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Abstract

Accurate prediction of Absorption, Distribution, Metabolism, Excretion, and Toxi-

city (ADMET) properties is crucial for drug discovery and development. However, ex-

isting computational models for ADMET predictions often lack generalizability and ro-

bustness. In this paper, we deployed a Combinatorial Fusion Analysis (CFA) to enhance

the performance of ADMET models. Utilizing ADMET benchmark datasets on Ther-

apeutics Data Commons (TDC), we conduct a comprehensive evaluation against tradi-

tional and state-of-the-art models. CFA models show superior performance compared
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to most of the individual models. The CFA model architecture and the performance

of CFA models on TDC and other internal datasets are discussed. This significant

enhancement suggests that CFA is a viable tool for improving ADMET model perfor-

mance, promising faster and more cost-effective drug development pipelines. The code

and models trained are available on GitHub at https://github.com/F-LIDM/CFA4DD.

1 Introduction

The field of drug discovery has undergone a transformative evolution in recent years, fu-

eled by advancements in computational methodologies and data-driven approaches. In silico

methods have become indispensable tools for accelerating the drug development process

by predicting various molecular properties, thereby reducing costs, time, and the need for

resource-intensive experimentation. Within this landscape, the application of machine learn-

ing and predictive modeling techniques has gained significant attention due to their capacity

to accurately forecast crucial drug-related properties [1–3].

One of the key challenges in drug discovery is the accurate prediction of diverse molecular

endpoints, such as physico-chemical properties, solubility, permeability, binding affinities and

toxicity. The complexity of these endpoints arises from the intricate interplay of multiple

factors, necessitating the integration of heterogeneous data sources and diverse molecular

descriptors. Part of this complexity relates to the necessity of finding an optimum for

the three pillars of drug discovery, diseases, targets and compounds [4]. Within each of

these search spaces, an optimal solution needs to be found. Traditional prediction models,

while successful to a certain extent, often struggle to capture the inherent nuances of these

interdependent relationships. In response, researchers have turned to innovative approaches

that leverage the power of ensemble methods and feature fusion techniques.

Combinatorial fusion algorithms represent a promising avenue in addressing the limita-

tions of single-model prediction systems. By amalgamating the strengths of multiple models

or descriptors, these algorithms have demonstrated the ability to enhance predictive accu-
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racy and robustness. Combinatorial fusion goes beyond the scope of simple model averaging,

exploring synergistic interactions among constituent models or descriptors, and exploiting

their complementary aspects. This approach provides a means to reduce the risk of overfit-

ting, mitigate bias, and navigate the complex landscape of drug-molecule interactions more

effectively.

This paper examines the application of combinatorial fusion algorithms to drug discovery-

related endpoint prediction models.

Li and Huang [5] constructed and tested nine unique models: one random forest stacker,

two random forests, and six custom gradient boosting models composed of various submodels

including random forest and SPGNN: a graph neural network implemented in Hu et al.

(2020) [6]. Huang et al. (2020) [7] proposed Deep Purpose which supports training of

customized drug-target interaction (DTI) models by facilitating eight compound and seven

protein encoders and 50 neural architecture models.

Various graphical models, in particular those based on neural networks, have been used

in drug discovery. Kipf and Welling (2017) [8] presented a semi-supervised classification

model with graph convolutional neural networks via a localized first-order approximation of

spectral graph convolutions. Z. Xiong et al. (2020) [9] proposed a graph neural network

architecture for molecular representation. Hu et al. (2020) [6] developed a strategy and self-

supervised methods for pre-training Graph Neural Networks (GNN) not only at the level of

individual nodes but also as entire graph. Méndez-Lucio et al. [10] presented a molecular

foundation model, called MolE, that uses the DeBERTa architecture on molecular graphs

and a pretraining strategy.

Virtual screening (VS) of molecular compound libraries using consensus scoring (CS) (or

data fusion) has been a viable method for drug discovery and development [11–14]. Char-

ifson et al. (1999) [11] reported that fusion among different scoring methods in VS can

perform better than the average of the individual scoring systems. Salim, Holliday, and

Willett (2003) [15] reported search results by combining fingerprint-based similarly scoring
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systems using data fusion (sum of ranks). Although it was shown that search result can be

improved by rank combination with little extra computational cost, there is no clear winner

as to which combination gives a consistently higher performance for all search types (e.g.

dataset tasks). During the same period, similar phenomena was reported in information

retrieval domain [16–18]. Yang et al. (2005) [14] demonstrated, using data from five scor-

ing systems on four protein targets, that combining multiple scoring functions (consensus

scoring) improves the enrichment of true positive in virtual screening only if (a) each of the

individual scoring functions has relatively high performance and (b) the individual scoring

functions are distinctive.

Hsu, Chung, and Kristal (2006) [19] presented Combinatorial Fusion Analysis (CFA) for

analyzing and combining multiple scoring systems. CFA characterizes each scoring system

A as including a score function sA (in the Euclidean space), a rank function rA derived

from the score function (in a rank space), and a rank-score function fA [19, 20]. Both score

combination and rank combination are considered w.r.t. their combinatorial complexity

and computational efficiency. Information obtained from the scoring characteristics of each

scoring system is used to perform system selection and to decide method of combination.

In particular, the rank-score functions’ graphs, fA and fB for scoring systems A and B

respectively, has been used to measure the dissimilarity or diversity between scoring systems

A and B [19–21].

In this paper, we deploy the CFA algorithm to combine multiple base models which

were pretrained using the 22 data sets provided by Therapeutics Data Commons [22]. Sec-

tion 2 covers methods used in this paper. These include: Section 2.1: Combinatorial Fusion

Analysis, Section 2.2: TDC benchmark datasets, and Section 2.3: Training of base and CFA-

optimized ADMET-models. Section 3 consists of results and discussion. Result from using

CFA with fingerprint descriptors: Morgan and MCFP as well as RDKit 2D descriptors are

included in Section 3.1. Section 3.2 includes a summary discussion and suggestion for future

work. Section 4 concludes the paper with some remarks. Background regarding the CFA
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architecture is included in the Supplemental Information File #1 as: (1) CFA characteristics,

(2) Groups, graphs, and Kemeny rank space, and (3) Figure skating judgement: rank v.s.

score combination.

2 Methods

2.1 Combinatorial Fusion Analysis (CFA)

Combinatorial Fusion Analysis (CFA) provides ML/AI methods and practices for analyzing

combination and fusion of multiple scoring systems (e.g., attributes, algorithms, and models).

(See Supplemental Information File #1 for more detailed background information on CFA).

2.1.1 Score Function, Rank Function, and Rank-Score Function

CFA considers each scoring system A as including a score function sA, a rank function rA

derived from the score function by sorting the score values in descending order, and a rank-

score function fA which depicts the relationship of A in the Euclidean space (sA) and in the

rank space (rA) [19, 20, 23]. Let D = {d1, d2, . . . , dn} be a set of n objects (subjects, samples,

or molecules). Let N = {1, 2, . . . , n} be the set of all positive integers less than or equal to

the set of all positive integers n and IR be the set of real numbers. For a scoring system

A, the score function sA : D → IR is a function from D to IR, where the object di in D is

assigned a real number sA(di) in IR. Rank function rA : D → N maps each element di in D

to a natural number rA(di) in N . Suppose sA(di) and rA(di) are the score and rank function

on the set D of objects respectively. The rank-score function fA is defined as: fA : N → IR

such that

fA(i) = sA(r
−1
A (i)) = (sA ◦ r−1

A )(i), i ∈ N (1)

which is equivalent to:

sA(di) = (fA ◦ rA)(di) = fA(rA(di)), di ∈ D (2)
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Rank-score function fA of the scoring system A was defined by Hsu, Shapiro, and Taksa

[18, 24] in the study of information retrieval systems. Due to its generality and independence

of application domains, it has since been used to measure the dissimilarity/diversity between

scoring systems in the duality of Euclidean space and rank space [18, 20, 21, 23, 25]. In

particular, cognitive diversity (or rank-score diversity) was defined and widely used in a

variety of domains [18, 20, 21, 23].

2.1.2 Score and Rank Combination

Given two scoring systems A and B, their score functions sA and sB, and their derived rank

functions rA and rB, we are able to obtain their rank-score functions fA and fB respectively.

Score values of A and B are normalized linearly to the interval [0, 1] respectively. Cognitive

diversity (a.k.a: rank-score diversity) between scoring systems A and B, cd(A,B), proposed

by Hsu et al. [18–21, 24] measures the dissimilarity (or diversity) of scoring systems A and

B:

cd(A,B) = d(fA, fB) =

(∑n
i=1 (fA(i)− fB(i))

2

n

) 1
2

(3)

where n is the number of data items in D.

Suppose we have t scoring systems A1, A2, . . . , At on the data set D of n items. The

diversity strength of the scoring system Aj, ds(Aj) is defined to be [23, 26, 27]:

ds(Aj) =

∑t
i=1,i ̸=j cd(Aj, Ai)

t− 1
(4)

On the other hand, the performance strength is simply taken as the performance of

the scoring system Aj, p(Aj), which is measured as the correlation, accuracy, precision, or

AUROC depending on the data set and the intended task.

For the combination of the t scoring systems A1, A2, . . . , At, we consider three types

of combination: average combination (AC), weighted combination by diversity strength

(WCDS), and weighted combination by performance (WCP). Since every scoring system
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has a score function and a rank function, we have the following score functions for AC,

WCDS, and WCP:

For (a) average combination (AC) of score combination (SC) or rank combination (RC),

the score function of the score combination sSC and of the rank combination sRC are:

sSC(di) =

∑t
j=1 sAj

(di)

t
and sRC(di) =

∑t
j=1 rAj

(di)

t
(5)

For (b) weighted combination by diversity strength (WCDS), the score function of the

score combination and of the rank combination are:

sSC(di) =

∑t
j=1 ds(Aj)(sAj

(di))∑t
j=1 ds(Aj)

and sRC(di) =

∑t
j=1 (1/ds(Aj))(rAj

(di))∑t
j=1 (1/ds(Aj))

(6)

For (c) weighted combination by performance (WCP), the score function of the score

combination and of the rank combination are:

sSC(di) =

∑t
j=1 p(Aj)(sAj

(di))∑t
j=1 p(Aj)

and sRC(di) =

∑t
j=1 (1/p(Aj))(rAj

(di))∑t
j=1 (1/p(Aj))

(7)

when p(Aj) is the higher the better. However, if p(Aj) is the lower the better, the score

function of the score combination and of the rank combination are:

sSC(di) =

∑t
j=1 (1/p(Aj))(sAj

(di))∑t
j=1 (1/p(Aj))

and sRC(di) =

∑t
j=1 p(Aj)(rAj

(di))∑t
j=1 p(Aj)

(8)

2.2 TDC benchmark datasets

To benchmark our approach, we used the ADMET datasets from Therapeutics Data Com-

mons (TDC). TDC serves as a comprehensive hub for drug discovery research, offering a wide

array of curated datasets and benchmarks to facilitate scientific innovation. Therapeutics

Data Commons (TDC) also offers a unique leaderboard feature that serves as a real-time

assessment platform for various algorithms in drug discovery. Researchers can submit their
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models for tasks like ADMET prediction and see how they stack up against existing bench-

marks. Metrics tailored to each specific research problem are used to rank the algorithms,

offering an instant, comparative view of model performance. In this paper, we used the 22

ADMET benchmark datasets to evaluate our approach and ranked their performance against

the leaderboard.

2.3 Training of Base and CFA-optimized ADMET Models

For this study, we made use of the 22 datasets available in the Therapeutics Data Commons

(TDC) specifically related to ADMET properties. The ADMET group within TDC provided

a reliable and diverse range of data, ensuring robustness in our experimental evaluation.We

employed three techniques to generate molecular features for the representation of the com-

pounds in these 22 datasets: 1) Morgan Circular Fingerprints (Configured with a radius of

2 and a bit vector length of 1024), 2) RDKIT 2D Molecular Descriptors, and 3) MCFP,

a proprietary fingerprints developed by Hassan, Sirimulla, and Oprea. Five algorithms are

used as base models (A, B, C, D, E) = (XGB, RF, SVM, ADB, CNN) where XGB is an

implementation of Gradient Boosted decision trees [28], RF is Random Forest [29], SVM is

Support Vector Machine with linear kernel [30], ADB is AdaBoost with 300 estimators and

learning rate = 1 [31], and CNN is Convolutional Neural Networks with 1 input, 2 hidden,

and 1 output layer, Sigmoid activation function for output and ReLu activation function

for other layers and Adam optimizer [32]. For model evaluation, we compute the following

measurements: Mean Absolute Error (MAE) and Spearman rho in the 9 regression cases.

For the 13 classification cases, we use AUROC (area under the ROC curve), and AUPRC

(area under precision-recall) as metrics.

In the training and testing process, we follow TDC’s protocol of splitting the data set

into 20% for testing, and 80% for training and validation (70% v.s. 10%) [22]. The test

data is fixed (by TDC format) while the 70%/10% split of the remaining 80% is seeded

randomly five times using random split, scaffold split, temporal split, cold-state split, and
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combination split. Performance of the model is the average of the performance for the test

data. We refrained from extensive hyperparameter tuning using scikit-learn’s GridSearch

cross-validation, relying instead on scikit-learn’s RandomizedGridSearch cross-validation for

XGB (parameters = booster, learning rate, maximum depth, minimum child weight, number

of estimators, lambda, alpha, sample by tree, and gamma) and SVM (parameters = C and

gamma) algorithms, and default settings for the others.

We use three types of combination: average combination (AC), weighted combination by

diversity strength (WCDS), and weighted combination by performance (WCP). Five base

models for each feature set led to (25 − 1 − 5) × 3 = 78 combined models. Each of the 78

combined models is obtained in two different ways (score combination and rank combination).

3 Results and Discussion

3.1 Results

CFA is robust across all five categories of TDC ADMET data sets. It achieves top rank in

4 of the 22 data sets in ADMET category of TDC. CFA has best results in data sets E.1

and E.2, which uses Spearman’s rho to evaluate the performance of the modeling result.

The evaluation of modeling results with Spearman rho is done on the rank space. Since

the five base models are diverse as evidenced by rank-score function graphs (see figures in

supplemental information file #2), CFA results using rank combination is better than score

combination [18] where there is diversity between these models. CFA is robust w.r.t. small

and large data size. It achieves all rankings within the top 6 with data size as small as 475

(T.4: DILI) to data size as big as 13,130 (M.5: CYP2D6_Veith). The six data sets which

CFA ranks in the TDC leaderboard over 6 are A.1: Caco2_wang (8/17), A.5: Lipophilicity

(14/15), A.6: Solubility (9/14), M.4 CYP2C9_Veith (9/16), M.6: CYP3A4_Veith (8/15),

and T.1: LD50_Zhu (7/17). Supplemental Information file #2 consists of 22 tables (S.I.

tables) each representing the performance of the 78 score or rank combinations of the com-
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bined models and the five single models under each of the five seeding cases. For each of the

22 dataset tasks, five rank-score function graphs (S.I. figures) depicting the model diversity

are also included.

3.1.1 CFA with Fingerprints descriptors

Initially, we performed CFA with models developed from Morgan and MCFP fingerprints as

descriptors and five base models (A: XGB, B: RF, C: SVM, D: ADB, and E: CNN). The

performance of CFA with these combination is shown in Table 1. Table 1 lists performance

evaluation metric, the best performance on the leaderboard, CFA performance, and the CFA

ranking on the leaderboard for each of the 22 data sets and their tasks. Table 4 lists the

performance and diversity strength of each model.

3.1.2 CFA with RDKit 2D descriptors

Next, we explored RDKit 2D descriptors as our features on 11 data sets. The ranking has

improved in 6/11 data sets. The leaderboard ranking of CFA-optimized models with RDKit

2D Descriptors is shown in Table 3. The CFA with RDKit 2D Descriptors achieves rankings

within the top 6 in 8/11 data sets and falls out of the top 6 in only three data sets (A.3:

Pgp_Broccatelli, E.2: Clearance_Hepatocyte_AZ, and T.4: DILI). One of our future works

is to continue CFA work using RDKit 2D Descriptors as the encoding scheme.
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Table 1: Performance of CFA on ADMET models in the TDC Leaderboard

Category Dataset Metric Leaderboard Top Score* CFA Score FP Method CFA Best Ranking**

Absorption

1.Caco2_wang MAE↓ 0.276 0.335 MCFP 8 / 17
2.HIA_Hou AUROC↑ 0.989 0.981 MCFP 4 / 16
3.Pgp_Broccatelli AUROC↑ 0.938 0.928 RDKit 2D 6 / 16
4.Bioavailability_Ma AUROC↑ 0.748 0.746 MCFP 2 / 16
5.Lipophilicity_AstraZeneca MAE↓ 0.467 0.626 MCFP 14 / 15
6.Solubility_AqSolDB MAE↓ 0.761 0.939 MCFP 9 / 14

Distribution
1.BBB_Martins AUROC↑ 0.916 0.920 RDKit 2D 1 / 21
2.PPBR_AZ MAE↓ 7.526 8.680 MCFP 6 / 15
3.VDss_Lombarado Spearman rho↑ 0.713 0.628 Morgan 3 / 15

Metabolism

1.CYP2C9_Substrate AUPRC↑ 0.441 0.417 RDKit 2D 5 / 17
2.CYP2D6_Substrate AUPRC↑ 0.736 0.704 RDKit 2D 4 / 15
3.CYP3A4_Substrate AUROC↑ 0.662 0.667 MCFP 1 / 16
4.CYP2C9_Veith AUPRC↑ 0.859 0.751 Morgan 9 / 16
5.CYP2D6_Veith AUPRC↑ 0.790 0.664 MCFP 6 / 15
6.CYP3A4_Veith AUPRC↑ 0.916 0.855 Morgan 8 / 15

Excretion
1.Half_life Spearman rho↑ 0.562 0.576 Morgan 1 / 16
2.Clearance_Hepatocyte Spearman rho↑ 0.498 0.536 Morgan 1 / 14
3.Clearance_Microsome Spearman rho↑ 0.630 0.625 RDKit 2D 3 / 16

Toxicity

1.LD50_Zhu MAE↓ 0.552 0.630 MCFP 7 / 17
2.hERG AUROC↑ 0.880 0.875 RDKit 2D 2 / 16
3.AMES AUROC↑ 0.871 0.852 MCFP 4 / 15
4.DILI AUROC↑ 0.925 0.919 MCFP 2 / 16

* TDC ADMET benchmark group leaderboard ranking is accessed on November 26, 2023. Same for Table 2 and 3.
** Numbers in red indicate ranking within top 6. Same as in Table 2 and 3.

Table 2: Performance of CFA (Morgan and MCFP) on ADMET models in the TDC
Leaderboard

Category Dataset Metric CFA + Morgan CFA Ranking with Morgan CFA + MCFP CFA Ranking with MCFP
1.Caco2_wang MAE↓ 0.417 12 / 17 0.335 8 / 17
2.HIA_Hou AUROC↑ 0.960 10 / 16 0.981 4 / 16
3.Pgp_Broccatelli AUROC↑ 0.917 8 / 16 0.924 6 / 16
4.Bioavailability_Ma AUROC↑ 0.685 5 / 16 0.746 2 / 16
5.Lipophilicity_AstraZeneca MAE↓ 0.654 14 / 15 0.626 14 / 15

Absorption

6.Solubility_AqSolDB MAE↓ 1.173 14 / 14 0.939 9 / 14
1.BBB_Martins AUROC↑ 0.891 12 / 21 0.907 7 / 21
2.PPBR_AZ MAE↓ 8.734 6 / 15 8.680 6 / 15Distribution
3.VDSS_Lombarado Spearman rho↑ 0.628 3 / 15 0.561 6 / 15
1.CYP2C9_Substrate AUPRC↑ 0.400 6 / 17 0.358 15 / 17
2.CYP2D6_Substrate AUPRC↑ 0.684 7 / 15 0.677 7 / 15
3.CYP3A4_Substrate AUROC↑ 0.642 4 / 16 0.667 1 / 16
4.CYP2C9_Veith AUPRC↑ 0.751 9 / 16 0.749 9 / 16
5.CYP2D6_Veith AUPRC↑ 0.660 6 / 15 0.664 6 / 15

Metabolism

6.CYP3A4_Veith AUPRC↑ 0.855 8 / 15 0.853 8 / 15
1.Half_Life_Obach Spearman rho↑ 0.576 1 / 16 0.312 8 / 16
2.Clearance_Hepatocyte_AZ Spearman rho↑ 0.536 1 / 14 0.411 9 / 14Excretion
3.Clearance_Mircrosome_AZ Spearman rho↑ 0.572 9 / 16 0.566 10 / 16
1.LD50_Zhu MAE↓ 0.632 7 / 17 0.630 7 / 17
2.hERG AUROC↑ 0.833 7 / 16 0.832 7 / 16
3.AMES AUROC↑ 0.837 7 / 15 0.852 4 / 15Toxicity

4.DILI AUROC↑ 0.863 11 / 16 0.919 2 / 16
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Table 3: CFA Performance with RDKit 2D Descriptors

Dataset Metric Leaderboard topper CFA using RDKit 2D CFA Ranking

A.2 HIA_Hou AUROC↑ 0.989 0.982 4 / 16
A.3 Pgp_Broccatelli AUROC↑ 0.938 0.922 7 / 15
A.4 Bioavailability_Ma AUROC↑ 0.748 0.736 3 / 16
D.1 BBB_Martins AUROC↑ 0.916 0.920 1 / 21
M.1 CYP2C9_Substrate AUPRC↑ 0.441 0.417 5 / 17
M.2 CYP2D6_Substrate AUPRC↑ 0.736 0.704 4 / 15
M.3 CYP3A4_Substrate AUROC↑ 0.662 0.652 2 / 16
E.2 Clearance_Hepatocyte_AZ Spearman rho↑ 0.498 0.42 8 / 14
E.3 Clearance_Microsome_AZ Spearman rho↑ 0.630 0.625 3 / 16
T.2 hERG AUROC↑ 0.880 0.875 2 / 16
T.4 DILI AUROC↑ 0.925 0.886 8 / 16

Table 4: The Performance and Diversity Strength of Best CFA Combined models

Dataset Average Performance of Individual Model* Average Diversity Strength of Individual Model Best CFA Combined Model Second Best CFA Combined Model FP Method

A.1 A: 0.405; B: 0.360; C: 0.364; D: 0.529; E: 1.026 A: 1.330; B: 1.094; C: 1.414; D: 2.970; E: 1.038 BC_ps: 0.335 BC: 0.335 MCFP
A.2 A: 0.893; B: 0.929; C: 0.942; D: 0.981; E: 0.887 A: 1.004; B: 0.681; C: 0.666; D: 1.342; E: 1.396 D: 0.981 DE_ps: 0.979 MCFP
A.3 A: 0.800; B: 0.899; C: 0.858; D: 0.903; E: 0.920 A: 0.595; B: 0.727; C: 0.586; D: 0.698; E: 1.529 ABE_ds: 0.928 BE_ds: 0.927 RDKit 2D
A.4 A: 0.718; B: 0.735; C: 0.648; D: 0.705; E: 0.698 A: 1.184; B: 0.654; C: 1.287; D: 1.281; E: 2.538 AB_ps: 0.746 AB: 0.746 MCFP
A.5 A: 0.640; B: 0.711; C: 0.676; D: 0.819; E: 0.739 A: 2.964; B: 3.198; C: 7.158; D: 8.351; E: 8.060 AC_ps: 0.626 AC: 0.626 MCFP
A.6 A: 0.945; B: 1.010; C: 1.097; D: 1.409; E: 1.184 A: 14.912; B: 13.305; C: 13.661; D: 31.257; E: 35.228 ABC_ps: 0.939 A: 0.945 MCFP
D.1 A: 0.868; B: 0.892; C: 0.867; D: 0.833; E: 0.884 A: 0.924; B: 0.534; C: 0.556; D: 0.945; E: 2.001 BCE_ps: 0.920 BCE: 0.919 RDKit 2D

D.2 A: 9.226; B: 9.740; C: 9.021; D: 13.461; E: 14.752 A: 5.266; B: 6.585; C: 14.973; D: 8.711; E: 10.755 AC: 8.680 AC_ps: 8.741 MCFP
D.3 A: 0.348; B: 0.525; C: 0.582; D: 0.321; E: -0.017 A: 5.835; B: 10.073; C: 8.170; D: 7.312; E: 6.027 BC_ds_r: 0.628 BC_r: 0.626 Morgan

M.1 A: 0.317; B: 0.382; C: 0.353; D: 0.313; E: 0.417 A: 1.880; B: 2.244; C: 3.256; D: 4.580; E: 2.703 E: 0.417 BE: 0.415 RDKit 2D
M.2 A: 0.563; B: 0.679; C: 0.568; D: 0.686; E: 0.659 A: 0.634; B: 0.763; C: 0.936; D: 1.417; E: 1.520 BCD: 0.704 BCD_ps: 0.703 RDKit 2D
M.3 A: 0.621; B: 0.662; C: 0.608; D: 0.649; E: 0.563 A: 1.403; B: 0.771; C: 1.143; D: 0.739; E: 2.905 ABD_ps: 0.667 ABD: 0.667 MCFP
M.4 A: 0.739; B: 0.713; C: 0.728; D: 0.571; E: 0.687 A: 36.56; B: 43.81; C: 33.74; D: 108.50; E: 78.73 ABCD: 0.751 ABCD_ps: 0.751 Morgan
M.5 A: 0.649; B: 0.626; C: 0.528; D: 0.538; E: 0.509 A: 30.594; B: 35.394; C: 70.681; D: 84.129; E: 43.781 ABC_ps: 0.664 ABC: 0.664 MCFP
M.6 A: 0.847; B: 0.822; C: 0.841; D: 0.718; E: 0.810 A: 37.01; B: 40.67; C: 34.58; D: 110.74; E: 79.13 ABCD_ps: 0.855 ABCD: 0.855 Morgan

E.1 A: 0.352; B: 0.257; C: 0.474; D: 0.199; E: -0.039 A: 2.365; B: 7.467; C: 2.731; D: 4.032; E: 3.314 ABCD_ds_r: 0.576 ABC_r: 0.574 Morgan
E.2 A: 0.350; B: 0.323; C: 0.396; D: 0.278; E: -0.002 A: 3.190; B: 4.774; C: 3.896; D: 8.294; E: 4.203 ABCDE_r: 0.536 ABCDE_ds_r: 0.536 Morgan
E.3 A: 0.515; B: 0.502; C: 0.609; D: 0.527; E: 0.618 A: 0.607; B: 0.559; C: 0.925; D: 0.627; E: 1.231 CE_r: 0.625 CE_ps_r: 0.625 RDKit 2D

T.1 A: 0.647; B: 0.635; C: 0.684; D: 0.765; E: 0.701 A: 7.798; B: 7.900; C: 11.151; D: 18.333; E: 19.091 ABE_ps: 0.630 ABE: 0.631 MCFP
T.2 A: 0.815; B: 0.803; C: 0.767; D: 0.811; E: 0.850 A: 0.394; B: 0.368; C: 0.485; D: 0.419; E: 1.090 DE: 0.875 ACDE: 0.875 RDKit 2D
T.3 A: 0.835; B: 0.844; C: 0.812; D: 0.759; E: 0.746 A: 10.735; B: 18.572; C: 13.835; D: 23.861; E: 16.525 ABC_ds: 0.852 ABC_ps: 0.851 MCFP
T.4 A: 0.870; B: 0.897; C: 0.851; D: 0.884; E: 0.809 A: 0.660; B: 0.566; C: 0.455; D: 0.794; E: 2.156 ABC_ps: 0.919 ABC: 0.918 MCFP

Note: 1. A: XGB; B: RF; C: SVM; D: ADB; E: CNN.
2. The suffix “ps” means weighted combination by performance strength.
3. The suffix “ds” stands for weighted combination by diversity strength.
4. “r” represents rank combination while all other combinations without “r” indicate score combinations.
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Figure 1: RSC Graphs for VDSS_Lombardo
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Figure 2: RSC Graphs for Half_Life_Obach
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Table 5: CFA + Morgan Performance on VDSS_Lombardo and Half_Life_Obach

Dataset Metric # Params Problem Type Combination Type Metric Score

VDSS_Lombardo Spearman rho↑ 1024 Regression Rank combination

seed_1: 0.649
seed_2: 0.642
seed_3: 0.628
seed_4: 0.630
seed_5: 0.589
average: 0.628

Half_Life_Obach Spearman rho↑ 1024 Regression Rank combination

seed_1: 0.567
seed_2: 0.543
seed_3: 0.610
seed_4: 0.589
seed_5: 0.571
average: 0.576
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3.2 Discussion

Results that improved model prediction of ADMET properties using CFA are given in Ta-

bles 1, 3 and 4, as well as the S.I. tables and figures in supplemental information file #2,

and summarized in Section 3.1. In this section, we offer some points of discussion together

with possible future work.

3.2.1 Rank vs. Score Combination

CFA provides both score combination in the Euclidean space IRn and rank combination in

the Bubble sort Cayley graph space Bn (with no tie rankings) and in the Kemeny rank

space (with tie rankings allowed) (see S.I. file #1 Section 2 for Bubble Sort Cayley graph

space Bn and Kemeny rank space Kn). However, in Tables 1, 3 and 4, and S.I. tables in

the supplemental information file #2 on the 22 data sets and tasks ([22] and TDC, rank

combinations are performed on the four data sets (D3, E1, E2, and E3) to match with the

metrices used by these four data sets. We note that CFA achieves the #1 spot in two of

these respective leaderboards. On the other hand, out of the other 18 score combination

results, CFA achieves top 6 spot in 12 data sets.

It was shown ([18, 24]) that rank combination of scoring system A and B can be bet-

ter than score combination when there exists diversity (or cognitive diversity, [20, 21, 23])

between rank-score functions fA and fB. One of our future works is to perform rank combina-

tion after converting the score function into rank function in the 18 data sets. We expect the

results from the rank combination to be better as there do exist cognitive diversity between

these models (see S.I. tables in the supplemental information file #2).

3.2.2 Cognitive Diversity (CD)

The concept of cognitive diversity(or rank-score diversity) between models(scoring systems)

A and B is defined as the variation or dissimilarity between two normalized rank-score

function of A and B (see Equation (3) in Section 2.1.2). It is an integral core part of CFA.
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CD can not only help us decide the method of combination but also help us find a better

way to assemble a group of diverse yet relatively good base models. As we can see from

tables 4 and 5 for the datasets D.3 (VDSS) and E.1 (Half_Life), the best combinations are

from weighted rank combination by diversity strength of RF and SVM and weighted rank

combination by diversity strength of XGB, RF, SVM and ADB respectively.

Examining the rank-score function graphs on Figures 1 and 2, We see that models RF

and SVM do have large CD between them. Similar results are reflected by the other 20 data

sets if rank combination is used.

3.2.3 Learning and Modeling

The CFA framework in this paper considers both statistical and computational approaches

of learning and modeling (see Section 1 in supplemental information file #1) according to the

nature and content of the data sets and their application domains. In computational learning

and modeling, and in particular in molecular science, B. Dou et al. [33] discussed machine

learning methods for small data challenges and offered several suggestions for improving the

prediction power of ML/DL models w.r.t. small data sets including the combination of ML

and DL models. In the CFA framework, all the six combination methods (see Figure 3 in

Section 3 of supplemental information file #1) do apply to the five base models (chosen w.r.t.

their diversity regardless of them being ML or DL models). For instance, one of the five base

models chosen in the first empirical example is CNN, a DL model (Section 2.3). On the other

hand, even though the model SVM is less considered in drug discovery, or performance of

single SVM may not be high, we include SVM as one of the five base models because it pro-

vides good diversity (i.e., cognitive diversity) and hence contributes to enhancing prediction

power (S.I. tables in Supplemental Information file #2).
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3.2.4 Flexibility of CFA in Combining Models

The salient characteristic of Combinatorial Fusion Analysis (CFA) lies in its inherent flexibil-

ity, as it is agnostic of specific features and machine learning algorithms. This allows for the

combination of models developed using diverse feature sets and ML algorithms, thereby alle-

viating researchers from the often laborious task of meticulously selecting an optimal feature

set or a singular machine learning algorithm tailored to a specific problem. In this study, we

employed three distinct feature sets in conjunction with five different ML algorithms. While

the scope of this study focused on the application of CFA at the machine learning algorithms

level for each of the three feature sets, it is worth noting that CFA also affords the oppor-

tunity to combine models developed using distinct feature sets. This flexibility underscores

the versatility of CFA in tailoring model combinations to the specific requirements of the

data analysis task at hand.

4 Conclusions

CFA provides efficient algorithms to combine a moderate group of relatively good and diverse

models. It takes advantage of combining multiple good and diverse base models using both

score and rank combination as well as three types of combinations: AC, WCDS, and WCP.

By leveraging ADMET benchmark datasets from Therapeutics Data Commons (TDC), we

compared the CFA-optimized models with state-of-art ADMET models. Remarkably, CFA-

optimized models clinched the top spot on TDC leaderboard in four of these datasets and

maintained a position within the top six ranks in 16 datasets. The integration of CFA into

ADMET modeling not only elevates predictive accuracy but also promises to expedite the

drug development cycle, thereby enabling more efficient and cost-effective solutions.
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Supporting Information Available

The following files are available free of charge.

• Filename: Supplemental Information File #1

• Filename: Supplemental Information File #2

Data and Code availability

The code and protocols used in this paper are available on the GitHub at https://github.com/F-

LIDM/CFA4DD. The python package for the CFA is available through pip install and can

be installed using the command pip install cfanalysis. More information on python package

is avaiable at https://pypi.org/project/cfanalysis/.
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