the one observed in our previous 

report of ResNet architecture for mechanism classification 
when only one redox event is known to exist. 12 The results 
reflect the similarity in voltammograms among DISP-1 and 
EC/CE mechanisms, as depicted in the textbooks, 2, 3 when the 
single-electron (EC/CE) and two-electron processes (DISP-1) 
are both under pure kinetic conditions.  

Deployment examples. We first illustrate the utility of the 
developed EchemNet model via analyzing simulated 
voltammograms. Fig. 4A to 4D display the simulated 
voltammograms ({v, i(E)}n, n = 6, σtest = 0.01) with the number 
of redox events z = 1, 2, 3, and 4, respectively, which was new 
to the trained DL model. The solid dark-red rectangles denote 
the redox events’ voltage windows (Elow and Ehigh), derived 
based on our protocol and designated as the ground truth 
(Supplementary Note 4), while the dashed ones of bright-red 
color denote the RoIs generated from EchemNet’s analysis. The 
close match between the designated ground truths and the 
analyzed RoIs suggest satisfactory performance of object 
detection with a IoU threshold value of 0.75 (tp1 in Fig. 3A). 
Moreover, each detected redox event is subject to mechanistic 
classification via the ResNet architecture. The most probable 
mechanism for each redox z (RoIz) is labelled on the 
voltammograms along with the corresponding propensity yz,i, 
while the DL model outputs the whole yz vector of mechanistic 
propensities. The high yz,i values for the correctly predicted 
mechanisms illustrate the model’s high analytic fidelity. 
Statistically, our testing of about 8,000 points of simulated 6-
scan voltammograms report the tp2 accuracies of 98.2%, 97.8%, 
97.2%, and 96.6%, when z = 1, 2, 3, and 4, respectively. Such 
results indicate that despite slight decay the tp2 accuracy is 
relatively insensitive against the number of redox events (z) and 
the DL model is robust against the increasing complexity in the 
voltammograms.  

We deployed the EchemNet to analyze experimental data in 
exemplary chemical systems. Cobalt(II) tetraphenylporphyrin
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Figure 4. A to D, simulated voltammograms of 6 different scan rates (v = 6) with 1, 2, 3, and 4 redox events (z = 1, 2, 3, and 4), respectively. 
The most probable mechanisms from the DL model, also the ground truths, are labelled with corresponding propensity values. The solid 
dark-red rectangles denote the ground truths of redox’s voltage windows (Elow and Ehigh in Supplementary Note 4), and the dashed ones of 
bright-red color denotes the DL-generated RoIs. E to G, experimental voltammograms of 1 mM cobalt(II) tetraphenylporphyrin (CoIITPP) 
alone (E), and with 0.1 mM and 0.5 mM chloroacetonitrile (ClCH2CN) (F and G, respectively). 0.1 M tetrabutylammonium 
hexafluorophosphate (NBu4PF6) in dimethylformamide (DMF); –1.5 V to –0.9 V vs. Ag/10 mM Ag+ reference electrode; 10, 20, 30, 50, 70, 
and 100 mV/s; 3rd cycle; iR compensated. H to K, experimental voltammograms of 1 mM 1-methyl-2-azaadamantane-N-oxyl (1-Me-
AZADO) alone (H), 1 mM 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (4-MeO-TEMPO) alone (I), 1 mM 1-Me-AZADO with 50 mM 
benzyl alcohol (PhCH2OH) (J), and 0.5 mM 1-Me-AZADO and 0.5 mM 4-MeO-TEMPO with 50 mM PhCH2OH. 0.15 M NaHCO3/Na2CO3 
buffer (pH 9.14); 0.05 to 0.85 V vs. Saturated Calomel Electrode (SCE); 50 mV/s; 3rd cycle; iR compensated. The RoIs from EchemNet and 
the corresponding propensity distribution vectors yz towards 8 mechanisms plus background (φ) are all labelled in E to K. The 
voltammograms plotted in E to K have been normalized in both axes so that the exact E and i values are not displayed. More information is 
available in Supplementary Note 6.

(CoIITPP) is known to undergo a quasi-reversible one-electron 
charge transfer (E step) between formally Co(II) and Co(I) 
redox states (~ −0.785 V vs. Saturated Calomel Electrode, 
SCE23) in dimethylformamide (DMF) (Supplementary Note 6). 
From experimental voltammograms (n = 6), such an E step was 
correctly detected and classified by the DL model based on both 
RoI alignment and the corresponding yz vector that includes 
mechanistic propensities of 8 mechanisms plus background (φ) 
(Fig. 4E). When chloroacetonitrile (ClCH2CN) was added to the 
solution, the electrogenerated Co(I) species nucleophilically 
attacks ClCH2CN electrophile and yields Co(III)−CH2CN, 
rendering the Co(II)/Co(I) redox irreversible (ECb mechanism 
due to its cathodic nature). At a more cathodic potential (< ~ 

−1.0 V vs. SCE23), the yielded Co(III)−CH2CN species is 
reported to undergo multiple steps in a catalytic fashion, 
yielding voltammogram responses resembling either a T or 
ECcat mechanism. 23 At a small equivalent of ClCH2CN (Fig. 
4F), the DL model correctly detects and classifies the catalytic 
process at more cathodic potentials (RoI1), while detecting the 
Co(II)/Co(I) redox and classifies it as an E mechanism (RoI2), 
albeit with a much lower propensity (yE = 60.4 % in Fig. 4F 
against 79.1% in Fig. 4E), consistent with the increase of 
irreversibility owing to the reaction between Co(I) and 
ClCH2CN. 23 At a larger equivalent of ClCH2CN (Fig. 4G), 
similar catalytic (RoI1) and Co(II)/Co(I) (RoI2) features are 
detected from the voltammograms, yet now the Co(II)/Co(I)
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Figure 5. A, Exemplary illustration to showcase how noise (σ) affect CV data quality. B to C, plots of the F1 score in redox-event detection 
(B), average IoU value in redox-event detection (C), and overall F1 score from both redox-event detection and mechanism classification (D) 
against the noise in the test set (σtest, [0.0, 1.0]), for DL models developed under different degrees of noise in the training set (σtrain, [0.0, 0.2]). 
log10(−∞) = 0. E, the dimensionless scaling factor Sz of redox z’s relative intensity (in terms of current density) against the strongest one 
within a multi-redox CV, and the comparative analysis of Sz distributions between the test set (a uniform distribution, [0.2, 1.0]) and the fn 
cases from DL. F, the Sz distributions in the fn cases under different σtest values using the DL model trained by {v, i(E)}n (n = 6; z = 1 to 4; 
σtrain = 0.01).  

redox is so irreversible that the most probable mechanism is 
assigned as ECb (71.8%), indicative a greater extent of the 
reaction between Co(I) and ClCH2CN. The DL analysis of the 
electrochemical data for CoIITPP in the presence of ClCH2CN 
is satisfactory. 

We further challenged the DL model to analyze the redox and 
catalysis of nitroxyl derivatives in aqueous solutions, 24, 25 but 
now with only a single voltammogram curve (n = 1) instead of 
the default value of 6 (Supplementary Note 6). This is intended 
to test whether the DL model, while trained by {v, i(E)}n (n = 
6), is applicable towards electrochemical dataset with a smaller 
number of scan rates. As implemented in our prior work, 12 we 
populated the 3D input tensor with 6 identical voltammograms 
and scan rates and feed the tensor into the DL model for analysis 
(Supplementary Note 5). Quasi-reversible redox features of 1-
methyl-2-azaadamantane-N-oxyl (1-Me-AZADO) (Fig. 4H) 
and 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (4-MeO-
TEMPO) (Fig. 4I) are both successfully detected and classified 
as an E mechanism. When benzyl alcohol (PhCH2OH) substrate 
is added to the solution of 1-Me-AZADO, two-electron 
electrocatalytic oxidation of PhCH2OH via the ECcat (or EC’) 
mechanism emerges (Fig. 4J). 3, 24, 25 Such voltammetric 
response is correctly detected and identified (RoI2), yet a false 
positive (fp3) is also yielded with a 79.0% of φ propensity (RoI1). 
When PhCH2OH are added to a mixture of 1-Me-AZADO and 
4-MeO-TEMPO, both 1-Me-AZADO and 4-MeO-TEMPO 
serve as ECcat electrocatalysts in parallel, albeit at different 
catalytic onset potentials (Fig. 4K). 24 The resultant 
voltammogram display a two-step staircase shape, which was 
not close to any of the scenarios by which the DL model was 
trained. Surprisingly, the DL model correctly detects and 
classifies the general trend of the ECcat mechanism (RoI4), amid 
one fp3 (RoI1) and two fp2 (RoI2 and RoI3) cases with high φ 
propensities (> 75%) (Fig. 4K). It is interesting that both fp2 
cases correctly detect redox events beyond the background and 
the second most likely mechanism are both ECcat (6.13% and 
16.3%, respectively). Our results suggest that the EchemNet 
may still be used for voltammograms with fewer scan rates (n 

< 6), yet prone to false-positive outputs. Practically, the issue of 
false-positives can be addressed in post-analysis by removing 
any detections whose φ propensity is larger than a threshold 
(say, 60% based on Fig. 4J and 4K). Our results hint that the 
EchemNet could be “stretched” a bit for the analysis of 
scenarios new to the model, but a more systematic evaluation 
ought to be conducted in the future. 

Robustness and sensitivity towards noises and sizes of 
redox features. We evaluated the DL model’s robustness 
against noisy data. While the default DL model is trained by 
simulated voltammograms with σtrain = 0.01, we have 
established and evaluated multiple DL models whose training 
sets were applied with σtrain = 0.0, 0.01, 0.05, 0.1, and 0.2. 
Exemplary illustrations about how noise σ affect data quality 
are showcased in Fig. 5A and Fig. S3. Those models’ 
performances against the extent of noise in voltammograms 
were systematically tested by sets of simulated voltammograms 
with varying degrees of Gaussian noises (σtest ∈ [0.0, 1.0]) and 
evaluated via the F1 score of object detection (Metric I) (Fig. 
5B), the average IoU values (Metric I) (Fig. 5C), and the overall 
F1 score (Metric II) (Fig. 5D). The analysis suggests that the 
model with σtrain = 0.0 is not noise-robust at all and the 
performance decreases sharply as σtest increases. When σtrain > 
0.0, the developed EchemNet models performed well on data 
containing noise at least up to, if not better than, the degree of 
noise on which they were trained, although in general a larger 
σtrain value decreases the DL model’s performance. Balancing 
the model’s performance and noise resistance, EchemNet 
model with σtrain = 0.01 was selected as the default baseline 
model whose performance does not decrease significantly until 
σtest ≥ 0.05. As illustrated by the exemplary simulated 
voltammograms (Fig. S3), a noise tolerance towards σtest < 0.05 
is deemed sufficient for typical electrochemistry 
experimentalists.  

We further evaluated EchemNet’s sensitivity towards small 
redox features in multi-redox voltammograms. We evaluated 
the distribution of fn events, cases when known redox events 
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were not detected, as a function of a dimensionless scaling 
factor Sz that semi-quantifies the corresponding redox z’s 
relative intensity (in terms of current density) against the 
strongest one within a multi-redox voltammogram (Fig. 5E, 
Supplementary Note 4). While the Sz values within the training 
set are uniformly distributed between 0.2 and 1.0 with an 
average of 0.6, the Sz values in fn cases may deviate from such 
a uniform distribution and will illustrate how the magnitude of 
redox peak intensities affects DL performance (Fig. 5E). Fig. 
5F illustrates how the Sz distribution of fn events (σtrain = 0.01) 
is affected by the degree of noise in the test data (σtest), by 
displaying each distributions’ average (dark blue), medium 
(red), the first and third quartiles (lower and upper bound of the 
box) of Sz values. Compared to the test set, Sz’s averages among 
fn events are significant lowers and fn events’ distributions 
skew towards smaller Sz values. This suggests that statistically 
EchemNet is more likely to miss smaller redox features during 
object detection, although those fn events are only about 3% of 
all tested cases (σtrain = σtest = 0.01). As σtest increases, the fn 
events’ distribution initially shifts towards smaller Sz values 
when σtest ≤ 0.05, suggesting that larger noise renders small 
redox features more challenging to detect. Interestingly under 
sufficient large σtest values (σtest ≥ 0.05) the fn events’ 
distribution reversed to better align with the overall Sz 
distribution in the training set, indicating that the data had 
reached a noise level where all events were equally difficult to 
detect. Presumably benefiting from the 1D adaptation of Faster 
R-CNN architecture that only considers voltage in redox-event 
detection, our developed EchemNet is capable of detecting 
small redox features, tested down to Sz = 0.2 (20% of the 
maximal redox feature) in our case, and remains sensitive 
enough as long as σtest ≤ 0.05.  

 
DISCUSSIONS 
Our results shown above demonstrate the technical feasibility 

of a DL model that detects and analyzes multiple redox features 
in multi-redox cyclic voltammograms with minimal a priori 
knowledge. Following previous works from our group and 
others that classify a pre-defined single-redox’s mechanism, 11, 

12 this work advances and expands the capability of multi-redox 
detection and classification, mimicking manual analysis that 
has been prevalent in the past several decades. Given the 
foundational role of cyclic voltammetry in electrochemistry, an 
automated DL model for analyzing cyclic voltammograms will 
transform how electrochemical data will be analyzed in the 
future. In the following discussions, we provide our reckoning 
over multiple related issues, in an effort to guide the future 
development of DL models not only for cyclic voltammetry but 
also for electrochemistry in general.  

The DL model can be slightly, at least, extended for the 
analysis of new mechanistic scenarios that the model has not 
seen before during the training process. The simulated multi-
redox voltammograms in the training set presume independent 
redox events, which do not interfere with each other 
(Supplementary Note 2) and are sufficiently separated in redox 
potentials (Supplementary Note 4). Yet the deployment of DL 
model in both CoIITPP and nitroxyl derivative systems (Fig. 4) 
hints that the DL model can be deployed with satisfactory 
outcomes to systems with sequential redox events on the same 
chemical species. When the redox events of the same redox 
species are sufficiently separated in voltage, the local 
concentration profiles for one redox event within the solution’s 
diffusion layer shall not be affected by the history of preceding 
redox processes. This justifies that our DL model can be applied 

to well-separated redox processes of the same chemical species. 
Indeed, the correct detection and classification in Fig. 4K 
showcases the EchemNet is tolerant to large deviations from the 
training set. Nonetheless, to what extent strongly correlated 
redox features in close voltage proximity can be analyzed by 
DL model remains to tested. Such knowledge will prove 
beneficial in an attempt to develop the DL model’s capability 
of establishing correlation/causality among redox events, one 
critical feature in manual inspection of voltammograms.   

The DL model is considered robust against noises and 
smaller redox features. Our analysis in Fig. 5 suggests that the 
DL model can tolerate extensive degrees of Gaussian noises, as 
long as the training set contains similar levels of noises. What 
is interesting is that the extent of tolerable noise (σtest) can be 
slightly larger than the noise during the training process (σtrain) 
(Fig. 5B to 5D), suggesting that the DL architecture per se is 
pretty resistant against noises. Similar robustness is observed 
towards the magnitude of current density (i) of the redox feature, 
in this work represented as the dimensionless factor Sz. 
Although Fig. 5F suggests that smaller redox features are more 
prone to be missed during redox-event detection (fn cases), the 
effect is relatively mild and highly dependent on the extent of 
noise in the dataset. This presumably illustrates the benefits of 
our 1D adaptation of the DL architecture, which only consider 
a redox’s voltage window and presumably minimizes the 
possible bias towards large redox features. Although our 
existing dataset of simulated voltammograms ensures 
sufficiently separation among redox events (Supplementary 
Note 4), one venue of future research is to examine and 
potentially improve the sensitivity of detecting small redox 
events in close proximity with big redox features, a frequently 
encountered challenge in manual inspection of voltammograms. 
As credible experimental data are not expected to be 
significantly noisy (say, σ < 0.02), the developed DL model is 
presumed sufficient towards smaller redox features in the 
voltammograms.  

One interesting issue that we discovered during our research 
is the quantitative descriptors to store the information of 
electrochemical potentials for a specific redox process. Our 
recent efforts in DL analysis of voltammograms8, 12 suggest that 
the mechanism propensity vector y serves well as the descriptor 
for mechanism classification in a probabilistic manner. What is 
challenging is how to describe the “voltage window” in which 
a certain redox process takes place. While molecular 
electrochemistry tends to use peak potential, mid-point 
potential, and/or half-wave potential from voltammograms to 
describe redox features, 2, 3, 5 such descriptors are not applicable 
to redox processes when a well-defined voltammetric peak is 
not available (say, T mechanism). Indeed, it is common in 
electrochemistry that the smooth voltammetric curves with 
commonly overlapping redox events render vague definition of 
a “voltage window” (just consider the term “onset potential”). 
As detailed in Supplementary Note 4, one innovation of this 
work is our own definition of a “voltage window” (Elow and Ehigh) 
following a practical yet a bit arbitrary protocol. At present, our 
devised descriptors Elow and Ehigh seem satisfactory based on our 
manual inspection within simulated and experimental data.  

Our work highlights the necessity of a database composed of 
experimental cyclic voltammograms. Although the simulated 
training set for the DL model benefits from the exhaustive 
sampling of mechanisms’ parameter space, it remains critical to 
introduce experimental data during the model’s training, 
evaluation, and future refinement processes. The confusion 
matrix (Fig. 3C) illustrates that ECa, ECb and DISP-1 
mechanisms are more challenging than others for the DL model 
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to categorize. We propose to use experimental data to address 
the model’s “confusion” among those 3 mechanisms. The low 
values of E mechanism’s propensity (yE) for CoIITPP (79.1% in 
Fig. 4E) and nitroxyl derivatives (75.4% and 75.8% in Fig. 4H 
and 4I, respectively) are another concerning point, as we had 
expected much larger yE values for those classical quasi-
reversible electron transfers. While simulated voltammogram 
of E mechanism precludes any side reactions, experimentally it 
is likely to have trace side reactions, for example from 
impurities or trace moisture in anhydrous solvents, which may 
slightly deviate voltammograms from theoretical ones. Thus the 
DL model trained by simulated voltammograms is deemed too 
restrictive on the conditions of an E mechanism, and it is 
necessary to use experimental data to further refine the model.  

One challenge for future development of DL model in 
electrochemistry is the absence of any datasets with annotated 
ground truths of “voltage windows” and mechanism 
assignments. In the research field of image recognition, 
multiple public datasets of 103 ~ 107 curated real-life images are 
available for researchers to test, evaluated, and improve their 
developed models. 26, 27 Historically, such publicly available 
datasets greatly propelled the development of DL models for 
image recognition. Yet to date there is not such an equivalent 
dataset available for the electrochemistry community. We 
hypothesize that a well-curated dataset of electrochemical 
characterizations will have a similar effect over the research of 
artificial intelligence in electrochemistry. Such an effort is 
currently undergoing. In the future, we envision a hybrid 
approach of model development, by feeding both simulated and 
experimental data during the training/refinement processes.  

Finally, we note EchemNet’s potential broader impacts 
towards the research community of electrochemistry and 
beyond. The development of DL model that automates 
electrochemical mechanistic analysis does not obviate human 
researchers and experts’ opinion in mechanistic studies. Instead, 
the DL model shall be deemed as a “virtual assistant” that 
augments the productivity of human researchers, especially 
when combined with automated experimentation platforms as 
showcased in our recent demonstration of autonomous closed-
loop electrochemical research. 28 The developed DL model does 
not possess any a priori information such as chemical insights. 
It is critical for human researchers to “inject” such a priori 
knowledge at certain moment during a research investigation to 
decide the direction of future experiments even with automated 
experimentation. Last, we emphasize the proper deployment of 
our developed DL model under sufficient trained human users, 
which will broaden and facilitate mechanistic investigations in 
electrochemistry in the long run.  

 
CONCLUSION 
In this work, we demonstrated the feasibility of a DL model 

to detect and analyze redox features in multi-redox 
voltammograms. We developed a custom-designed Faster R-
CNN architecture that tailors to the 1D data format in 
electrochemical characterizations. Furthermore, we evaluated 
the DL model’s performance against simulated and some 
exemplary experimental voltammograms. Such an EchemNet 
model aligns well with the need of data analysis in a general-
purpose autonomous electrochemistry platform, which is 
expected to automatically analyze experimentally measured 
data on-the-fly with little if any a priori knowledge of the 
chemical system and transduce the available finite information 
from the analytic results into a decision-making process for the 
next robotic experiment execution. The EchemNet model’s 

capability of detecting an arbitrary number of redox events is 
commensurate with a data analysis process that accommodates 
a wide range of redox events, expected or unexpected, with little 
if any a priori chemistry knowledge. The DL model’s 
probabilistic approach of mechanistic classification avoids 
deterministic mechanistic assignments, undesired when only 
finite information is available during the experimental 
exploration, and allows for decision-making process based on 
the analyzed propensity distribution. Our EchemNet model will 
augment the productivity of human researchers.  

Additional research is needed in order to achieve the 
aforementioned functionality in an autonomous 
electrochemistry platform. In particular, additional deployment 
of the DL model towards a large dataset of experimental 
voltammograms with diverse mechanisms is desired to further 
evaluate if not validate the model’s utility in real-life 
applications. We call for the establishment of a public database 
of curated experimental voltammograms with a wide range of 
mechanisms. Such a public database will not only help 
benchmark future models’ performance but also provide the 
training set for additional model refinement. A synergistic 
combination of simulated voltammograms that numerically 
exhaust all possible mechanistic variations and experimental 
ones that offer the taste of real-life scenarios is hypothesized to 
yield an artificial intelligence of electrochemical mechanistic 
deciphering that rivals if not surpass human intelligence.  
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