Computational High-Pressure Chemistry:
Ab Initio Simulations of Atoms, Molecules and
Extended Materials in the Gigapascal Regime

Authors:
Felix Zeller¹ (Email: zellerf@uni-bremen.de; ORCID: 0000-0001-9140-8359)
Chieh-Min Hsieh¹ (Email: chsieh@uni-bremen.de; ORCID: 0000-0002-9206-4524)
Wilke Dononelli²,³,⁴ (Email:wido@uni-bremen.de; ORCID: 0000-0001-7577-421X)
Tim Neudecker*,¹,²,³ (Email: neudecker@uni-bremen.de; ORCID: 0000-0001-7599-3578)

¹ University of Bremen, Institute for Physical and Theoretical Chemistry, Leobener Straße 6, D-28359 Bremen, Germany
² Bremen Center for Computational Materials Science, Am Fallturm 1, D-28359 Bremen, Germany
³ MAPEX Center for Materials and Processes, Bibliothekstraße 1, D-28359 Bremen, Germany
⁴ University of Bremen, Hybrid Materials Interfaces Group, Am Fallturm 1, D-28359 Bremen, Germany

* Corresponding author
Abstract:

The field of liquid-phase and solid-state high-pressure chemistry has exploded since the advent of the diamond anvil cell, an experimental technique that allows the application of pressures up to several hundred gigapascal. To complement high-pressure experiments, a large number of computational tools have been developed. These techniques enable the simulation of chemical systems, their sizes ranging from single atoms to infinitely large crystals, under high pressure and the calculation of the resulting structural, electronic and spectroscopic changes. At the most fundamental level, computational methods using carefully tailored wall potentials allow the analytical calculation of energies and electronic properties of compressed atoms. Molecules and molecular clusters can be compressed either via mechanochemical approaches or via more sophisticated computational protocols using implicit or explicit solvation approaches, typically in combination with Density Functional Theory, thus allowing the simulation of pressure-induced chemical reactions. Crystals and other periodic systems can be routinely simulated under pressure as well, both in a static and in a dynamic manner, to predict the changes of crystallographic data under pressure and high-pressure crystal structure transitions. In this review, the theoretical foundations of the available computational tools for simulating high-pressure chemistry are introduced and example applications demonstrating the strengths and weaknesses of each approach are discussed.
Contents

1 Introduction

2 Simulation Techniques
 2.1 Some Introductory Remarks
 2.1.1 A Brief Historical Overview
 2.1.2 Bridging Length Scales and Relating Model Concepts to the Real World
 2.2 Atoms and Small Molecules in Confining Potentials
 2.3 Isolated Molecules and Molecular Clusters
 2.3.1 Mechanochemical Methods: G-FMPES and (X-)HCFF
 2.3.2 Implicit Solvation Models: XP-PCM and GOSTSHYP
 2.3.3 Explicit Solvation Models
 2.4 Periodic Systems
 2.4.1 Static Simulations of Periodic Systems under Pressure
 2.4.2 High-Pressure Molecular Dynamics Simulations

3 Applications
 3.1 Fundamental Properties of Materials at High Pressure
 3.1.1 Electronic Effects and Chemical Bonding
 3.1.2 Spin Crossover Processes
 3.1.3 Spectroscopic Properties: Piezochromism and Vibrational Spectra
 3.2 Pressure-Induced Chemical Reactions
 3.2.1 Diels-Alder Reactions
 3.2.2 From Monomers to Polymers
3.2.3 The Piezomechanical Cycle .. 45
3.3 The Behavior of Bulk Materials Under Pressure 47

4 Conclusions .. 53
1 Introduction

Using modern high-pressure technology,\cite{1-7} a plethora of fascinating effects can be induced in chemical systems. Pressure in the gigapascal range (1 GPa \(\approx 10^5\) atm) may cause electronic rearrangements at the atomic level,\cite{8,9} allows the synthesis of otherwise unobtainable chemical compounds,\cite{10} gives access to novel crystal structures,\cite{11} and leads to the metallization\cite{12} or polymerization of substances.\cite{13} The experimental method of choice in high-pressure chemistry, physics and materials science is the diamond anvil cell (DAC),\cite{1,14} which allows the constant application of pressure up to a few hundred GPa.\cite{15} Due to this enormous pressure range, even planetary interiors can be modeled with a DAC.

The intriguing electronic, structural and spectroscopic effects observed in high-pressure experiments cannot be fully understood and appreciated, if experiments are carried out on a standalone basis. To complement high-pressure experiments, a cornucopia of computational tools have been developed. Some of these approaches have been the focus of previous review articles, e.g., simulation methods for molecules,\cite{16,17} crystals\cite{11,18-23} and biological systems\cite{24} under pressure. This review article presents an overview of \textit{ab initio} computational methodologies spanning the entire range between the atomic scale and infinitely large periodic systems under pressure. The theoretical foundations of each of these computational tools are summarized (Section 2) and selected applications, demonstrating the capabilities — and limitations — of modern computational high-pressure chemistry, are pointed out (Section 3).

It is important to differentiate between pressure that is applied to a substance externally, e.g., using a DAC, and internal/chemical pressure that arises from lattice strain.\cite{25,26} Similarly, the application of hydrostatic/isotropic pressure often yields different results than non-hydrostatic/anisotropic compression.\cite{27,28} Here, the focus lies on externally applied hydrostatic pressure.
2 Simulation Techniques

2.1 Some Introductory Remarks

2.1.1 A Brief Historical Overview

Because pressure is a classic thermodynamic state variable, it has appeared in equations since the beginning of thermodynamics. Later, in the first half of the 20th century, seminal contributions have appreciated the role of pressure in quantum mechanics and its influence on chemical reactivity. Turning to high-pressure ab initio simulations, early work presented Self-Consistent Field (SCF) calculations of quantum mechanical systems under pressure, e.g., a hydrogen atom in a box. Placing atoms and small molecules in boxes confined by wall potentials is a fruitful endeavor and such approaches are still being developed today (Section 2.2).

The field of computational high-pressure chemistry was boosted tremendously by the development of barostats in the 1980s. Barostats play a central role for high-pressure simulations, since they are a crucial ingredient for Molecular Dynamics (MD) simulations — sometimes in combination with Density Functional Theory (DFT) —, thereby paving the way for studying the time propagation of extended systems under pressure.

Moreover, in the 1980s a general expression for the macroscopic stress tensor was presented, which enables static DFT calculations of bulk systems under pressure. However, from a quantum mechanical point of view, it must be noted that none of the terms in the electronic Hamiltonian includes pressure as an explicit variable. This complicates the calculation of electronic energies and molecular properties using DFT and wavefunction-based simulation methods. Only within the past 15 years or so, specialized approaches have been developed that circumvent this problem and allow the simulation of pressure at the molecular level (Section 2.3). These approaches facilitate the comparison of high-pressure single...
molecule and bulk effects. Moreover, the full power of *ab initio* simulation methods for, e.g., bonding and interaction analyses, as well as calculations of a wealth of pressure-induced spectroscopic effects can be exploited.

Today we have the luxury of choosing between a variety of simulation tools for systems of all sizes under pressure, ranging from single atoms to infinitely large materials (Figure 1). The connection between the different length scales is established in Section 2.1.2.

2.1.2 Bridging Length Scales and Relating Model Concepts to the Real World

Often, text books of quantum mechanics start with the example of the hydrogen atom. This system only consists of a proton and an electron, and an exact solution of the Schrödinger equation is possible. Hydrogen is also the focus of many high-pressure studies using wall potentials (Section 2.2), and often
analytical solutions for energies and other observables are available. As soon as the system size increases, however, approximations have to be used. In quantum chemistry, wave function based methods are often applied, ranging from the mean-field Hartree-Fock (HF)\cite{40,41} theory to more systematically accurate \textit{ab initio} correlation methods like MP2\cite{42} or CCSD(T).\cite{43–45} The latter method is often referred to as the “gold standard of quantum chemistry”. Unfortunately, these high-level methods, especially CCSD(T), can only be used for small molecules with less than 50 atoms. We note, however, that there is ongoing research to accelerate the speed of these calculations to be able to simulate systems containing several hundreds of atoms by introducing additional approximations.\cite{46–50}

Nevertheless, for most quantum chemical calculations, DFT is used to describe the electronic structure of the system of interest, since system sizes up to a few hundred to a thousand or so atoms can be modeled. Depending on the choice of the exchange correlation (XC) functional, observables of different classes of materials can be calculated with good agreement to experimental observations. As shown in Section 3, DFT is used for most studies in computational high-pressure research, too. In these studies, molecules are simulated either in an isolated way (Section 2.3.1) or, alternatively, in confined environments like in (implicit) solution (Section 2.3.2). If more than one molecule shall be considered or the interaction with the environment needs to be taken into account, explicit solvation models can be applied (Section 2.3.3). However, for treating long-range interactions accurately, calculations are usually performed using periodic boundary conditions (Section 2.4). This methodology allows for simulations of well ordered crystalline structures and phase transitions, e.g., between the liquid and the solid phase.

Even if a high-level method like CCSD(T) or a very accurate XC functional is used in atomistic simulations, still a comparison to real world experimental observations might not be straightforward. One reason is that, most commonly, gas phase molecules are represented by modelling only a single static instance of the molecule. However, this assumption might only be correct at 0 K, since, at higher temperatures, vibrations and rotations will change the structure. To address this problem, statistical effects
have been appreciated in high-pressure experimental/computational studies early on.51 Another aspect, which has recently been discussed, e.g., in the field of conceptual density function theory, is the inclusion of external electronic or magnetic fields to the simulations to mimic experimental conditions.52,53

The main reason why it is often difficult to compare the outcomes of experiments and calculations is the computational resources that are available nowadays. Therefore, the need of experimental model studies that can be compared to theoretical calculations is crucial. In the context of heterogeneous catalysis, Sauer and Freund discussed the benefit of such model studies to identify factors that determine the properties of catalytic materials with respect to reactions by systematically increasing the complexity of the system.54 Similar approaches are needed and used in the context of high pressure research. One example is a study of McWilliams et al., who investigated processes in planetary interiors in an experimental model study of phase transitions of MgO, which is abundant on terrestrial planets.55 The same system has then been investigated by Holmström and Stixrude with first-principles free-energy calculations to predict a pressure-induced spin crossover in the liquid planetary material (Mg,Fe)O.56 Synergistic efforts like these enable refinements of the simulation techniques and make a crucial contribution towards increasing their reliability.

2.2 Atoms and Small Molecules in Confining Potentials

The idea of describing the compression of an atom by placing it in a box with impenetrable walls dates back to the very early days of quantum chemistry and was first studied by Michels et al in 1937 in an approximate manner.30 Soon after, the problem was solved formally for the confined hydrogen atom by Sommerfeld and Welker.57 Since then, this approach has continuously been extended to study atoms and small molecules under compression, as well as to model atoms in molecular cages such as fullerenes or zeolites.58 Considering the amount of research conducted throughout the past 85 years, a comprehensive
and in-depth analysis of all methods would certainly exceed the limits of this review. We here aim to give a non-exhaustive overview over the basic ideas and highlight the series “Theory of Confined Quantum Systems” in *Advances in Quantum Chemistry* for an excellent collection of detailed reviews on the field.\(^{[59,60]}\)

The hard-walled box, as introduced by Michels,\(^{[30]}\) takes the form of an impenetrable sphere with radius \(r_C\) around the center of mass and may be described by adding the external potential \(V_{\text{ext}}(r)\) to the Hamiltonian

\[
V_{\text{ext}}(r) = \begin{cases}
0, & r < r_C \\
\infty, & r > r_C
\end{cases}
\] (1)

where \(r\) describes the distance to the center of mass. This changes the Dirichlet boundary condition, which requires the wave function to vanish at infinity (\(\Psi(\infty) = 0\)), to the wave function vanishing at the location of the wall (\(\Psi(r_C) = 0\)). The corresponding wave function of the hydrogen atom\(^{[57,61–66]}\) and mono- and diatomic one-electron systems\(^{[67,68]}\) can be solved exactly, making them interesting model systems.

Alternatively, Rayleigh-Schrödinger perturbation theory\(^{[69–72]}\) or variational approaches can be used by adding a cutoff term to the basis functions, which forces the wave function to vanish at \(r_C\),\(^{[34,73]}\) thus allowing the treatment of many-electron systems.\(^{[70,74–78]}\) To study diatomic molecules, the box shape is usually changed to that of a spheroid (ellipsoid), as introduced by Cottrell.\(^{[78]}\)

The model of a hard sphere confining a quantum system does not allow for any other interaction with the surrounding than Pauli repulsion and thus can only be seen as a crude approximation of reality. As Connerade pointed out, the infinite potential wall makes the system unobservable and thus violates a basic principle of quantum mechanics.\(^{[58]}\) Consequently, it is not surprising that the hard-sphere confinement method cannot accurately reproduce experimental results, as for example the vibrational frequency shifts.
of the hydrogen molecule.[76] As a remedy, Ley-Koo et al. proposed the use of a finite constant potential U_0 to study the hydrogen atom,[79] such that

$$V_{\text{ext}}(r) = \begin{cases} 0, & r < r_C \\ U_0 + \frac{1}{r}, & r > r_C \end{cases}$$

(2)

where the $\frac{1}{r}$ term cancels the Coulomb term. The $\frac{1}{r}$ term may also be disregarded, yielding a slightly differently shaped potential.[80] The finite potential approach leads to a significantly better agreement with experimental results for the hydrogen atom, and the same was later found by Gorecki et al. in a study of the confined molecular hydrogen ion.[71] Besides using a step potential, also linear,[71] harmonic[69,81,82] and power series potentials[80,83] have been used. If a power series potential of the form

$$U_0 = \left(\frac{r}{r_0} \right)^N$$

(3)

is used, the “stiffness” of the wall can be modeled by the parameter N, where the system rapidly converges to the hard-wall limit for $N \to \infty$.[80,83]

Besides providing a more realistic picture, finite confining potentials provide a grand technical advantage: They do not change the Dirichlet boundary condition and thus can be used with unmodified Gaussian basis sets, allowing an easy implementation in modern quantum chemistry packages.[83]

The pressure P acting on a closed quantum system, i.e., one with impenetrable walls, can be calculated from the virial theorem for the confined system as[84]

$$P(r_C) = -\frac{\partial E}{\partial V_C} = -\frac{1}{4\pi r_C^2} \frac{\partial E}{\partial r_C},$$

(4)

where V_C is the box volume. It has been shown that eq. 4 also holds for an open quantum system, i.e., finite potential walls.[80,85]
A severe limiting factor for confinement potential models is the shape of the box. Hence, mostly atoms, linear or very small molecules such as ammonia[75] or methane[83] have been studied. Approaches to study larger molecules are discussed in the following section.

2.3 Isolated Molecules and Molecular Clusters

2.3.1 Mechanochemical Methods: G-FMPES and (X-)HCFF

Mechanochemistry is the branch of chemistry in which mechanical forces are used to initiate chemical transformations.[86–88] These forces can of course be compressive, and indeed the connection between mechano- and high-pressure chemistry has been pointed out.[89] However, while \textit{ab initio} simulation methods have been developed that apply stretching forces on molecules by constraining coordinates during geometry optimizations[90] or by adding stretching potentials to the electronic energy,[91–93] only in recent years the quantum mechanochemistry community started to investigate compression forces in more detail.

The earliest attempt to model pressure within a mechanochemical framework was the \textit{Generalized Force-Modified Potential Energy Surface} (G-FMPES)[94] model, where an external potential \(V_{\text{ext}}(\mathbf{R}) \) is added to the unperturbed Born-Oppenheimer potential energy surface (PES) \(V(\mathbf{R}) \)

\[
\nabla(\mathbf{R}) = V(\mathbf{R}) + V_{\text{ext}}(\mathbf{R}),
\]

yielding the \textit{force-modified} PES \(\nabla(\mathbf{R}) \). In the G-FMPES model, \(V_{\text{ext}}(\mathbf{R}) \) is described as the path integral between a geometry \(\mathbf{R} \) and a relaxed reference geometry \(\mathbf{R}_{\text{ref}} \) in a conservative force field \(\mathbf{F}_{\text{ext}}(s) \)

\[
V_{\text{ext}}(\mathbf{R}) = \int_{\mathbf{R}}^{\mathbf{R}_{\text{ref}}} \mathbf{F}_{\text{ext}}(s) \, ds.
\]
Pressure can be simulated by defining compressive forces $f^{(j)}_{\text{ext}}$ acting on the nuclei j as

$$f^{(j)}_{\text{ext}} = K (r_j - c),$$

where c is the center of mass of the system and K a user-defined variable with units $kcal/\AA^2$, which scales the pressure. The resulting force field corresponds to putting the nuclei into a parabolic potential centered at c. The compression force field F_{ext} is added to the nuclear gradient during a geometry optimization, converging at a stationary point on the pressure-modified PES.

The pressure acting on the system is approximated as the average force acting on an averaged surface of spheres denoted by the distance of the respective atom to c (Figure 2) via$^{[95]}$

![Figure 2: Visualization of external forces and the respective spheres used within the G-FMPES model. Reprinted with permission from Todde et al.,$^{[96]}$ Copyright 2017, Wiley Periodicals, Inc.](https://doi.org/10.26434/chemrxiv-2023-nr314 ORCID: https://orcid.org/0000-0001-7599-3578 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0)
\[P_{\text{macro}} = \frac{\langle \| f_{\text{ext}} \| \rangle}{\langle A \rangle}. \] (8)

The Hydrostatic Compression Force Field (HCFF)\[^{[97]}\] modifies the G-FMPES approach by introducing an upper boundary \(f_{\text{max}} \) to the individual forces, using the classical definition of pressure, as

\[f_{\text{max}} = P_{\text{guess}} \cdot A_{\text{VdW}}, \] (9)

where \(P_{\text{guess}} \) is a user-defined variable in MPa, a physically intuitive unit, and \(A_{\text{VdW}} \) is the Van-der-Waals surface of the investigated molecule, calculated using a Lebedev grid discretization algorithm.\[^{[98]}\] The compression force field then takes the form

\[f_{\text{ext}}^{(j)} = f_{\text{max}} \frac{\left(c - r_{j} \right)}{r_{\text{max}}}, \] (10)

where \(r_{\text{max}} \) is the distance between the center of mass \(c \) and the outermost atom. The macroscopic pressure can again be calculated using eq. 8, where \(\langle A \rangle \) is replaced with \(A_{\text{VdW}} \). Accordingly, the user-defined pressure \(P_{\text{guess}} \) acts as an upper boundary to \(P_{\text{macro}} \).

Both G-FMPES and HCFF suffer from two drawbacks: Firstly, the user can only guess the simulated pressure when setting up a calculation. Secondly, atoms are always pushed to the center of mass of the molecule, leading to unphysical, sphere-like geometries for extended systems, such as alkanes, if high pressure is applied. The eXtended Hydrostatic Compression Force Field (X-HCFF)\[^{[99]}\] approach solves these drawbacks by defining forces \(f_{ij} \) acting perpendicular to the discretized Van-der-Waals surface of a molecule from each discretization point \(i \) to the closest atom \(j \). The force is scaled using the classical definition of pressure as
\[f_i^{(j)} = P \cdot A_i \cdot n_i, \]

(11)

where \(P \) is the user-defined pressure, \(A_i \) the discretized area of the surface point \(i \) and \(n_i \) the normal vector at \(i \). The respective force acting on atom \(j \) is then obtained as the sum of all forces acting on \(j \) as

\[f_{\text{ext}}^{(j)} = \sum_{i=0}^{N_{\text{res}}(j)} f_i^{(j)}, \]

(12)

where each discretized surface area that belongs to atom \(j \) makes a contribution to the (strictly hydrostatic) compressive force. The resulting force field is added during a geometry optimization, until the restoring force of the molecule cancels the compression force field. It should be noted that the form of the potential causing \(F_{\text{ext}}^{\text{X-HCFF}} \) is not parabolic, making the evaluation of eq. 6 nontrivial. Both HCFF and X-HCFF are implemented in the Q-Chem program package.[100]

2.3.2 Implicit Solvation Models: XP-PCM and GOSTSHYP

The Polarizable Continuum Model (PCM) is a well established framework to describe various kinds of solvation interactions implicitly within a quantum chemical calculation.[101–103] The foundation of PCM is the extension of the molecular vacuum Hamiltonian \(\hat{H}_0 \) with a new term \(\hat{V}_{\text{el}} \), describing the Coulomb interaction of the electrons of the solute and a solvent charge density located outside the solute cavity \(C \), thus allowing the calculation of the free energy of the solute, \(G_{\text{el}} \), as

\[G_{\text{el}} = \langle \Psi | \hat{H}_0 + \frac{1}{2} \hat{V}_{\text{el}} | \Psi \rangle. \]

(13)

In 2008, Cammi et al. proposed to model pressure effects by adding a Pauli repulsion term \(\hat{V}_{\text{rep}} \) to the PCM Hamiltonian,[104] penalizing the electron density of the solute lying outside its cavity, in the form
\[G_{\text{el-rep}} = G_{\text{el}} + G_{\text{rep}} = \langle \Psi | \hat{H}_0 + \frac{1}{2} \hat{V}_{\text{el}} + \hat{V}_{\text{rep}} | \Psi \rangle . \]

(14)

\(G_{\text{rep}} \) can be calculated as

\[G_{\text{rep}} = \frac{4\pi}{0.7} \rho_S n_{\text{val}} \int_{r \in C} \hat{\rho}_M(r) \, dr, \]

(15)

where \(\rho_S \) is the solvent density, \(n_{\text{val}} \) its number of valence electrons and the integral denotes the charge density of the solute, located outside its cavity, with \(\hat{\rho}_M(r) \) being the electron density operator. The pressure \(P \) can then be calculated by shrinking the solute’s cavity volume \(V_C \) using

\[P = - \left(\frac{\partial G_{\text{el-rep}}}{\partial V_C} \right) . \]

(16)

In practice, \(V_C \) is approximated as the volume of fused spheres with the Van-der-Waals radii of the respective atoms and varied by scaling the Van-der-Waals radii. The procedure is illustrated in Fig. 3 and forms the basis of the eXtreme Pressure Polarizable Continuum Model (XP-PCM) framework,\(^{[105]} \) which has continuously been evolved over the past fifteen years.\(^{[106–114]} \)

Recently, the pressure-modified PES \(G_t(P, R) \) has been calculated as the Legendre transform of \(G_{\text{el-rep}} \),\(^{[113]} \)

\[G_t(P, R) = G_{\text{el-rep}}(R) + PV_C(R), \]

(17)

where \(P \) is calculated analytically by evaluating eq. 16\(^{[110]} \) and \(V_C \) is the volume of the cavity used to evaluate \(G_{\text{el-rep}} \). This implementation allows for a dynamically changing cavity during geometry optimization steps.

In the Gaussians On Surface Tesserae Simulate HYdrostatic Pressure (GOSTSHYP) model,\(^{[115,116]} \)
similar to XP-PCM, a distortion potential term \hat{V}_p is added to the Hamiltonian, leading to the free energy G_p,

$$G_p = \langle \Psi | \hat{H}_0 + \hat{V}_p | \Psi \rangle.$$ \hfill (18)

\hat{V}_p describes the interaction with a surrounding arbitrary medium as a sum of Gaussian potentials \tilde{G}_j with the amplitude p_j, centered at each tessera j, that are used to discretize the cavity surface A_C.

$$\hat{V}_p = \sum_{j}^{N_{\text{tess}}} p_j \tilde{G}_j.$$ \hfill (19)

In contrast to XP-PCM, the cavity is built using pressure-independent Van-der-Waals radii. Pressure is applied by assuming a force equilibrium, where the force resulting from the potential at point j equals the mechanical force $F = P \cdot A_j$ applied to a hard sphere at the point j, leading to the amplitudes p_j as

$$p_j = \frac{P \cdot A_j}{F_j},$$ \hfill (20)
where \(P \) is the pressure, \(A_j \) the area of the tessera \(j \) and \(\tilde{F}_j \) resembles the response force of the electron gas. The GOSTSHYP model is implemented in the Q-Chem program package.\(^{100}\) Due to the availability of an energy term and nuclear gradients, geometry optimizations and \textit{ab initio} Molecular Dynamics (AIMD) simulations can be carried out with GOSTSHYP at a user-defined pressure.

Both XP-PCM and GOSTSHYP can be understood as the extension of the finite wall potential approach (Section 2.2) to an arbitrary solvent cavity. It should be highlighted that, in contrast to the previously discussed quantum mechanochemical pressure models, XP-PCM and GOSTSHYP model the influence of pressure on the molecular wave function, allowing a quantum mechanical description of electronic effects, such as dipole moments\(^{115}\) and electronic excitations,\(^{106}\) under pressure.

2.3.3 Explicit Solvation Models

In Sections 2.2–2.3.2, methods have been introduced that model the interactions with the surrounding medium in an approximate manner. This allows for a very precise description of the electronic structure of the investigated systems, however, as pressure is a macroscopic quantity, it may be necessary to model the medium more explicitly. In a few model studies, noble gases have been used to function as soft confinement potentials compressing linear systems.\(^{85,117}\) Miao et al. generalized this approach in the “helium compression chamber” method.\(^{118}\) Here, an atom is placed in the center of a large periodic box filled with helium atoms modeling the surrounding medium, which is then compressed by reducing the box volume, as shown in Fig. 4. The helium compression chamber has been used to study electrides\(^{118}\) and, recently, electronegativities.\(^{119}\)

It must not be forgotten that the approach of using helium atoms as the pressure-transmitting medium is an approximation. In the high pressure regime, this approximation, which models isotropic solvent interaction, does not hold if the “real” solvent has low symmetry. For example, a functional group of the solvent might be pushed into the solute, leading to a stronger local deformation. Hence, it may be
necessary to model the structure of the solvent explicitly, which leads to enormous system sizes and, consequently, a high computational cost. Most commonly, such systems are simulated using *ab initio* Molecular Dynamics (AIMD) simulations, which is discussed in Section 2.4.2.

An alternative approach is to model a part of the system using quantum mechanics (QM) and the interaction with the solvent with a molecular mechanics (MM) force field in a combined QM/MM approach. Wiebe, Spooner and co-workers120,121 proposed a method to calculate the volume V of a compound X in a system of n solvent molecules S as

$$V(X) = V(X+nS) - V(nS),$$

where $V(X+nS)$ is the volume of the the solvent droplet containing X and $V(nS)$ is the volume of the unperturbed system. Both volumes are obtained as the average volume in an isothermal MD run. The activation volume ΔV^\dagger, a crucial observable in high-pressure chemistry (cf. also Section 3.2), can then be calculated as

$$\Delta V^\dagger = V(X) - V(X'),$$

19
where X' is the transition state. $V(X')$ is calculated by constraining the reaction coordinate, identified by a classical QM calculation, within the MD run. The model was later extended to approximately calculate the pressure-modified potential energy surface (PMPES) $G(x, P)$ as

$$G(x, P) = U_0(x) + PV(x, P), \quad (23)$$

where x is a vector of reaction coordinates, $U_0(x)$ the gas phase energy obtained quantum mechanically and $V(x, P)$ is obtained via eq. 21 by neglecting its pressure dependence.122

While this approach leads to activation volumes in good agreement with experimental data and model systems, it cannot describe the response of the electronic wave function to the compression, limiting the applicability to spectroscopic properties. This can be achieved by embedded-cluster (EC) methods, such as the embedded cluster reference interaction site model (EC-RISM).123 In the EC-RISM methodology, the solvent is approximated by point charges surrounding the solute and adding the interaction term to the Hamiltonian of the solute. This changes the wave function of the solute and, accordingly, the polarization of the solvent, which again changes the point charges. This procedure is continued until the wave function of the solute converges. To calculate the point charges, the pure solvent susceptibility χ is needed, which is extracted from a previous MD or integral equation based RISM calculation. Thus, the pressure can be modeled indirectly by adjusting the box volume of the underlying MD/RISM calculation.124 EC-RISM calculations have successfully been used to calculate pressure-dependent Raman125 and NMR126 shifts. The model was recently adapted to predict pressure-dependent free solvation energies.127 Further applications are pointed out in Section 3.2.

Molecular crystals can also be modeled using the binary interaction method (BIM),128,129 which follows an embedded fragmentation ansatz.130 Within BIM the enthalpy H of a unit cell is calculated as128
\[H = \sum_i E_i(0) + \frac{1}{2} \sum_n \sum_{ij} (E_{i(n)} - E_i(0) - E_{j(n)}) + E_M + PV \]

(24)

where the indices \(i \) and \(j \) run over the molecules of the unit cell denoted in brackets, \(n \) is the unit cell vector, \(E_M \) describes the long range coulomb interactions, \(P \) the pressure, \(V \) the unit cell volume and the apostrophe denotes the exclusion of the cases \(i = j \) and \(n = 0 \) from the summation. The monomer energies \(E_i(0) \) and \(E_{j(n)} \) and dimer energies \(E_{i(n)}j(n) \) can in principle be obtained at every level of theory, where the crystal field is accounted for by an embedding scheme in dipoles or point charges, obtained by \textit{ab initio} calculations. The pressure is simulated by optimizing the box lattice parameters for a specific pressure. It should be highlighted that BIM does not strictly rely on periodic boundary conditions and therefore is applicable to non-periodic systems.\cite{131} It has been used to extensively study phase diagrams,\cite{131} e.g., of carbon dioxide\cite{132,133} and ice.\cite{134,135} A more detailed discussion of simulated phase diagrams can be found in Section 3.2.2.

2.4 Periodic Systems

Modelling extended systems is computationally very demanding, especially when accurate methods like DFT are used (cf. Section 2.1.2). These extended systems may be non-ordered, like amorphous or liquid materials, or ordered, like polymers, two-dimensional structures (e.g. graphene) or three-dimensional crystal structures. For the latter class of materials, translational symmetry is used to describe the periodic boundary conditions (PBC) in atomistic simulations. Therefore, a periodically repeated box that represents the smallest repeating unit in three-dimensional space, the unit cell, needs to be defined. This unit cell is defined by three lattice vectors, \(a, b \) and \(c \). By multiplying these lattice vectors with integer constants, the system forms an infinite array of replicated cells. The introduction of the unit cell for calculations with PBC leads to a rapid decrease in computation time. However, this is mainly true for
simulations of well-crystalline and highly symmetric materials. As soon as defects in realistic concentrations (less than 1-10 %) have to be considered, a supercell needs to be used, which leads to a rapid increase in computational time.

The motivation for applying pressure in PBC simulations arises from the fact that high-pressure experiments are usually carried out on a large quantity of molecules, e.g., in the form of liquids or crystals. Molecular crystals show well ordered motifs and can be described by a unit cell or super cell as described above. On the other hand, description of liquids or amorphous phases is possible, too. In these cases, the cell vectors need to be chosen large enough. Often these cells are referred to as *simulation cells* instead of *unit cells*. While a wealth of structural data of diverse compounds is available under ambient pressure, obtaining structural data under elevated pressure requires increased experimental effort. In such scenarios, simulations yield valuable information. For example, crystal structure prediction (CSP) plays an important role in discovering novel materials. Zurek and Grochala as well as Wang and Ma reviewed various techniques for CSP under pressure,[22,136] and the interested reader is referred to these reviews for further information on high-pressure CSP.

2.4.1 Static Simulations of Periodic Systems under Pressure

As in many other branches of computational chemistry and materials science, periodic systems under pressure are commonly modeled using DFT. Due to the nature of the periodic wave function derived from Bloch’s Theorem[137] in such systems, plane-wave basis sets or, more precisely, the projector augmented wave (PAW) method by Blöchl,[138] is typically applied instead of Gaussian Type Orbitals (GTOs) to model the wave function. However, it needs to be kept in mind that PAW calculations are in most cases computationally more expensive than GTO-based calculations.

If a constant external pressure is applied to a solid material, once an equilibrium is achieved, the stress outside of the material must be balanced by the internal counterstress. The stress theorem devel-
oped by Nielsen and Martin establishes a way to calculate the stress tensor induced by an externally applied pressure to a system in PBC simulations.\cite{39,139,140} It is closely related to the force theorem\cite{141} and the quantum mechanical virial theorem.\cite{142–146} In the stress theorem, the Hamiltonian of the system is considered as

$$H = \sum_i \frac{p_i^2}{2m_i} + V_{\text{int}} + V_{\text{ext}}, \quad (25)$$

where \(m_i\) and \(p_i\) represent the mass and the momentum of the \(i\)th particle, respectively. The potential energy is separated into two parts: the internal component, \(V_{\text{int}}\) and the external component, \(V_{\text{ext}}\), the latter of which is attributed to the external influence, i.e., pressure. For a deformed many-body system, the stress \(T_{\alpha\beta}\) can be expressed as

$$T_{\alpha\beta} = -\sum_i \langle \Psi | \frac{p_{i\alpha} p_{i\beta}}{m_i} - r_{i\beta} \nabla_{i\alpha} (V_{\text{int}}) | \Psi \rangle, \quad (26)$$

where \(r\) is the position of the particle, and the indices \(\alpha\) and \(\beta\) run from 1 to 3 in a 3-dimensional system. Each combination of \(\alpha\beta\) corresponds to a component in the stress tensor. In a periodic system, the average stress density of the system can be defined as \(\sigma_{\alpha\beta} = T_{\alpha\beta}/\Omega\), where \(\Omega\) represents the volume of the unit cell. Moreover, the authors indicate that the virial theorem in its quantum form is a specific case of the stress theorem, shown as

$$3P\Omega = 2 \sum_i \frac{\langle p_i^2 \rangle}{2m_i} - \sum_i \langle r_i \cdot \nabla_i V_{\text{int}} \rangle, \quad (27)$$

where \(P\) denotes the pressure. It is interesting to note that eq. 27 corresponds to the negative trace of eq. 26.

A rather modern approach presented by Bidault and Chaudhuri utilizes the Quasi-Harmonic Approx-
imation (QHA) with an energy correction (EC) formalism to describe the thermal and pressure-induced properties of molecular crystals.[147] In this method, dispersion-corrected DFT optimization is carried out for molecular crystals at different pressures to obtain $U_0(V)$, which represents energy variations with respect to the volume of a system. Subsequently, phonon calculations are applied to these optimized structures, from which the vibrational free energy, $F_{\text{vib}}(V, T)$ can be obtained. Finally, QHA and EC is applied and the resulting Helmholtz free energy is expressed as

$$F(V, T) = U_0(V) + F_{\text{vib}}(V, T) + \frac{\alpha}{V},$$

where α/V is the EC term and α is a parameter adjusted to restore the volume optimized at zero pressure. It should be noted that this EC term was first proposed by Otero-de-la-Roza and Luaña.[148]

2.4.2 High-Pressure Molecular Dynamics Simulations

The previous section was mainly concerned with calculations of the “static” high-pressure properties of periodic materials. However, in many cases, a more dynamic picture is required, which is commonly achieved by following a Molecular Dynamics (MD) approach. In MD simulations, pressure can be derived as the virial expression[149]

$$P = \frac{Nk_B T}{V} + \frac{1}{3V} \left(\sum_{i=1}^{N} \mathbf{r}_i \cdot \mathbf{f}_i \right),$$

where N is the number of interacting atoms contained in a volume V, k_B is the Boltzmann constant, T is the temperature, \mathbf{r}_i represents the position of atom i, and \mathbf{f}_i is the total force acting on atom i. The term enclosed in the angled bracket on the right of the equation is the internal virial, which arises from forces acting between atoms in a system. However, as pointed out by Louwerse and Baerends,[150] this equation is not applicable in PBC. For systems with pair-additive force fields, pressure can be expressed as
\[P = \frac{Nk_B T}{V} + \frac{1}{6V} \sum_{i=1}^{N} \sum_{j \neq i}^{N} \mathbf{r}_{ij} \cdot \mathbf{f}_{ij}, \]

(30)

which is effective for use with PBC. Yet, it is not valid if a non-pair-additive force field is employed.

Later on, this problem was solved by Thompson et al., who derived three virial forms, which are articulated in terms of force contributions to atoms and are independent of interatomic potentials, functioning within the context of PBC.\(^\text{[15]}\) The key idea is to associate each repeating group of atoms with exactly one of the numerous unit cells. As a consequence, the potential energy of the unit cell can be defined as the sum of all potential energy groups associated with the unit cell, represented by

\[U(\mathbf{r}^N) = \sum_{k \in 0} u_k(\mathbf{r}^{N_k}), \quad \mathbf{r}^{N_k} = \mathbf{r}_1^k, \mathbf{r}_2^k, \ldots, \mathbf{r}_{N_k}^k, \]

(31)

where \(\mathbf{r} \) is the position of atoms and \(k \in 0 \) denotes all groups of atoms associated with the unit cell.

Pressure control in MD simulations is a crucial aspect, and various algorithms, known as barostats, have been developed over the years. In the 1980s, Andersen first ran MD simulations under constant pressure in systems of bulk liquid.\(^\text{[38]}\) Andersen’s method, also referred to as the Andersen barostat, allows the volume of the simulation cell to change isotropically and works by adjusting the volume of the simulation cell: If the volume increases, the pressure decreases, and vice versa. In this method, coordinates of atoms \(\mathbf{r}_i \) are expressed in scaled coordinates, as

\[\mathbf{r}_i = \Omega^{1/3} \cdot \mathbf{s}_i, \quad i = 1, 2, \ldots, N, \]

(32)

where \(N \) is the number of atoms, \(\Omega \) is the volume of a cubic simulation box and \(\mathbf{s}_i \) is a fraction between 0 and 1. As a result, the Lagrangian, i.e., a function that describes the dynamic behavior of a system, is expressed in terms of new scaled coordinates, depicting a fluid in a container with variable volume. Here,
the fluid can be compressed or decompressed by a piston with a fictitious mass \(M \). It is important to note that the decay of volume fluctuation is influenced by the mass of the piston.

Unlike the Andersen barostat, the Parrinello-Rahman (PR) barostat allows the volume of the simulation cell to change anisotropically, which is well-suited for studying pressure-induced phase transitions of crystals.\[^{37}\] In the PR method, the simulation box is composed of three vectors \(a, b \) and \(c \), which are allowed to have different lengths and orientations. Similar to Andersen’s approach, the scaling of atomic coordinates can be expressed as

\[
\mathbf{r}_i = \mathbf{h} \cdot \mathbf{s}_i, \quad i = 1, 2, ..., N,
\]

(33)

where \(\mathbf{h} \) is a matrix composed of \(a, b \) and \(c \). To model molecular systems, Nosé and Klein incorporated long-range charge-charge interactions, and improved the previous methods by adding a constraint to prevent unnecessary rotation of the MD cell.\[^{36}\] This method was later advanced by Hoover,\[^{152}\] and it is commonly referred to as the Nosé-Hoover barostat. Subsequently, Wentzcovitch expanded the scope of the PR approach by making it invariant with respect to the choice of simulation cell.\[^{153}\]

Berendsen et al. introduced a distinct category of barostats,\[^{35}\] where an external bath with constant pressure is coupled to a system by incorporating an additional pressure term into the equations of motion,

\[
\frac{dP}{dt}_{\text{bath}} = \frac{P_0 - P}{\tau_P},
\]

(34)

defining the pressure bath as the difference between the external pressure \(P_0 \) and the internal pressure \(P \) at a given coupling time \(\tau_P \). Nevertheless, it is worth noting that the coupling method does not sample the \(NPT \) ensemble.

Besides, a Monte Carlo (MC) scheme can also be implemented in the MD pressure control algorithm, which is also referred to as the MD/MC algorithm.\[^{154,155}\] In MD/MC simulations, the pressure is not
calculated during the process, but instead, the change of cell volume is decided by random numbers within the MC scheme. In terms of application, for instance, Wiebke et al. employed a parallel-tempering Monte Carlo scheme to study the melting temperature of argon under high pressure.[156]

Last but not least, the virtual rotational diamond anvil cell (VRDAC), a modern technique employing quantum-based molecular dynamics (QMD), simulates the compression of materials sandwiched between two diamond slabs. As demonstrated in the work of Steele et al., the mechanochemistry of glycine under compression and shear is simulated using the VRDAC approach.[157]

\section{Applications}

In many applications of computational high-pressure chemistry, DFT using PBCs is the method of choice.[158–162] In this Section, however, care is exercised to present applications using other methods as well, e.g., wall potentials, mixed quantum mechanical / molecular mechanics (QM/MM) approaches, Quantum Monte Carlo, and single-molecule methods such as (X-)HCFF, XP-PCM and GOSTSHYP.

\subsection{Fundamental Properties of Materials at High Pressure}

Pressure changes many fundamental properties of atoms and challenges the way we think about basic chemical concepts. Examples include changes in atomic/molecular properties (Section 3.1.1), such as electronic configurations, atomic radii, electronegativity, ionization potentials and electron affinities, aromaticity and bonding patterns. Moreover, we will discuss pressure-induced spin crossover processes (Section 3.1.2) and changes in spectroscopic properties of compressed chemical systems (Section 3.1.3).
3.1.1 Electronic Effects and Chemical Bonding

Efforts to understand chemical structure and reactivity in the GPa regime have motivated investigations of basic high-pressure properties of atoms, the fundamental building blocks of chemical compounds. Non-bonded atomic radii, for example, have been studied with XP-PCM up to 300 GPa.\cite{163} The relative ordering of atomic radii present at ambient conditions was found to be largely retained at higher pressure, with an increase in pressure in most cases leading to a smooth decrease in the atomic radius. A notable exception to this rule is lithium: At 209 GPa, a marked decrease in the atomic radius was observed, which was explained by a change in the electronic configuration from $1s^22s^1$ to $1s^22p^1$. This demonstrates that electronic configuration and atomic radius are intimately connected, an effect that is demonstrated clearly also in the iron atom (Figure 5).

The change in electronic configurations has been extensively investigated using confinement potentials, and the state-of-the-art was recently was reviewed by Connerade.\cite{58} Most notably it was found...
that under high pressures the aufbau principle is followed more strictly by occupying the most compact orbitals first.

A first-order perturbation treatment of XP-PCM allowed more in-depth studies of the compression of atomic orbitals.\cite{8} It was found that diffuse orbitals are being destabilized more significantly by pressure than core orbitals. Clearly, the spatial extension of an atomic orbital dictates how exposed its electrons are. A comprehensive XP-PCM study even presented data on the pressure-dependent electronic configurations of all atoms in the periodic table and allowed to establish a connection to magnetism under pressure.\cite{9} The XP-PCM data on electronic configurations ties in with DFT calculations using PBCs on lithium-beryllium alloys, in which the pressure-induced removal of two electrons from the lithium atoms was observed when the pressure was sufficiently high.\cite{165}

The change in electronegativity with pressure has been studied extensively, since interpreting this quantity allows the rationalization of many chemical reactions. Confining potentials in combination with Hartree-Fock calculations, for example, have been used for investigating electronegativity under pressure.\cite{69} Using XP-PCM, an equation relating atomic radius and electronegativity has been developed.\cite{164} It was found that both decrease with increasing pressure. The same trend was recently found in a study using the helium compression chamber method investigating electronegativity and chemical hardness under pressure.\cite{119} Additionally, XP-PCM allowed the calculation of electronegativity at shock fronts,\cite{166} and the related calculation of bond polarities and dissociation routes in energetic materials.

Ionization energies and electron affinities have been calculated via the second derivative of the energy w.r.t. the scaling factor of the cavity used in XP-PCM.\cite{112} In a combination with Conceptual DFT (CDFT),\cite{167} the derivative of the energy w.r.t. external pressure allowed the calculation of a range of chemical properties and it was found that ionization potentials, electron affinities, electronegativities and polarizabilities decrease upon increasing pressure, whereas the chemical hardness increased.\cite{114}

The above examples demonstrate that pressure influences the electronic structure of atoms funda-
mentally. As a result, the very nature of the chemical bond changes and some astonishing effects can be observed.[168] Noble gases, for example, become reactive under pressure.[169–173] Although it is in many cases unclear whether the interatomic contacts involving noble gas atoms can rightly be called chemical bonds, the observed interactions between noble gases and other species suggest that the concept of the chemical bond must be overthought in the high-pressure regime.

In the extreme case, pressure leads to metallization, i.e., equalization of the electron distribution within a substance.[174] This behaviour was already predicted Sommerfeld and Welker,[57] who, by studying the hydrogen atom in an impenetrable box, found that the electron becomes solely bound by the box rather than the core for small boxes and, consequently, high pressures. Below the metallization threshold, different substances respond to pressure in different ways. DFT calculations using PBCs, for example, have demonstrated that XeF\textsubscript{2} becomes [XeF]+F− when the pressure is high enough, i.e., the substance undergoes dissociation into an ionic solid.[175] A curium compound, on the contrary, becomes more covalent under pressure, as evidenced by DFT and multireference calculations.[176] How the character of a bond is influenced by pressure depends on many factors such as the crystal structure, possible interactions between metal atoms and the nature of the metal-ligand bonds.

Reproducing the experimentally observed shortening of chemical bonds under pressure is one of the key tasks of high-pressure simulation techniques. When a novel method is being published, pressure-dependent interatomic distances typically belong to the first quantities to be reported. A relation between pressure and interatomic distances in inorganic crystals has already been established two decades ago using a mathematical model that takes into account the force exerted on the atoms involved in a chemical bond upon compression.[177] The capability of XP-PCM in relating pressure, equilibrium geometries and electron density in chains of hydrogen atoms has been demonstrated as well.[178] GOSTSHYP allows the calculation of the pressure-vs-volume curves of substances, e.g., fullerenes,[116] and, in principle, also the pressure-dependent volume of the electron clouds between atoms involved in a chemical bond.
Turning to molecular properties, a seminal study has demonstrated the loss of aromaticity in an annulene derivative.\footnote{179} Experiments in conjunction with PBC and gas-phase DFT calculations have shown that pressure causes a gradual trapping of one of the resonance structures of the compound, which leads to a possible increase in reactivity. In another mixed experimental/computational study, the decrease in aromatic character in a nanohoop structure has been described as well.\footnote{180} These studies highlight the connection between high-pressure chemistry and mechanochemistry, where aromatic character can be adjusted using stretching forces.\footnote{181}

When discussing the influence of pressure on molecular properties and bond lengths, bond angles etc. within the molecules, it must be kept in mind that intermolecular distances are usually compressed first when applying pressure, due to the higher compressibility of these “soft” degrees of freedom. There is a great diversity of intermolecular interactions, e.g., coulombic and van-der-Waals interactions and hydrogen bonds, and each type of interaction responds to pressure differently.\footnote{182} Therefore, depending on the chemical system under consideration, strengthening intermolecular interactions between functional groups by pressure may either be stabilizing\footnote{183} or possibly precondition the molecules for polymerization.\footnote{184} In the case of hydrogen cyanide (HCN) chains, a mixed PBC, X-HCFF and GOSTSHYP study using DFT showed that the pressure-induced strengthening of the interaction between the nitrogen lone electron pair and the carbon—hydrogen σ^* orbital leads to a lengthening of the carbon—hydrogen bond.\footnote{185}

As can be seen from these examples, pressure-induced changes in electronic configurations, atomic radii, chemical bonds and atomic/molecular properties are diverse and, in many cases, system-specific. Studying them is a highly fruitful endeavor, leading to a better understanding of pressure-induced chemistry, while at the same time challenging our understanding of fundamental chemical concepts. Computational methods play a crucial role in these investigations, since they allow in-depth analyses with much more detail than obtainable using experimental techniques only.
Figure 6: Pressure-induced spin crossover in the archetypal [Fe(phen)$_2$(NCS)$_2$] complex. Pressure leads to a decrease in the metal-ligand distance and to a concomitant increase in the ligand field splitting energy. As a result, a switching from the high spin to the low spin state is observed if the pressure is high enough.

3.1.2 Spin Crossover Processes

In spin crossover (SCO) complexes, two discrete electronic spin states (high spin (HS) and low spin (LS)) are available. The different number of unpaired electrons in the HS and LS states gives access to distinct magnetic and spectroscopic properties. As a result, futuristic applications of SCO complexes in spintronics and as sensing and memory devices have been suggested. Transitions between the HS and LS states can be induced by various external stimuli, including pressure. An example is the prototypical [Fe(phen)$_2$(NCS)$_2$] complex, in which pressure leads to a decrease in the metal-ligand distances and to an accompanying increase in the ligand field splitting energy, followed by SCO from the HS to the LS state (Figure 6). Here, the focus lies on pressure-induced SCO in molecular metal-ligand complexes, but it must be noted that polymeric and non-molecular crystalline SCO systems are abundant, some of which have important implications for the magnetic properties of Earth’s interior.

Modern experimental studies on SCO processes, whether they are induced by pressure or not, are usually accompanied by simulations. However, conducting such simulations in a meaningful and
reliable way is far from trivial, owing to the intricate interplay between temperature and pressure in the SCO process. The $T_{1/2}$ temperature, i.e., the temperature at which the HS and the LS state are equally populated, is a key observable, which necessitates some statistical analysis. Moreover, it is remarkably difficult to find an accurate wave function based method or density functional that predicts the spin state ordering and the energetic difference between HS and LS states accurately.\[208–210\] The performance of density functionals in the calculation of the energy difference between HS and LS states has been studied fairly early,\[211\] and reparameterized density functionals with an optimized amount of Hartree-Fock exchange have emerged as successful tools to reproduce the correct electronic configurations.\[212–214\]

Despite these technical challenges, a number of computational studies have either successfully reproduced experimental measurements or delivered fundamental insights into the SCO process. The HCFF method, for example, has been used to study octahedral metal-ligand model complexes at the DFT level.\[97\] It was found that the amount of pressure required to induce SCO in different complexes depends on the position of the ligands in the spectrochemical series. Based on these result, fundamental design guidelines for complexes with a tailored SCO pressure could be deduced.

In a multiscale simulation approach, DFT was used to parameterize iron-nitrogen potentials in the [Fe(PM-BiA)$_2$(NCS)$_2$] (PM-BiA = N-(2-pyridylmethylene)aminobiphenyl) SCO complex, which were subsequently used in MD simulations.\[215\] This model allowed to probe the delicate interplay between crystalline and single-molecule effects and the influence of these factors on SCO. Finally, a (P,T) diagram for the complex was deduced. Calculating such diagrams is of tremendous help when comparing simulations with experiments, as evidenced by a study presenting an Ising Hamiltonian for a one-dimensional SCO coordination polymer.\[216\]

Plane-wave DFT using the Hubbard model was applied in a study on the SCO in [Co(II)dpzca)$_2$], in which a Co$^{2+}$ ion is coordinated by two pyrazine imide ligands.\[217\] The carefully tailored computational protocol reproduced the experimental pressure-dependent $T_{1/2}$ temperature reliably up to 2500 bar.
Moreover, pressure-dependent crystallographic data and the density of states (DOS) of the compound were simulated accurately.

Several studies have revealed the sensitivity of the SCO behavior to minute structural changes in the immediate surrounding of the central metal ion. DFT and a model Hamiltonian approach, for example, established the connection between the pressure-dependent iron-nitrogen distances and the SCO process in a dinuclear Fe(II) complex.[218] The observation that magnetic properties are very sensitive to small structural changes has been made in a mixed experimental/DFT study on Co(SPh)\textsubscript{4}(PPh\textsubscript{4})\textsubscript{2}, a single-molecule magnet.[219] Moreover, in an investigation using Monte Carlo simulation techniques, the coupling between SCO centers was described as harmonic stretching and bending interactions, highlighting the importance of geometric and vibronic effects in SCO complexes.[220]

These examples demonstrate that, while the computational modeling of (pressure-induced) SCO is a highly challenging endeavor, several examples prove that today’s simulation methods can be used to gain both fundamental and practical insights into SCO processes. Further methodological advancements in the underlying electronic structure theory as well as the development of multiscale simulation approaches will surely continue to contribute to our understanding of SCO processes at the molecular level.

3.1.3 Spectroscopic Properties: Piezochromism and Vibrational Spectra

The field of high-pressure molecular spectroscopy has been continually growing since the early days of high-pressure research.[221] This is partly due to the necessity to characterize the compounds under consideration \textit{in situ} to detect pressure-induced structural changes or to monitor the progress of a chemical reaction directly within a DAC. Additionally, the changes in spectroscopic properties of compounds that are induced by pressure can be exploited in fascinating ways.

One example is piezochromism, i.e., the change in optical signals upon pressure application. The term “piezochromism” often refers to changes in color, fluorescence or phosphorescence induced either
by hydrostatic compression using, e.g., a DAC, or via grinding. However, it is important to note that isotropic compression and grinding setups are vastly different,[222] which may lead to completely different spectroscopic signals.

Piezochromism in non-molecular solids has been studied extensively, e.g., in perovskites,[223–227] but the focus here lies on molecular compounds. In this realm, it has been noted that different crystal structures may yield different piezochromic responses.[228]

A tremendous amount of effort has been devoted to quantifying the effects of pressure-induced intramolecular structural changes and intermolecular interactions on piezochromism.[229] At the single-molecule level, the compression of a molecular scaffold should intuitively cause a blue shift of the UV/Vis absorption bands, as suggested by the particle-in-a-box model. In fact, XP-PCM in combination with symmetry-adapted cluster configuration interaction (SAC-CI) has shown that some absorption bands in the furan molecule are blue shifted under pressure.[106] However, the authors of this study pointed out that, experimentally, a red shift is observed, which is likely due to intermolecular effects. Nevertheless, the value of computational methods like XP-PCM lies in the fact that they allow in-depth analyses of single-molecule effects in piezochromic materials.

In many experiments, a spectroscopic red shift of absorption and fluorescence signals is observed upon pressure application.[230] DFT using PBCs or QM/MM approaches are often used to identify the intermolecular interactions responsible for this effect, e.g., $\pi-\pi$ and CH-π interactions (Figure 7).[231–235] In a mixed experimental/computational study it was found that intermolecular interactions may even become so strong under pressure that an electron can be transferred, which has tremendous influence on the piezochromic behavior of the system.[236]

At the molecular level, minute changes in dihedral angles, e.g., those modulating the overlap of neighboring π systems, or the planarity of individual π systems play an important role in piezochromic behavior.[235,237–240] A QM/MM study by Zhao et al., e.g., compared the conformationally flexible diben-
Figure 7: Comparison of intra- and intermolecular effects in a piezochromic paracyclophane-containing organoboron crystal reported by Irii et al.[232] a) Superimposed view of the compound (H atoms omitted) at P = 1 atm (thin) and P = 3.3 GPa (solid). b) Analogous superimposed side view of the π stacking dimer. c) Hirshfeld surfaces at P = 1 atm (left) and P = 3.3 GPa (right), signifying the most important intermolecular contacts. Reproduced with permission from Irii et al.,[232] Copyright 2022, Elsevier.

azo\[b,d\]thiophene-5,5-dioxide (DBTS) and the closely related, but more rigid carbazole (Cz).[241] Since lattice deformations belong to the softest intramolecular degrees of freedom, DBTS planarizes readily upon pressure application, which leads to a spectroscopic red shift. Cz, on the contrary, is more rigid and rather insensitive to the sterical influence of its surrounding, hence, its absorption and emission spectra are almost unaffected by pressure. In another study, it was observed that conformational changes can turn an expected red shift to a blue shift upon compression.[242]

An important class of piezochromic materials that shall briefly be mentioned here are transition metal complexes. In these cases, the complicated electronic structure poses a formidable challenge to the applied level of theory (cf. Section 3.1.2). DFT has been used to investigate piezochromism in Ir(III),[243,244] Ni(II)[245] and Cu(I)[246] complexes. In the latter case, Energy Decomposition Analysis (EDA)[247] al-
ollowed the quantification of important energetic factors, e.g., Pauli repulsion, electrostatic interactions and dispersion, each of which shows complex and system-specific pressure-dependence. In a very recent study, DFT was combined with multireference methods to quantify the effects of energy level changes of electronic states and structural changes on spectroscopic properties of a Cr(III) complex.\(^{[248]}\)

Turning to vibrational spectra, high-pressure Raman spectroscopy of chemical compounds is particularly widespread, since Raman spectroscopy on a reference material is typically used anyway to gauge the pressure in a DAC setup. Hence, vibrational properties of molecules under pressure have been calculated fairly early, e.g., in the case of H\(_2\) by applying confining boxes.\(^{[76]}\) Later studies using PBC-DFT\(^{[249,250]}\) and Quantum Monte Carlo\(^{[251]}\) have helped rationalize the existence of the fascinating high-pressure crystal structures of H\(_2\), such as graphene-like sheets.

Due to the importance of vibrations in the rapid degradation mechanism of many explosives and propellants, vibrational properties of energetic materials have been studied extensively, mainly by using (PBC-)DFT.\(^{[252]}\) In many cases, a blue shift of the spectroscopic signals was observed.\(^{[253,254]}\) However, it must be noted that different vibrational modes react differently to pressure,\(^{[255]}\) depending on the precise manner in which the vibrational motions are restricted by the environment, e.g., some vibrational modes in C\(_{60}\) that include a high proportion of radial motion are red shifted upon compression.\(^{[256]}\) In such cases, intermolecular effects are likely the cause of the observed red shift.

Single-molecule methods have been remarkably successful in reproducing experimental vibrational spectra under pressure. X-HCFF, for example, reproduced the experimentally observed blue shift in the Raman active carbon-hydrogen stretching vibration in the molecular 2-amine-1,3,4-thiadiazole (ATD) crystal.\(^{[99]}\) A seminumerical frequency analysis using X-HCFF allowed the characterization of the transition state of a [2,3] sigmatropic (Mislow-Evans) rearrangement and its disappearance at high pressure.\(^{[257]}\) XP-PCM was used to calculate intramolecular vibrations and their pressure-induced shifts in sulfur hexafluoride,\(^{[258]}\) P\(_4\)S\(_3\),\(^{[259]}\) C\(_{60}\) and C\(_{70}\),\(^{[256]}\) and diborane,\(^{[105]}\) reaching overall good agreement.
with experiments. The computational approach subsequently allowed to elucidate the geometrical and energetic basis for the observations.

In a mixed experimental/computational study, DFT using PBCs was used to study the pressure-induced ovalization and aggregation of the [6]cycloparaphenylene ([6]CPP) nanohoop and the resulting Raman spectra.\cite{imoto2017} Pressure was observed to cause a blue shift of most Raman modes, but a sudden change in the Raman spectrum was observed at a certain threshold pressure, which was interpreted as a sign of the formation of intermolecular σ bonds on the basis of the DFT calculations. As in many other studies, pressure led to a broadening of Raman modes and to the split of some signals, due to a loss of symmetry in the crystal.

Imoto et al. have demonstrated that AIMD simulations can be used to study high-pressure vibrations.\cite{imoto2017} In a study on biomolecular solutions, they have studied pressure-enhanced hydrogen bonding and the resulting infrared response, which has important implications for life in the deep sea. Later it was shown that the computationally less demanding EC-RISM QM/MM method leads to results in good agreement with AIMD and experimental results for the same system.\cite{imoto2018}

The vibrational properties of polymeric systems under pressure have been studied by DFT as well, e.g., in polyethylene\cite{weber2016} and the [Zn(μ-Cl)$_2$(3,5-dichloropyridine)$_2$]$_n$ coordination polymer.\cite{weber2019} In the latter case, it was found that vibrational modes play a role in structural transitions of the polymer.

In summary, piezochromism relies on a complex interplay between intra- and intermolecular effects, which, in many systems, cause opposing trends in the shift of the spectroscopic signal. Experimentally, a net red shift of absorption and luminescence bands is often observed, and reproducing this observation accurately poses a challenge for many computational methods. The behavior of vibrational signals under pressure, on the other hand, is typically easier to reproduce using simulation methods. Many vibrational signals exhibit a blue shift under pressure, which is a result of the shortening of bond lengths and a stiffening of the vibrations. Despite the aforementioned challenges, computational methods have proven
to be indispensable tools for revealing the structural effects underlying the pressure-induced changes in
UV/Vis, fluorescence and vibrational spectra.

3.2 Pressure-Induced Chemical Reactions

Pressure gives access to chemical compounds that may be otherwise unobtainable. Hence, the study of
high-pressure chemical reactions looks back upon a fascinating history.\cite{10,12} The driving force behind
many pressure-induced chemical reactions is the tendency of the compressed systems to minimize their
volumes, which can be achieved, e.g., by bond formation.\cite{180}

The identification of transition states at a given pressure is of central importance in studies of high-
pressure chemistry, since transition states can be used to calculate reaction barriers. In many cases it was
found that transition states become increasingly reactant-like with increasing pressure, and connections
with the Hammond postulate have been established.\cite{17} Moreover, the possibility of “trapping” transition
states by applying pressure, an approach that was inspired by mechanochemistry,\cite{262,263} has been recently
predicted theoretically.\cite{17,257} In the case of high-pressure chemistry, a transition state can potentially be
turned into a minimum on the potential energy surface if it occupies a smaller volume than both the
reactant and the product of the reaction, which is the case, e.g., in some rearrangement reactions.

In this section, selected simulations of high-pressure chemical reactions are discussed. The focus
lies on Diels-Alder reactions (Section 3.2.1) as well as oligomerization and polymerization reactions
(Section 3.2.2) under pressure, since numerous computational studies have appeared in these research
areas. Finally, the novel concept of the piezomechanical cycle is discussed briefly (Section 3.2.3).

3.2.1 Diels-Alder Reactions

The Diels-Alder reaction is a thermally allowed [4+2] cycloaddition of a diene and a dienophile.\cite{264,265}

Due to the mild reaction conditions and the possibility of using a diverse range of reactants, the Diels-
Alder reaction belongs to the most widely used chemical reactions in academia and industry.[266–268] In the realm of high-pressure chemistry, the Diels-Alder reaction has been studied extensively as well: Comprehensive experimental data on reaction and activation volumes and pressure-dependent reaction mechanisms is available.[2,6,269] Changes in reaction volume upon application of experimentally available pressures are significant, ranging between -25 and -40 cm3/mol.[2] Hence, Diels-Alder reactions are generally accelerated by pressure, which is in good agreement with Le Chatelier’s principle and chemical intuition.

Due to the availability of a comprehensive set of experimental reference data, the Diels-Alder reaction under pressure has been scrutinized extensively with \textit{ab initio} simulation techniques. Jha and co-workers, for example, studied the Diels-Alder reaction of butadiene and ethylene at pressures up to 1.4 GPa using G-FMPES in combination with hybrid DFT and multireference wavefunction-based methods.[95] It was found that hydrostatic pressure leads to a lowering of the activation energy barrier and to its eventual disappearance if the pressure is high enough. This finding is in agreement with a recent work on the Diels-Alder reaction of cyclopentadiene and ethylene,[115] in which GOSTSHYP was used to apply pressure both statically \textit{via} DFT and dynamically \textit{via} AIMD simulations. This study demonstrated that low pressure leads to a compression of the van der Waals complex of the reactants before the reaction becomes barrierless at higher pressures. Due to random thermal oscillations, the point in time at which the product is formed at a given pressure is variable.

An impressive body of computational research on pressure-induced Diels-Alder reactions has been produced with XP-PCM. The dimerization reactions of 1,3-cyclohexadiene[270] and cyclopentadiene,[107] respectively, the Diels-Alder reactions of cis-1,2-dihydrocatecholes and electron-deficient electrophiles,[271] cyclopentadiene and ethylene,[17] as well as cyclopentadiene and C\textsubscript{60}[272] have been studied with XP-PCM. Based on these works, some general trends can be deduced: First, pressure decreases the activation energy barrier until it eventually disappears (Figure 8). Second, upon pressure application, the Diels-Alder
reaction becomes more exothermic and the transition state more reactant-like, which agrees with the Hammond postulate. Third, XP-PCM is capable of reproducing experimental activation volumes quite accurately.

The ability of a simulation method to predict activation volumes reliably is valuable, because differences in activation volumes between two otherwise closely related Diels-Alder reactions are a sign of different reaction mechanisms. Hence, a tremendous amount of effort has been devoted to calculating reaction and activation volumes using various models.273–275 In an early work, for example, Monte Carlo simulation techniques were used on a periodic system to calculate reaction volumes of Diels-Alder react-

Figure 8: Gibbs free energy profiles of the Diels-Alder reaction of cyclopentadiene and ethylene at different pressures, calculated with XP-PCM. Reproduced with permission from Chen et al.,270 Copyright 2017, John Wiley and Sons.
Later, it was demonstrated that MD simulations are capable of reproducing experimental activation volumes (cf. also Section 2.3.2), e.g., in the dimerization reaction of cyclopentadiene.[276] Recently, a QM/MM modeling approach allowed the calculation of reaction and activation volumes of the Diels-Alder reaction of cyclopentadiene and acrylonitrile.[277]

These studies demonstrate the power of today’s computational tools and their competitiveness with experimental high-pressure techniques. The accurate calculation of reaction and activation volumes, e.g., of Diels-Alder reactions, opens up the possibility to screen a large variety of reactions at the computer and to identify the most promising candidates for later experimental verification. Nevertheless, studies on Diels-Alder reactions under pressure that intimately link experimental and computational techniques are still scarce. In a recent work,[278] PBC-based metadynamics simulations of an azobenzene co-crystal have helped shed light on the reaction mechanisms of competing Diels-Alder ([4+2]) and [2+2] cycloaddition reactions. Moreover, Zholdassov and co-workers recently used a multiscale modeling approach to distinguish between uniaxial stress and hydrostatic compression in a sophisticated nanoreactor setup that induced Diels-Alder reactions between a surface-immobilized anthracene and different dienophiles.[279] Such synergistic studies attest to the usefulness of high-pressure simulation techniques.

We note in passing that the interplay between volume and pressure is crucial for understanding the dissociation mechanism of explosives and propellants. Such systems have been studied with G-FMPES,[96] MD[280] and periodic codes,[281] however, they are not the focus of this review.

3.2.2 From Monomers to Polymers

At high pressure, crystals of organic and molecular inorganic compounds tend to lose their molecular identity. In many cases, an increase in pressure is accompanied by an increase in the number of intermolecular covalent bonds.[282] While this effect grants access to unusual chemical compounds, the possibility of undesired intermolecular bond formation at high pressure needs to be kept in mind as well.
Dimerization is typically the first step towards oligomerization and eventual polymerization of a chemical compound under pressure. A well-known example is the dimerization of cyclopentadiene, which proceeds via a \([4+2]\) cycloaddition pathway, but the examples presented in this section go beyond Diels-Alder reactions. Experimentally, a plethora of reactions, ranging from dimerizations to polymerizations, have been observed, e.g., in anthracene,\(^{[283]}\) isoprene,\(^{[284,285]}\) formic acid,\(^{[286]}\) \(C_{60}\),\(^{[287,288]}\) and butadiene.\(^{[289,290]}\) In the latter case, Car-Parrinello Molecular Dynamics (CPMD) simulations have suggested an ionic pathway for the pressure-induced transformation from butadiene to polybutadiene.\(^{[291]}\) The finding that pressure leads to an increase in polymerization rate in butadiene is in line with experimental data.\(^{[289]}\)

Carbon dioxide (\(CO_2\)) has been the target of many computational studies employing high-pressure simulation techniques. Besides the well-founded theoretical and practical interest in the high-pressure behavior of \(CO_2\), the compound has been discussed as a source of carbon in Earth’s interior and some relevant chemical reactions have been studied computationally.\(^{[292]}\) In an early work,\(^{[293]}\) liquid \(CO_2\) was scrutinized with AIMD simulations and the variable-cell method\(^{[294]}\) at pressures of up to 50 GPa and temperatures as high as 4000 K. The formation of a metastable dimer with a symmetric four-membered ring was observed at 20 GPa, which remained stable when the pressure was decreased. A similar observation was made with the X-HCFF method,\(^{[99]}\) however, \(CO_2\) dimerization was observed at higher pressures than in the aforementioned AIMD simulations (90−100 GPa), which was traced back to the omission of thermal effects in the static X-HCFF calculations. Since thermal oscillations lead to random collisions that may help overcome remaining energy barriers, it can be speculated that static methods based on geometry optimizations at 0 K generally yield higher activation pressures than dynamic methods, e.g., AIMD simulations.

A recent AIMD study\(^{[13]}\) allowed the calculation of the phase diagram of \(CO_2\) under Earth mantle conditions (Figure 9). It was found that, below 40 GPa, temperatures above 2000 K are required to make

https://doi.org/10.26434/chemrxiv-2023-nr314 ORCID: https://orcid.org/0000-0001-7599-3578 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0
the liquid reactive. At higher pressure, a polymeric fluid was observed. A related SiO$_2$-like phase was predicted using AIMD early on.\cite{295} Dispersion-corrected DFT using PBCs yielded information on the structure and stability of molecular and non-molecular modifications of CO$_2$ at high pressure.\cite{296}

Simple boron compounds have been modeled under pressure as well, due to the element’s intriguing electronic properties and the ability of a boron atom to form one additional bond. Metadynamics simulations with a supercell of eight BI$_3$ molecules have yielded a new crystal phase containing dimers of BI$_3$ with approximate D_{2h} symmetry.\cite{297} The calculated decrease in volume due to the phase transition agrees with experiments. In DFT studies using PBCs, the oligomerization and eventual polymerization of the diborane (B$_2$H$_6$) system has been discussed,\cite{298,299} along with a possible metallization if the pressure is high enough.\cite{299}
Moreover, the possibility of unidirectional polymerization of some compounds under pressure has been demonstrated. Consecutive cycloaddition reactions lead to the formation of nanothreads, a futuristic class of one-dimensional polymeric materials valued for their superior mechanical performance.[300–308] Calculations on the pressure-induced synthesis of nanothreads have been performed, e.g., with XP-PCM.[309] The findings of this study are largely in line with those obtained for singular Diels-Alder reactions in that increasing pressure leads to a decrease in volume and activation energy barrier of the cycloadditions. The field of nanothread research, in particular investigations into novel synthetic pathways and the mechanical properties of the materials, will surely continue to grow. It will be exciting to see the crucial contributions made by computational tools in these research endeavors.

3.2.3 The Piezomechanical Cycle

Polymer mechanochemistry is an emerging research area at the intersection between chemistry and materials science,[87,88,310,311] with fascinating applications such as force-triggered release of small molecules[312–316] and the manufacturing of mechanochromic materials.[317–319] At the heart of many functional polymers are mechanophores,[320–324] i.e., molecular constituents of a polymer that respond to stretching forces by significant structural changes, e.g., the rupture of covalent bonds. Typically, mechanophore activation is a one-way process. Once a covalent bond is activated, a desired response is achieved, e.g., a color change in the material or the release of an organic molecule, and restoring a mechanophore to its original form is usually not possible.

However, recently, static X-HCFF calculations and AIMD simulations have demonstrated that hydrostatic pressure can be used for this task.[325] In the iconic spiropyran (SP) mechanophore,[319,326] the force-induced rupture of the central carbon-oxygen bond, which yields merocyanine (MC), can be reverted by hydrostatic pressure in the range of a few GPa (Figure 10). In this process, MC acts as a “piezophore” that responds to pressure by bond formation. As in many pressure-induced chemical react-
Figure 10: Schematic representation of a piezomechanical cycle, in which the repeated interconversion between spiropyran (SP, left) and merocyanine (MC, right) is triggered by alternating application of mechanical stretching forces and hydrostatic pressure. The scissile carbon-oxygen bond in SP is marked red. Adapted with permission from Kumar et al.,[325] Copyright 2021, American Chemical Society.

While conceptually promising for the field of polymer mechanochemistry, the piezomechanical cycle has yet to be realized experimentally. The major obstacle to an experimental implementation is that the piezomechanical cycle requires hydrostatic conditions at the molecular level. However, in experiments on (bulk) polymers, realizing such conditions is far from straightforward. On the contrary, pressure is a common way of inducing mechanophore activation[327–331] and the general problem of non-hydrostaticity at the molecular level has been pointed out.[329] In the case of the bisanthracene mechanophore, for example, XP-PCM simulations have helped rationalize pressure-induced bond rupture via a leverage principle.[332] To understand mechanical bond cleavage and formation events in functional polymers and the intricate interplay between hydrostatic and anisotropic conditions at the molecular level, multiscale simulation techniques need to be developed and applied to a range of different systems. Such sophisticated
computational tools will allow researchers to exploit the full potential of polymer mechanochemistry and help shed light on the mechanical and high-pressure behavior of molecules embedded in crystals or surrounded by other complex environments.

3.3 The Behavior of Bulk Materials Under Pressure

In this section, we provide some examples of high-pressure simulations of bulk materials, i.e., systems that are typically simulated with periodic boundary conditions (PBC). The focus lies on water, silica melts, hydrogen cyanide, hydrides, carbon-rich materials and biological (macro)molecules under pressure. Metals, semi-conductors and non-molecular crystals, for which a large number of studies exist, are not the focus of this review.

As one of the most important molecules for life, it is not surprising that water has been investigated extensively, and the field of computational high-pressure chemistry is no exception. Due to the solidification of water at high pressure, the different phases of ice and their interconversions have been a major focus of computational high-pressure research. For instance, Monte Carlo simulations of the (H$_2$O)$_{20}$ and Ar(H$_2$O)$_{20}$ clusters have been conducted to investigate structural transition under high pressure. Changes in the nature of the bonding situation in water due to pressure have been investigated as well, e.g., a DFT study suggested that metallization of ice occurs at 4.7 TPa. As water transitions from low-density to high-density phases, the role of van der Waals (vdW) interactions increases, while the significance of hydrogen bonds decreases. Murray and Galli applied DFT with vdW functionals while including the zero point energy contribution and successfully described a wide range of properties of crystalline water under pressure. One key finding of the study was that, at high pressure, the difference in charge densities between low- and high-pressure water is mainly concentrated near the atoms, indicating the weakening of hydrogen bonds at high pressure (Figure 11).
Figure 11: Change in electronic density of cubic ice and ice VIII with respect to the free water molecule, calculated using PBE and vdW-DF2 functionals. The red and blue isosurfaces signify whether the density is increased or decreased, respectively. Oxygen atoms are represented in red, and hydrogen atoms in cyan. Reproduced with permission from Murray and Galli, \cite{343} Copyright 2012, American Physical Society.

The dipole moment of the water molecule changes in response to variations in pressure and temperature. As indicated in an AIMD study by Kang et al., \cite{344} with increasing temperature, the dipole moment of water decreases due to the collapse of the hydrogen bond network. However, high pressure increases the average dipole moment. Besides, it was found that both high pressure and temperature induce the fluctuation of intramolecular charge, leading to a broader distribution of dipole moments. The observed increase in the dipole moment of water due to pressure agrees with the results obtained \textit{via} single-molecule methods, i.e., wall potentials \cite{75} and GOSTSHYP \cite{115} which additionally found a reversion of this effect at pressures at several hundred GPa. Finally, AIMD simulations revealed that proton hole (OH−) migration in water is strongly suppressed at pressures above 10 kbar, but proton (H+) migration remains unaffected in this pressure range. \cite{345}
Exploring the properties of silica under high pressure has also gathered interest within the scientific community, as such studies aid our understanding of processes occurring in Earth’s mantle. For example, MD simulations of silica melts revealed that the self diffusion coefficient (SDC) of Si and O is pressure-dependent and that fivefold and sixfold coordinated Si sites become widespread under high pressure.346,347 A study combining MD and high-pressure in situ neutron diffraction indicated that the fivefold coordinated Si sites play a crucial role as intermediates in the transformation of SiO\textsubscript{2} glass from tetrahedral to octahedral coordination under pressure.348 Zhang et al. investigated silica in the TPa regime by applying MD, thereby explaining the nature of the bond dissociation process in SiO\textsubscript{2} in early Earth and making a contribution to the phase diagram of SiO\textsubscript{2} (Figure 12).349

Another system that has been scrutinized under pressure is hydrogen cyanide, which crystallizes...
in long chains.\cite{350,351} DFT calculations have revealed that HCN undergoes phase transitions at elevated pressure,\cite{352} and that its high-pressure phases can exhibit insulating, semiconducting, metallic, or ferroelastic behavior.\cite{353,354} Under extreme pressure, HCN polymerizes (cf. Section 3.2.2 for more examples of pressure-induced polymerization processes).\cite{353} Due to the simplicity of the molecular structure and the chain-like geometry of crystalline HCN, this system is suitable for comparing simulations of the full crystal in a PBC setup to model systems with a finite number of molecules. Using X-HCFF and GOST-SHYP it was recently found that simulating a chain with approx. 15-20 HCN molecules reproduces most of the high-pressure structural parameters of a HCN crystal occurring along the crystallographic c axis, i.e., the direction along which the HCN molecules are aligned in the crystal.\cite{185} A similar comparison has been made using XP-PCM in the case of the realgar crystal.\cite{355}

Melicharová and Martoňák studied the polymerization of nitrogen at high pressure and temperature using NPT MD simulations.\cite{356} The authors investigated liquid-liquid and liquid-solid transitions and found that the polymerization of nitrogen at 3000 K takes place between 110 and 115 GPa. With this, the authors achieved better agreement with experimental observations compared to previous studies.\cite{357} This was traced back to the use of a larger simulation cell that allowed chain formation, which might not be possible for smaller cells.

The simplest molecular system, hydrogen, belongs to the most heavily researched elements, and computational studies focusing on its high-pressure liquid\cite{358} and crystalline\cite{359–363} phases are abundant. Soon after the introduction of the Bardeen-Cooper-Schrieffer (BCS) theory in 1957,\cite{364} which describes the phenomenon of superconductivity through electron-phonon coupling, the use of metallic hydrogen as a high-temperature superconductor under high pressure was suggested.\cite{365} A tremendous amount of subsequent research has focused on group IV hydrides, e.g., silane and disilane, as the abundance of hydrogen in these systems makes them “chemically precompressed”.\cite{366–368} However, it must be noted that hydrides of various elements are intensively investigated as well.\cite{369–380} Among them, polyhydrides

of alkaline earth and rare earth elements generally exhibit high superconducting critical temperature, T_c (Figure 13),[381] i.e., the maximum working temperature for superconductors. Additionally, Zurek and Bi categorized various hydrogenic motifs, among which the clathrate-based hydrogenic lattices, with the metal atom situated at the center of the cages, tend to have high T_c.[381]

The high-pressure properties of carbon-rich materials and their pressure-induced synthesis have been studied extensively as well. A DFT study discovered several high-pressure phases of benzene, including molecular and polymeric phases.[382] The study indicates the stability of polymeric benzene phases owing to the dearomatization of the benzene molecule, involving the breaking of π bonds within the benzene ring and the formation of intermolecular σ bonds. However, it is worth noting that the authors pointed out a substantial energy barrier between the molecular and polymeric benzene phases. Furthermore, a mixed experimental/computational study reported the synthesis of carbon nanothread single crystals from benzene via uniaxial compression at room temperature.[383] Carbon allotropes under pressure, e.g.,...
graphite,[384] graphene sheets and crystals,[385] and diamond[386] have been intensively studied using diverse simulation techniques. In a recent study, DFT simulations predicted a metallic, superconducting carbon allotrope with significant hardness that could be accessible at high pressure.[387]

The effect of pressure on biological systems is an intriguing topic that shall briefly be mentioned here. While many questions on the biochemical mechanisms of how piezophilic, i.e., pressure-loving, organisms resist pressure remain open, some theories locate the origin of life to deep-sea hydrothermal vents, where early life forms would have been shielded from the harmful radiation of the young sun.[388,389] An early MD study investigated the compressibility and hydration energy of a protein in solution at a pressure of 10 kbar.[390] While this study did not detect any signs of denaturation during the time scale of the simulation, a mixed experimental/MD study revealed structural changes of the human immunodeficiency virus (HIV) protease dimer under high pressure.[391] Song et al. studied the time-dependent elastic properties of cellulose and found that the compressibility, Young’s modulus and Poisson’s ratio change in response to different deformation rates.[392]

A competing theory attributes the origin of life to high-velocity impacts of astronomical bodies, and MD simulations can provide useful data to support — or contradict — this conjecture. Goldman et al., e.g., applied the ab initio MD based multiscale shock compression simulation technique (MSST) to investigate impact-induced shock compression of cometary ice.[393] Cometary ice is primarily composed of water, however, it also contains other molecules such as CO₂, NH₃ and CH₃OH. The results indicate that glycine-containing complexes begin to form after a series of chemical reactions between H⁺ ions and transient C-N bonded oligomers, which may have occurred during comet impact events.
4 Conclusions

Modern computational tools allow the simulation of high-pressure structural, electronic and spectroscopic properties of chemical systems of any size and complexity, ranging from single atoms to bulk materials. Pressure-induced crystal structure changes can be predicted, chemical reactions simulated and bonding situations understood. Hence, as in virtually every other branch of chemistry and materials science, computational methods have become invaluable tools that not only complement experiments, but in many cases deliver insights that cannot be derived experimentally. The ability to screen a large variety of chemical systems and pressure-induced transformations computationally allows to extract general principles of high-pressure chemistry without the need to conduct individual, time-consuming experiments.

Nevertheless, it is evident that more synergistic efforts, combining the strengths of both high-pressure experiments and computations, are needed. In such studies, experiments will need to deliver high-quality benchmark data for the applied simulation methods, allowing to test their reliability in reproducing experimental observations and to optimize the computational protocols in return. Dedicated model experiments, as described in Section 2.1.2, will play an important role in this regard. Due to the level of sophistication and the complexity of the experimental setups, it is likely that extensive developmental work in the realm of computational high-pressure chemistry will be carried out throughout the coming decades.

We believe that the development of multiscale high-pressure simulation techniques will become increasingly important in the future. Since the strain applied to a macroscopic object does simply correspond to the strain exerted on the constituent molecules, multiscale models are promising tools to improve the comparability between experiments and calculations. Moreover, the differentiation between isotropic and anisotropic compression is crucial, e.g., to gain an understanding why compression can lead to bond rupture at the molecular level. Following up on the possibilities for improvement of
high-pressure simulation methods will make sure that the fascinating field of computational high-pressure chemistry continues to thrive.

Funding Information:

We acknowledge financial support through the APF project ‘Materials on Demand’ within the ‘Humans on Mars’ Initiative funded by the Federal State of Bremen and the University of Bremen.

Conflict of Interest:

The authors declare no conflict of interest.
References

https://doi.org/10.26434/chemrxiv-2023-nr314 ORCID: https://orcid.org/0000-0001-7599-3578 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-nr314 ORCID: https://orcid.org/0000-0001-7599-3578 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

Matar S, Guionneau P, Chastanet G. Multiscale Experimental and Theoretical Investigations of Spin Crossover FeII Complexes: Examples of [Fe(Phen)2(NCS)2] and [Fe(PM-BiA)2(NCS)2]. Int J Mol Sci. 2015 Feb;16(2):4007-27.

https://doi.org/10.26434/chemrxiv-2023-nr314 ORCID: https://orcid.org/0000-0001-7599-3578 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-nr314 ORCID: https://orcid.org/0000-0001-7599-3578 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-nr314 ORCID: https://orcid.org/0000-0001-7599-3578 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-nr314 ORCID: https://orcid.org/0000-0001-7599-3578 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

