
  

 

 

  

 

 

 

 

 

Overriding Innate Decomposition Temperatures of an Avibactam 
Prodrug Precursor using Data Science-Guided Synthesis   

Jacob Werth*, Michael Butler, Jenson Verghese, Nga Do, Lacey Samp, Remzi Duzguner and Michele 
Buetti-Weekly  

Statistical analysis is used to correlate the thermal decomposition temperature of diverse leaving groups of an avibactam 

prodrug precursor. SMILES strings and Mordred calculated parameters were leveraged to provide a time-efficient workflow 

for model development. The resulting models were deployed to predict a novel analog with a higher onset temperature, 

allowing for an overall safer reagent and proof of concept for the workflow. Interperetation of the descriptors featured in 

the models and subsequent DFT analysis uncovered univariate trends providing a deeper understanding of the 

decomposition pathway. Finally, this workflow enabled the development of a predictive model correlating energy output of 

the precursor analogs for a more comprehensive assessment.  

Introduction 

Avibactam is an antibiotic used intravenously to treat extended 

spectrum beta-lactase infections.1 Prodrugs of avibactam have been 

targeted as an orally delivered class to provide a more patient-centric 

therapy.2 Through the development of this class, safety and logistical 

challenges of the prodrug precursor (1) in the final reaction with N-

hydroxy (2) to the final API (3) was identified (Figure 1). Chlorosulfate 

1 has a low Differential Scanning Calorimetry (DSC) onset (96 °C) and 

is an oil which requires low temperature storage (–20 °C) for quality 

assurance. 

 
Fig 1. Overview of route to avibactam prodrug using a chlorosulfate 

precursor as previously disclosed.  

DSC is an invaluable tool in assessing the initial safety profile of a 

novel compound.3 In the context of process chemistry, it is 

imperative as a safeguard in de-risking scale-up experiments during 

the development process. Due to these undesirable attributes of 1, 

an exploration to find alternative compounds that exhibit a higher 

DSC onset value, exist as a stable, crystalline solid and maintain 

reactivity towards 3 was undertaken. Initially, an empirical approach 

was used to screen various leaving groups in lieu of chloride including 

phenol, imidazole and pyrazole derivatives. Varied success was 

achieved through empirical efforts and the overall goal was not 

realized. This led us to apply data science tools to search for 

correlative models to extrapolate higher DSC values of a reactive 

class and further understand the effects of prodrug substitution. 

Although a large body of literature correlating DSC onset values of 

notoriously energetic functional groups (i.e. tetrazoles, azides, 

diazos) exists, there is limited precedent in using statistical analysis 

to predict DSC values of broad chemical functionality.4-7 Herein, we 

present an ideal scenario, combining synthetic chemistry with 

computational tools, in which diverse screening data is leveraged as 

a training set to build multivariate linear regression (MLR) models 

capable of extrapolating DSC onset values. The computational 

workflow allows for rapid access to parameters and modelling. 

Further analysis of the key descriptors used for modelling provide 

mechanistic insight for the observed leaving group effects on thermal 

decomposition.  

Results and Discussion 

Synthesis of Analogs – Empirical Screening 

Compound 1 was used to efficiently synthesize a diverse library of 

derivatives (Figure 2) through a variety of base-mediated conditions 

(see Supporting Information for details). The resulting compounds 

were tested using DSC to obtain onset temperatures. The values 

shown in Figure 2 represent the left-limit onsets which are the most 

appropriate for assessing the safety profile of new compounds.8 We 

quickly found the DSC onset value of O-bound compounds to be 

broad and high (in some instances >200 °C). However, these were 

found to be unreactive under any conditions in productive synthesis 

of the desired avibactam prodrug 3. N-bound heterocycles exhibited 

relatively lower DSC onset values but also did not produce desired 

product under basic conditions or with additives. Although the 2-Me-

(benz)imidazole class of compounds were unreactive, they were of 
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particular interest as they were crystalline solids and exhibited 

relatively higher DSC onsets among N-bound heterocycles. Literature 

precedent of activating the 2-Me-imidazole and 2-Me-benzimidazole 

compounds with MeOTf was explored and the resulting compounds 

were found to be effective in producing avibactam prodrug in assay 

yields of 90-93% (Figure 3).9, 10 The 2-Me-benimidazole analog was 

found to be the optimal compound considering the higher DSC onset 

value and comparable reactivity. Furthermore, the free base of this 

compound is stable at room temperature. 

 

Fig 2. Overview of compounds synthesized to fit criteria for an 

alternate prodrug precursor leaving group. 

Accelerated Rate Calorimetry (ARC) was performed on the 2-Me-

benzimidazole analog and showed an onset at approximately 75 °C.11 

ARC is typically used as a follow-up experiment to measure the 

thermal stability of a compounds more accurately in comparison 

with DSC by using a slower, heat-wait-search ramp. The measured 

ARC onset temperature of the 2-Me-benzimidazole analog raised 

potential challenges in scale-up processes and future 

commercialization activities. At this point, we turned to data science 

tools to build correlative models in the hopes of understanding the 

relationship between leaving group and DSC onsets as well as predict 

a more thermally stable 2-Me-benzimidazole derivative. 

 

Fig 3. Reactivity towards avibactam prodrug using MeOTf salts of 2-

Me-imidazole and 2-Me-benzimidazole leaving groups under basic 

conditions. 

Machine Learning Approach 

Our computational workflow began with screening our compounds 

through an internally built machine learning-based tool powered by 

ChemProp to assess initial prediction capability.12 The model was 

trained on 1000’s of Pfizer library compounds using only SMILES 

strings as input for parameter collection.13 To our dismay, there was 

no correlation found between measured and predicted DSC onset 

values of the avibactam prodrug precursor analogs (Figure 4). 
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Fig 4. Measured vs. predicted DSC onsets of Chemprop model trained 

on Pfizer’s library of compounds.  

Considering the lack of representation for this specific compound 

class of substituted sulfates in the Pfizer library, we decided to alter 

our approach and develop de novo MLR models.14 Based on the small 

training set of prodrug analogs, this analysis would take advantage 

of the chemical overlap of the prodrug between the compounds and 

rely on descriptors to capture the various leaving group effects. 

MLR Model Development and Predictive Analysis 

To begin our computational workflow, the entire set of analogs 

shown in Figure 2 (including 1) were truncated by removing the 

prodrug component and taking forward the sulfonic acid derivatives 

as the training set (Figure 5). This was done to eliminate the 

conformational flexibility of the molecules for ease of analysis. 

Traditionally, MLR analysis of chemical structures often relies on 

conformational searching and density-functional theory (DFT)-level 

analysis to obtain sophisticated parameters relevant to the 

mechanism.15 However, this approach requires a significant 

investment in time and computational resources. 
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Fig 5. Overview of two-stage computational workflow used for MLR 

model development and mechanistic rationale.  

In the interest of providing a user-friendly approach towards 

obtaining descriptors and expediting the timeline to initial modeling, 

SMILES strings were fed into the Mordred calculator using Python 

code.16 Mordred is capable of producing 1000’s of 2D and 3D 

parameters in seconds. After completion of Mordred calculations 

and cleaning of highly correlative parameters (R2 > 0.95), 

approximately 350 features were taken forward for least squares 

regression analysis. This is in a similar vein with the machine learning 

algorithms mentioned above wherein DFT-level structures are not 

required for parameter collection. We envisioned DFT analysis could 

be deployed as a second stage of the workflow to help interpret 

unintuitive, quantitative structure activity relationship (QSAR) 

parameters and provide rationale for how a potential model is 

operative.  
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Fig 6. A. Global model for entire set of analogs. B. Focused model of 

imidazole-derived compounds. C. Preliminary understanding of 

parameters found in the Global model. D. Prediction of aryl-OMe 

substituted 2-Me-benzimidazole analog.   

With the parameter library in hand, the data set was split into a 

training set/validation set of 70/30 and a forward stepwise algorithm 

was used to search for correlative models. Remarkably, several 

highly correlative (R2 > 0.90), 2-term models were found. The optimal 

model for all the analogs is shown in Figure 6A. The additional 

statistical scores including LOO (leave-one-out) (0.91) and k-fold (k = 

5, 0.91) indicated a robust model was found.14 Furthermore, the test 

R2 score of 0.89 provides a high level of confidence in predicting out 

of sample analogs. The most overwhelming type of parameter that 

showed up in the list of top models was a classification term 

representing the number of oxygen atoms present in the molecule. 

This represents a relatively simple classification but surprisingly 

provided an effective grouping of the structures. The second 

parameter used in the global model, moran coefficient of lag 2 

weighted by ionization potential (MATS2i), which carries a negative 

coefficient is not as intuitive and by univariate analysis appears to 

have a more continuous role in correlating the compounds.  

Further analysis of this parameter shows a highly correlative, inverse 

relationship with N-bound analogs and DSC onsets when O-bound 

analogs are omitted (Figure 6C). Qualitative analysis suggests the 

term is grouping the various N-bound heterocycle classes as well as 

capturing steric and electronic changes. Attempts to further 

understand this parameter was undertaken by DFT computation 

(M062X/def2TZVP//B3LYPD3BJ/6-31G(d,p)) of the truncated analogs 

and collection of more sophisticated, 3D descriptors. Parameters 

such as natural bond orbital (NBO) charges were collected from the 

lowest-energy conformer determined by DFT. No correlation (R2 > 

0.3) could be found between the MATS2i parameter and NBO 

charges, Sterimol-based parameters or other global descriptors 

(HOMO/LUMO energy, polarizability), highlighting the capacity for 

Mordred-based parameters to describe high-level features.17    

In using the model to find more thermally stable compounds, the nO 

term was the focus for extrapolation. Given the simplicity of this type 

of parameter, this allows for a synthetic chemist to quickly search for 

compounds that would apply to this trend. Considering our interest 

in the reactive 2-Me-benzimidazole class, an aryl-OMe derivative was 

synthesized to test the model (Figure 6D). Along with an additional 

oxygen atom, this analog was computed and found to produce a 

MATS2i value of -0.30569, an extrapolation of the benzimidazole 

class. Gratifyingly, the compound exhibited a higher DSC onset value 

of 119 °C. The global model overpredicted the value by 25 °C.  

Focused Model Development 

The overprediction of the aryl-OMe derivative by the global model 

prompted us to explore a “focused” model comprised of 

(benz)imidazole-based compounds with the hypothesis that 

increasing the chemical overlap between structures may improve the 

prediction accuracy. Using 9 datapoints and a training set/validation 

set split of 60/40, the same MLR workflow used in the global model 

development was used to find an optimal 2-term model with overall 

high statistical scores (R2 = 0.99, LOO = 0.97, 5-fold = 0.87) (Figure 

6B). Using this focused model, the prediction error of the aryl-OMe 

analog was lowered to only 14 °C. 

Interestingly, this model is comprised of 2 terms (Amid_O and 

AATSC1i) with positive coefficients. Univariate analysis of AATSC1i, 
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the parameter with the largest contribution, beside the measured 

DSC onsets show a strong correlation barring two clear outliers 

(Figure 7A). The two outliers were identified as the MeOTf salts. This 

trend indicates the second term in the model (Amid_O) is correcting 

for the MeOTf salt analogs. Further, when AATSC1i is compared with 

the collected DFT parameters, a strong correlation with Polarizability 

(R2 = 0.92) is observed (Figure 7B).  
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Fig 7. A. Univariate analysis of Measured DSC Onset and AATSC1i 

descriptor. B. Plot of AATSC1i (2D) and Polarizability (DFT-derived) 

parameters for imidazole-based compounds. C. Comparison of 

LUMO orbitals between imidazole, 2-Me-benzimidazole and MeOTf-

activated 2-Me-benzimidazole truncated analogs. 

Polarizability is a global parameter generally associated with overall 

size.18 A high correlation between the AATSC1i parameter and 

molecular weight of the compounds was also discovered (R2 = 0.89) 

Stabilization of the leaving group is seen with examples at each end 

of the spectrum for this parameter. Bond lengths of interest were 

calculated by optimizing the truncated analogs at the 

M062X/def2TZVP level of theory as this metric has been shown to be 

relevant in previous modelling studies of tetrazole DSC onsets.6 

Parent imidazole has a lower DSC onset at 70 °C and elongated N–S 

bond length of 1.658 Å while the larger 2-Me-benzimidazole analog 

has a significantly higher DSC onset at 107 °C and shorter N–S bond 

length of 1.650 Å. Qualitative comparison of the LUMO orbitals 

between the two analogs reveals a delocalization of the orbital from 

the N–S bond when extended conjugation is present which 

presumably is an additive effect with overall size stabilization. 

Additionally, these trends can rationalize the observed reactivity of 

activated 2-Me-benzimidazole towards API and lower DSC onset. The 

MeOTf salt of 2-Me-benzimidazole is measured computationally to 

have a N–S bond length of 1.712 Å and the LUMO orbital is 

redistributed across the N–S bond.  

The improved predictive performance of the focused model speaks 

to the overall importance of chemical structure overlap in producing 

predictive models for unique functional groups. Ultimately, the 2-

Me-OMe-benzimidazole analog would have unlikely been identified 

as a target without the knowledge gained from statistical analysis. 

Effect of Aryl Electron Withdrawing Groups 

We next tried to further increase the DSC onset value by introducing 

a methyl ester in lieu of the methoxy group (Figure 8A). This molecule 

was predicted to be much higher (Global = 192 °C, Focused = 164 °C) 

given the increase of oxygen atoms. Unfortunately, this compound 

exhibited a DSC onset of only 95 °C. Interestingly, the LUMO orbital 

of 24 is localized on the aryl carbonyl C–C bond as opposed to the S–

O bond indicating an alternate decomposition pathway may have 

been introduced. This depression of onset value prompted us to take 

a closer look at the trends present in the compound library. 

Interestingly, there appeared to be a negative aryl electron 

withdrawing group (EWG) effect present not only in the N-bound 

analogs but also the phenol-based O-bound ones. A stark example of 

this trend is present in a CF3 substitution of an indazole analog 

resulting in a net loss of 40 °C from the parent indazole (Figure 8B). 

From DFT analysis, there was slight elongation of the N–S bond 

observed (1.662 Å for parent indazole vs. 1.668 Å for CF3-Indazole) 

indicating another potential decomposition pathway may be 

operative. This aryl EWG trend is also evident among the phenol-

based derivatives. A Hammett correlation between the para-

substitution of the phenol ring and DSC onset values was observed 

and shows the detrimental effect of having an aryl EWG present on 

the ring (Figure 8C). This was an inverse trend relative to diazo 

compounds, which in a recent study were found to exhibit lower 

thermal stability with aryl electron-donating groups.19 We 

hypothesize this could be the contributing reason for the aryl methyl 

ester compound showing a decrease in DSC onset value in 

comparison to the parent 2-Me-benzimidazole.  

To further explore this Hammett trend, computational analysis of the 

S–O bond was carried out to understand potential elongation with 

increasing Hammett value/decreasing onset temperature. The 4-

OMe analog S–O bond was computed and measured to be 1.578 Å. 

Comparatively, the 4-CN analog exhibited an S–O bond of 1.585 Å. 

This suggests the mechanism of decomposition is likely to occur at 
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the S–O bond of the leaving group. Visualization of the LUMO orbitals 

also displays higher relative density around the S–O bond in the 4-CN 

analog. Altogether, these trends identified with the aid of DFT 

analysis strengthen our understanding of the leaving group’s effect 

on the prodrug precursor decomposition onset.   
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Fig 8. A. Prediction of aryl-CO2Me substituted 2-Me-benzimidazole 

analog based on additional oxygen atoms. B. Identification of DSC 

depression of indazole-based analogs. C. Hammett correlation 

describing the inverse effect on phenol-based analogs. Analysis of 

computationally measured S–O bond length. Comparison of LUMO 

orbitals between 4-OMe and 4-CN phenol-based truncated analogs.    

Model Development of Energy Output 

Finally, we were interested in the potential to correlate our 

descriptor library with the energy output (J/g) of the DSC testing. The 

ability to predict the energy released from relative functional groups 

would provide a more comprehensive assessment of the thermal 

decomposition. Using the same workflow as introduced with DSC 

onset, initial attempts proved unfruitful in finding robust statistical 

models. Upon closer inspection, the chloride (1) and prodrug dimer 

(8) analogs were the main drivers for lack of correlation. Removal of 

these two compounds greatly improved the modeling efforts and 

resulted in multiple 3-term models with strong correlations. Given 

the necessity of 3 parameters and the removal of less commonly 

featured functional groups in the training set, this suggests energy is 

not as easily described as DSC onset temperature in the context of 

this study. The optimal model shown in Figure 9 scored high in 

statistical metrics (R2 = 0.91, LOO = 0.83, 5-fold = 0.81, TestR2 = 0.78).  
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Fig 9. Global model correlating energy output from DSC experiments. 

External validation of the model using the 2-Me-benzimidazole 

derivatives as a test set. 

Using the oxygenated, aryl 2-Me-benzimidazole derivatives as a test 

set, we sought to gauge the model’s predictive capability. The model 

performed well in predicting the general energy output for the aryl-

OMe (error: 60 J/g) and aryl-CO2Me (error: 28 J/g) analogs. 

Considering the wide range of values in the study (0 – 400 J/g) and 

the mean average error (MAE) of the validation set (MAE = 43 J/g), 

we believe this to be a reasonable error for application. 

Conclusion 

In summary, a data science approach was used to correlate the 

thermal stability of disparate leaving groups for an avibactam 

prodrug precursor and further leveraged to predict an analog with a 

higher DSC onset value. By using a cost-effective, computational 

workflow, correlations were readily found and the time to prediction 

was significantly truncated. While 2D based-descriptors have 

traditionally been more difficult to interpret and attribute to 

mechanism due to their simplicity, this case study demonstrated how 

trends could be still be readily identified and overall provide a more 

holistic understanding of the prodrug precursor decomposition. 

Electronic contributions were discovered to influence the DSC onset 

values throughout the analogs and a Hammett correlation was 

defined among phenol-substituted derivatives which corresponded 

to lengthening of the S–O bond. Visualization of LUMO orbitals 

provided a qualitative reinforcement of the observed DSC trends.   

Overall, DFT analysis allowed for a more general understanding of a 

leaving group’s effect on the prodrug precursor. As data science 

studies gravitate towards machine learning workflows and artificial 

intelligence with vast datasets, utilizing simple tools with smaller, 

curated datasets proves to still be a useful, complementary tool for 

chemists. We believe this workflow will provide a readily accessible 

entry point for nonexperts to apply data science tools in parallel with 

synthetic screening. 

Conflicts of interest 

There are no conflicts to declare. 

https://doi.org/10.26434/chemrxiv-2023-9g0d5 ORCID: https://orcid.org/0000-0001-9648-5986 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-9g0d5
https://orcid.org/0000-0001-9648-5986
https://creativecommons.org/licenses/by-nc/4.0/


ARTICLE Journal Name 

  

 

 

Acknowledgements 

The acknowledgements come at the end of an article after the 

conclusions and before the notes and references.  

Notes and references 

(1) Shirley, M. Ceftazidime-Avibactam: A Review in the Treatment of 
Serious Gram-Negative Bacterial Infections. Drugs 2018, 78 (6), 675-
692. 
(2) Gordon, E. M.; Duncton, M. A. J.; Gallop, M. A. Orally Absorbed 
Derivatives of the β-Lactamase Inhibitor Avibactam. Design of Novel 
Prodrugs of Sulfate Containing Drugs. J. Med. Chem. 2018, 61 (22), 
10340-10344. 
(3) Sheng, M.; Valco, D.; Tucker, C.; Cayo, E.; Lopez, T. Practical Use 
of Differential Scanning Calorimetry for Thermal Stability Hazard 
Evaluation. Org. Process Res. Dev. 2019, 23 (10), 2200-2209. 
(4) Beste, A.; Barnes, B. C. Prediction of thermal decomposition 
temperatures using statistical methods. AIP Conf. Proc 2020, 2272 
(1). 
(5) Keshavarz, M. H.; Zohari, N.; Seyedsadjadi, S. A. Validation of 
improved simple method for prediction of activation energy of the 
thermal decomposition of energetic compounds. J. Therm. Anal. 
Calorim. 2013, 114 (2), 497-510. 
(6) Rein, J.; Meinhardt, J. M.; Hofstra Wahlman, J. L.; Sigman, M. S.; 
Lin, S. A Physical Organic Approach towards Statistical Modeling of 
Tetrazole and Azide Decomposition**. Angew. Chem. Int. Ed. 2023, 
62 (17), e202218213. 
(7) Zohari, N.; Abrishami, F.; Zeynali, V. Prediction of decomposition 
temperature of azole-based energetic compounds in order to assess 
of their thermal stability. J. Therm. Anal. Calorim. 2020, 141 (4), 
1453-1463. 
(8) Green, S. P.; Wheelhouse, K. M.; Payne, A. D.; Hallett, J. P.; Miller, 
P. W.; Bull, J. A. On the Use of Differential Scanning Calorimetry for 
Thermal Hazard Assessment of New Chemistry: Avoiding Explosive 
Mistakes. Angew. Chem. Int. Ed. 2020, 59 (37), 15798-15802. 
(9) Beaudoin, S.; Kinsey, K. E.; Burns, J. F. Preparation of 
Unsymmetrical Sulfonylureas from N,N‘-Sulfuryldiimidazoles. J. Org. 
Chem. 2003, 68 (1), 115-119. 
(10) Lee, H. K.; Bang, M.; Pak, C. S. Efficient synthesis of 
arylsulfamides by reaction of amines with arylsulfamoyl imidazolium 
triflate. Tetrahedron Lett. 2005, 46 (42), 7139-7142. 
(11) Sheng, M.; Valco, D.; Tucker, C. Heat Loss in Accelerating Rate 
Calorimetry Analysis and Thermal Lag for High Self-Heat Rates. Org. 
Process Res. Dev. 2021, 25 (1), 108-119. 
(12) Yang, K.; Swanson, K.; Jin, W.; Coley, C.; Eiden, P.; Gao, H.; 
Guzman-Perez, A.; Hopper, T.; Kelley, B.; Mathea, M.; et al. Analyzing 
Learned Molecular Representations for Property Prediction. J. Chem. 
Inf. Model. 2019, 59 (8), 3370-3388. 
(13) Weininger, D. SMILES, a chemical language and information 
system. 1. Introduction to methodology and encoding rules. J. Chem. 
Inf. Comput. Sci. 1988, 28 (1), 31-36. 
(14) Santiago, C. B.; Guo, J.-Y.; Sigman, M. S. Predictive and 
mechanistic multivariate linear regression models for reaction 
development. Chem. Sci. 2018, 9 (9), 2398-2412. 
(15) Crawford, J. M.; Kingston, C.; Toste, F. D.; Sigman, M. S. Data 
Science Meets Physical Organic Chemistry. Acc. Chem. Res. 2021, 54 
(16), 3136-3148. 
(16) Moriwaki, H.; Tian, Y.-S.; Kawashita, N.; Takagi, T. Mordred: a 
molecular descriptor calculator. J. Cheminf. 2018, 10 (1), 4. 

(17) Brethomé, A. V.; Fletcher, S. P.; Paton, R. S. Conformational 
Effects on Physical-Organic Descriptors: The Case of Sterimol Steric 
Parameters. ACS Catal. 2019, 9 (3), 2313-2323. 
(18) Werth, J.; Sigman, M. S. Connecting and Analyzing 
Enantioselective Bifunctional Hydrogen Bond Donor Catalysis Using 
Data Science Tools. J. Am. Chem. Soc. 2020, 142 (38), 16382-16391. 
(19) Green, S. P.; Wheelhouse, K. M.; Payne, A. D.; Hallett, J. P.; 
Miller, P. W.; Bull, J. A. Thermal Stability and Explosive Hazard 
Assessment of Diazo Compounds and Diazo Transfer Reagents. Org. 
Process Res. Dev. 2020, 24 (1), 67-84. 

 

https://doi.org/10.26434/chemrxiv-2023-9g0d5 ORCID: https://orcid.org/0000-0001-9648-5986 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-9g0d5
https://orcid.org/0000-0001-9648-5986
https://creativecommons.org/licenses/by-nc/4.0/

