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Abstract 

Protein conformational changes play crucial roles in their biological functions. In recent years, the 
Markov State Model (MSM) constructed from extensive Molecular Dynamics (MD) simulations has 
emerged as a powerful tool for modeling complex protein conformational changes. In MSMs, 
dynamics are modeled as a sequence of Markovian transitions among metastable conformational states 
at discrete time intervals (called lag time). A major challenge for MSM is that the lag time must be 
long enough to allow transitions among states to become memoryless (or Markovian). However, this 
lag time is constrained by the length of individual MD simulations available to track these transitions. 
To address this challenge, we have recently developed Generalized Master Equation (GME)-based 
approaches, encoding non-Markovian dynamics using a time-dependent memory kernel. In this tutorial, 
we introduce the theory behind two recently developed GME-based non-Markovian dynamic models: 
the Quasi Markov State Model (qMSM) and the Integrative Generalized Master Equation (IGME). We 
subsequently outline the procedures for constructing these models and provide a step-by-step tutorial 
on applying qMSM and IGME to study two peptide systems: the alanine dipeptide and villin headpiece. 
This tutorial is available at https://github.com/xuhuihuang/GME_tutorials. The protocols detailed in 
this tutorial aim to be accessible for non-experts interested in studying the biomolecular dynamics 
using these non-Markovian dynamic models.  
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1. Introduction 

Protein functions heavily rely on dynamic transitions between conformational states or conformational 
changes1, 2. For example, RNA polymerase II needs to repeatedly oscillate between the pre-
translocation state and post-translocation state to translocate along the doble-strand DNA during 
transcription elongation3, 4. Therefore, studying conformational changes is crucial for understanding 
the molecular mechanisms underlying many biological processes4 and facilitating drug design 
targeting these conformational changes5, 6. 

Molecular dynamics (MD) simulations have emerged as a valuable tool that can complement 
experimental approaches by providing atomistic details of protein dynamics. However, the timescales 
of conformational changes for complex biological molecules often exceed the feasible simulation 
length. For example, the opening of the DNA loading gate of RNA polymerase occurs at millisecond 
timescales, while it still remains challenging for all-atom MD simulations of RNA polymerase (the 
simulation box contains around half a million atoms) to reach a millisecond7.  Markov State Model 
(MSM)8-19 has become a popular approach to bridge this timescale gap by modeling the long timescale 
dynamics based on many short MD simulations.  

In MSMs, the high-dimensional conformational space is partitioned into a set of discrete and coarse-
grained metastable states. Simultaneously, through the coarse-graining of time (using discrete time 
intervals or lag time), transitions among these states can be modelled as Markovian jumps. The 
transition probabilities after a lag time between pairs of states can then be estimated from short MD 
simulations.  As a result, MSMs can predict long timescale dynamics based on a large ensemble of 
short MD simulations. In recent years, MSMs have been widely applied to study protein folding18, 20-

25, protein-ligand binding26-29, and functional conformational changes of biomolecules17, 30-47. 

One critical condition for MSMs to have predicting power is that the lag time must be long enough to 
allow transitions among states to become memoryless (or Markovian), and the memory of these 
transitions is mainly determined by dynamic relaxations within each metastable state.  This imposes a 
major challenge for MSM studies of protein dynamics, as the lag time is bound by the length of 
individual MD simulations available to estimate transition probabilities. To achieve Markovian 
transitions, one often needs to construct MSMs containing a large number of states, so that each state 
is sufficiently small and has relatively fast relaxation dynamics to allow affordable lag times. For 
example, Pande and coworkers showed that they need an MSM containing 2,000 states (with a lag 
time of 12ns) to model the millisecond folding of the NTL9 peptide48. Our previous work suggested 
that 10,000 state is needed for a MSM to be Markovian (with a lag time of 5ns) for a 37-residue 
intrinsically disordered peptide20. More recently, our work on the RNA Polymerase II backtracking 
also showed that MSMs consisting of 800 states are needed to reach Markovian33. MSMs containing 
hundreds of states are useful to make quantitative predictions to be tested by experiments, but often 
hinder the comprehension of biological mechanisms. In recent years, various methods, such as non-
Markovian dynamic approaches49 based on Generalized Master Equation (GME) 50-52 or Generalized 
Langevin Equation (GLE)53-55, and Hidden Markov State Models56 have been developed to address 
this challenge.  
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The GME has particularly emerged as a promising approach to address the aforementioned challenge 
of studying protein dynamics49. The GME method (also called quasi-MSM or qMSM) is a non-
Markovian dynamic model and explicitly considers the memory kernel and propagates dynamics using 
a discretized GME50. The qMSM method is shown to greatly improve upon MSMs by accurately 
predicting long-timescale dynamics while being built from significantly shorter MD simulations7, 50, 

57. The Transfer Tensor Method (TTM) provides an analogous approach to qMSM that utilizes a 
discretization of the integrated GME using the time-dependent transfer tensor58. In addition, Dill and 
co-authors introduced the memory kernel (NMMK) method, where they applied the maximum entropy 
principle to obtain the memory kernels from experimental data59.  

GME represents a new and promising approach to studying biomolecular dynamics. However, a major 
challenge persists in the robustness of the computed time-dependent memory kernels when applying 
GME to investigate complex conformational changes49. This challenge arises because memory kernels 
are estimated based on probabilities of transitions among states at a series of time points, and the 
fluctuations encountered when extracting these time-dependent transition probabilities from MD 
trajectories could induce numerical instability in complex systems. To address this issue, we have 
recently developed the Integrative GME (IGME) method51. In this method, we first derived an 
analytical solution for the GME under the condition that the memory kernels are fully decayed. 
Subsequently, we determine the hyper-parameters in this analytical solution through fitting to MD 
simulations. As IGME deals with the condition that the memory kernels have already been decayed, it 
employs only the time integrations of memory kernels, thereby avoiding the numerical instability 
associated with the explicit computation of time-dependent memory kernels in qMSM. When applied 
to the study of peptide dynamics, the IGME models demonstrate significantly reduced fluctuations in 
both memory kernels and predicted long-term dynamics compared to qMSM50. In addition to IGME, 
the time-convolutionless GME (TCL-GME) provides another noise-resilient GME-based approach, 
where the non-Markovian time evolutions of dynamics are modeled by a time-dependent rate matrix52.   

In this tutorial, we present a step-by-step guide on how to build qMSM and IGME models to study 
protein dynamics. This tutorial is accompanied by our most recent implementation of these two GME-
based methods, available on GitHub (https://github.com/xuhuihuang/GME_tutorials). We hope this 
provides a detailed tutorial for researchers in the computational chemistry and biophysics community 
to learn how to build GME methods for studying conformational dynamics of proteins and other 
macromolecules. Our paper is organized as follows: we first introduce the GME (for the qMSM 
method) and IGME theories, followed by outlining detailed and step-by-step protocols for building 
these models from MD simulations. Finally, we will present two detailed examples (alanine dipeptide 
and the villin headpiece) along with associated Python code (presented as Schemes) to demonstrate 
how to build qMSM and IGME models from MD simulations. 

2. Theories of non-Markovian dynamic models for protein dynamics 
2.1. Liouville equation and dynamic operators 
The dynamics in the phase space follows the Liouville equation: 

 𝜕𝜌(𝑡, 𝜞)/𝜕𝑡 = ℒ𝜌(𝑡, 𝜞) (1) 
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where the Liouville operator ℒ  encapsulates all pertinent information of the dynamic system and 
𝜌(𝑡, 𝜞) represents the probability distribution function across the entire phase space 𝜞 at time 𝑡. 

Based on the Liouville equation, the evolution of the probability density after the time interval 𝜏 
follows 𝜌(𝑡 + 𝜏, 𝜞) = 𝑒ℒ"𝜌(𝑡, 𝜞) , regardless of the starting time 𝑡  or any travelling history. This 
property is called Markovian, or memoryless. When studying protein dynamics in reversible system, 
several dynamic operators have been used to describe the propagation of the distribution function, as 
listed below: 

• Propagator 𝒫(𝜏): 𝜌(𝑡 + 𝜏, 𝜞) = 𝒫(𝜏)𝜌(𝑡, 𝜞) 

• Transfer operator 𝒯(𝜏) 9: 𝜌(𝑡 + 𝜏, 𝜞)/𝜌#$ = 𝒯(𝜏)0𝜌(𝑡, 𝜞)/𝜌#$1 , where 𝜌#$  represents the 
equilibrium probability distribution function. Transfer operator can only be applied in reversible 
system. 

2.2. Markov State Model (MSM) theory 
In MSMs, the configurational space is partitioned into 	𝑛  states, represented as {𝑋%}%&'( , and 
simultaneously the continuous time is coarse-grained into discrete time intervals (𝜏, called lag times). 
The system’s dynamics is then modelled as Markovian transitions among these states. Consequently, 
the probability density function 𝜌(𝑡) can be expressed as a vector containing 𝑛  elements: 𝒑(𝑡) =
[𝑝'(𝑡) ⋯ 𝑝((𝑡)])  where 𝑝%(𝑡)  represents the population in state 𝑋%  at time 𝑡 . The Markovian 
property requires that the propagation of 𝒑(𝑡)  after the time interval 𝜏  can be seen as under the 
operation of the transition probability independent of 𝑡 : 𝑝*(𝑡 + 𝜏) =
∑ 𝑝%(𝑡)(
%&' ℙ0𝒙(𝑡 + 𝜏) ∈ 𝑋*@𝒙(𝑡) ∈ 𝑋%1 . Here, 𝒙  represents the configuration and the transition 

probability is described as the conditional probability of jumping to state 𝑗 after a lag time of 𝜏, given 
the initial state 𝑖 . By defining the transition probability matrix (TPM), 𝑻(𝜏) , as 
𝑇%*=ℙ0𝒙(𝑡 + 𝜏) ∈ 𝑋*@𝒙(𝑡) ∈ 𝑋%1, the time propagation of 𝒑(𝑡) can be rewritten as: 

 𝒑(𝑡 + 𝜏)) = 𝒑(𝑡))𝑻(𝜏) (2) 

We can then define the equilibrium density	 [𝜋' ⋯ 𝜋(])  , where 𝜋% = ∫ 𝜌#$(𝒙)d𝒙𝒙∈-!
. For 

equilibrium dynamics, the detailed balance condition imposes the relationship: 𝜋%)𝑇%* = 𝜋*)𝑇*%. If we 
further define u(𝑡) = 𝒑(𝑡)/𝝅 = [𝑝'(𝑡)/𝜋' ⋯ 𝑝((𝑡)/𝜋(	]), the expression can be rewritten as: 

 𝒖(𝑡 + 𝜏) = 𝑻(𝜏)𝒖(𝑡) (3) 

Where	𝑻(𝜏)	represents an approximation of the transfer operator 𝒯(𝜏) at reduced dimensions (i.e., 
transitions among 𝑛  discrete states). For the row normalized TPM, the leading left eigenvectors 
provide information of the population flux of the slowest dynamic processes, which correspond to 
transitions between metastable regions of the conformational space. The timescales of these dynamic 
processes are related to the eigenvalues of the TPM, as represented by their implied timescales (ITS)60: 

 ITS%(𝜏) = −
𝜏

ln 𝜆%(𝜏)
 (4) 

Where 𝑖 = 1,2,3…. When the reduced dynamics in the state space with the lag time of 𝜏 are Markovian, 
we can use the first-order master equation to propagate the dynamics: 

 𝑻(𝑛𝜏) = 𝑻(𝜏)( (5) 

Where 𝝅) = 𝝅)𝑻(𝜏)  and 𝟏 = 𝑻(𝜏)𝟏 . The first eigenvalue of  𝑻(𝜏)  always equals to 1 and its 
corresponding eigenvector corresponds to the equilibrium state populations. The lag time (𝜏) must be 
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long enough to allow the dynamics in the reduced state space to become Markovian or memoryless, 
otherwise the memory of these transitions needs to be considered.  

2.3. Generalized Master Equation (GME) theory 
A major challenge in constructing MSMs for protein dynamics is building a Markovian model of state 
dynamics. To achieve a Markovian model, the lag time must be long enough to allow the fully 
relaxation of memory effects in dynamic transitions among states. As the lag time is bound by the 
length of individual short MD simulations, a large number of states are often needed for MSMs to 
achieve Markovian behavior. However, MSMs containing hundreds and even thousands of states can 
impede the comprehension of biological mechanisms.  

Recently developed non-Markovian dynamic models aim to address the aforementioned challenge in 
MSM. These models go beyond the Markovian assumption for interstate transitions and utilize the 
GME framework to explicitly account for the memory of protein dynamics. The GME is derived from 
the Liouville’s equation Eq. (1). In the Liouville’s equation, the dynamics in the high-dimensional 
phase space 𝜞  is Markovian. In reduced dimensionality (e.g., the collective variable (CV) space 
discussed in Sec. 3.3 or the state space discussed in Sec. 3.4-3.5), the dynamics are projections of the 
phase-space dynamics given by Eq. (1) onto these reduced dimensions. For a state model, the 
projection from phase space to the state space satisfies the following generalized Hummer-Szabo 
projection operator:  

 ℙ =V@𝜒%(𝒙)𝜌#$(𝒙)X𝜋%.'⟨𝜒%(𝒙)|
%

 (6) 

Here 𝜒 is an indicator function: 𝜒%(𝒙) = 1 when 𝒙 ∈ 𝑋%  and 𝜒%(𝒙) = 0 otherwise. 𝜌#$(𝒙) represents 
the equilibrium probability density, and 𝜋% represents the equilibrium population of the state 𝑖. 

Upon the projection, the dynamics follow the Nakajima-Zwanzig equation: 

 
𝜕
𝜕𝑡 ℙ𝜌

(𝑡) = ℙℒℙ𝜌(𝑡) + ℙℒ𝑒ℚℒ0ℚ𝜌(0) + ] ℙℒ
0

1
𝑒ℚℒ(0.3)ℚℒℙ𝜌(𝑠)d𝑠 (7) 

With ℚ = 𝐈 − ℙ (𝐈 is an identity matrix). In Eq. (7), the second term on the right-hand side vanishes 
when 𝜌(0) is initiated from an equilibrium distribution. Thus, the Nakajima-Zwanzig equation can be 
rewritten as the following General Master Equation (GME)50, 51: 

 𝑻̇(𝑡) = 𝑻(𝑡)𝑻̇(0) − ] 𝑻(𝑡 − 𝜏)𝑲(𝜏)𝑑𝜏
0

1
 (8) 

Here, 𝑻(𝑡) is the row-normalized transition probability matrix (TPM) with lag time 𝑡, following the 
same convention in Sec. 2.2. Each element of the TPM (𝑇%*(𝑡) = cχ*(𝒙)@𝑒ℒ0@χ%(𝒙)𝜌#$(𝒙)Xπ%.' ) 
corresponds to the conditional probability for the system visit state 𝑿𝒋 after a lag time of 𝑡, given its 
initial state at 𝑿𝒊 . While 	𝑲(𝑡)  with each element 𝐾%*(𝑡) = −cχ*(𝒙)@ℒ𝑒ℚℒ0ℚℒ@χ%(𝒙)𝜌#$(𝒙)Xπ%.' is 
referred as the memory kernel matrix.  

An important feature of the memory kernel is the time scale 𝜏7, namely, the memory kernel relaxation 
time, when the memory kernel 𝑲(𝜏) decays to zero: 𝑲(𝑡 ≥ 𝜏7) = 𝟎. In biomolecular systems, where 
the separation of timescales often occurs, we have demonstrated that memory kernel relaxation time 
(𝜏7) is often significantly shorter than the Markovian lag time (𝜏8)50. Under this condition, the GME 
can be rewritten as 
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 𝑻̇(𝑡) = 𝑻(𝑡)𝑻̇(0) − ] 𝑻(𝑡 − 𝑠)𝑲(𝑠)𝑑𝑠
9:;["",0]

1
 (9) 

where the convolution term of the right-hand side only needs to be computed up to 𝜏7 when predicting 
dynamics at a long lag time (𝑡 ≥ 𝜏7). This provides us with the opportunity to build GME with short 
MD trajectories. In the GME-based method, we can use the short MD trajectories to compute the time-
dependent TPMs, 𝑻(𝑡). These short-time 𝑻(𝑡) can be employed to compute the memory kernels 𝑲(𝑠) 
with Eq. (9). Subsequently, the long-time dynamics 𝑻(𝑡)  at any lag time longer than 𝜏7  can be 
computed from the GME, as given by Eq. (9). In Sec. 3.6, we demonstrate a brute-force method 
utilizing Eq. (9) to construct GME, namely the quasi-MSM (qMSM). qMSM is theoretically rigorous, 
but it also involves the computation of the time-dependent memory kernel tensor 𝑲(𝑠), which is 
challenging due to the numerical instability induced by the fluctuations of MD simulations especially 
for complex systems. In Sec. 2.4 below, we will introduce the Integrative-GME (or IGME) to improve 
the numerical instability of qMSM by analytical solving the GME at 𝑡 ≥ 𝜏7. 
2.4. Integrative GME (IGME) theory 
To enhance numerical stability, the IGME theory51 adopts the time integration of memory kernels 
𝑴((𝑡) instead of the memory kernel tensor 𝑲(𝑡). When 𝑡 ≥ 𝜏7 , the GME can be rewritten as an 
ordinary differential equation after applying the Taylor series of 𝑻(𝑡 − 𝑠) in the convolution term of 
Eq. (7): 

 
𝑻(𝑡).'

𝑑
𝑑𝑡 𝑻

(𝑡) = 𝑻̇(0) −𝑴1 −V k
(−1)(

𝑛! 𝑻(𝑡).'
𝑑(

𝑑𝑡( 𝑻
(𝑡)m𝑴(

?

(&'

 

𝑴( = ] 𝑲(𝑠)𝑠(𝑑𝑠
""

1
 

(10) 

Here 𝑴( are the time integrals of memory kernels at order 𝑛. At the zeroth order, 𝑴1 corresponds to 
the time-integrated memory kernel matrix. Eq. (10) contains 𝑴( instead of the memory kernel tensor 
𝑲(𝑠), which avoids the numerical computation of 𝑲(𝑠). In the IGME theory, we have obtained the 
analytical solution to the above ordinary differential equation for 𝑇(𝑡) as: 

 

𝑻(𝑡 ≥ 𝜏7) = 𝑨𝑻o0 

ln 𝑻o = 𝑻̇(0) −𝑴1 −V
(−1)(

𝑛! 0ln 𝑻o1(𝑴(
(&'

 
(11) 

Here 𝑻o and 𝑨 are two constant matrices. 𝑻o describes the dynamics at an infinitely long lag time, which 
can be used to estimate the timescales of the slowest dynamical modes and transition rates between 
pairs of states. 𝑻o is obtained by fitting 𝑨𝑻#! with short-time MD simulation trajectories 𝑻(𝑡) (see Sec. 
3.6 and Sec. A1 for details).  

The second equation of Eq. (11) can also be utilized to compute the time-integrated memory kernel 
matrix 𝑴1 . According to Eq. (11), the rigorous computation of 𝑴1  involves 𝑴(  at higher orders. 
However, for biomolecular systems where there are separations of timescales (i.e., −𝑡/ ln 𝜆% (𝑡) ≫ Δ𝑡, 
𝜆(𝑡) are eigenvalues of 𝑻(𝑡), and Δ𝑡 is the saving interval of the input 𝑻(𝑡) in IGME51), we have 
shown that: 

 𝑴1 ≈ 𝑻̇(0) − ln𝑻o (12) 

Therefore, 𝑴1 can be obtained from the IGME. 
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3. Protocol for constructing GME Models to study protein dynamics 
In this section, we will introduce a detailed protocol (Figure 1) to construct qMSM and IGME models 
to study protein dynamics based on MD simulation trajectories. 

 

Figure 1. Our recommended protocol for constructing GME Models to study protein dynamics. 

3.1 Feature selection 

The input to our protocol is an MD simulation dataset containing an ensemble of MD trajectories that 
sample protein conformational changes of interest (Figure 1(a)). An MD trajectory consists of the time 
evolution of MD snapshots, each containing the positions of all the atoms in the simulation box. 
However, these Cartesian coordinates are often unsuitable for the analysis of protein conformational 
changes because they are typically of high dimensions (e.g., a typical protein system contains tens of 
thousands of Cartesian coordinates). Additionally, it is challenging to separate protein internal motions 
from their external motions. In contrast, internal coordinates (e.g., inter-residue distances or backbone 
torsional angles) offer a better description of protein conformational changes and are often used as 
input features to construct MSM or GME models. 

Many biologically relevant conformational changes are localized, involving structural transitions in 
only a subset of the system, such as translocation of a motor protein on dsDNA61, and the gate opening 
of RNA polymerase7. Even for global dynamic processes like protein folding, one could identify a 
subset of structural features sufficient to describe the slowest dynamics of these conformational 
changes. Therefore, the first step in our protocol is to select a subset of structural features that can 
describe the slowest dynamics of the system (Figure 1(b)). In this section, we will discuss several 
algorithms for automatic feature selection, including Accelerated Sequential Incoherent Selection 
(oASIS)62, spectral oASIS63, the Force Distribution Analysis (FDA)64, and molecular systems 
automated identification of correlation (MoSAIC)65. 

Both the oASIS62 and spectral oASIS63 aim to find a subset of features to reconstruct the original 
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feature space based on the Nyström method. The primary focus of these two methods is to minimize 
the errors of diagonal elements between the original correlation matrix 𝐶 = 𝑋)𝑋 (𝑋%* is the value of 
feature 𝑗  at simulation frame 𝑖 ) and reconstructed correlation matrix 𝐶t = 𝐶@𝑊@

A𝐶@)  (𝐶@  is subset 
columns of 𝐶, and 𝑊@ is the correlation matrix of subset features) reconstructed based on the Nyström 
method. The oASIS method employs a selection strategy that targets the column indexed with the 
highest diagonal error, which is less effective when selecting more than one column in each iteration. 
The Spectral Oasis, a modified version of oASIS, maintains the effectiveness of batch selection by 
considering both reconstruction errors and eigenvector differences. The FDA method involves the 
analysis of pair-wise forces and the mechanical strain distribution alongside the MD simulations. This 
method focuses on residue pairs that exhibit significant force variations in the simulations. Finally, 
MoSAIC65 is a correlation-based feature selection method based on the physical insights that crucial 
dynamic processes involve many features changing in a concerted manner. MoSAIC makes use of the 
Leiden community detection algorithm to block-diagonalize the correlation matrix, thereby creating 
coherent and distinct feature clusters. These clusters are subsequently ranked according to their size. 
Larger clusters are presumed to be linked to significant dynamic processes, while smaller clusters are 
eliminated as noise during the feature selection process. In this tutorial, we choose the Spectral oASIS63 
as the feature selection method. 

3.2. Dimensionality reduction 
The feature selection in the previous step provides a representative subset of internal coordinates, but 
their number is large and often at the order of hundreds to thousands of features. In our protocol, we 
will further perform a dimensionality reduction based on these features to identify several collective 
variables (CVs) that describe the slowest dynamics of the system (Figure 1(c)). In this step, various 
dimensionality reduction algorithms can be utilized, e.g., Principal Component Analysis (PCA)66, 
time-lagged Independent Components Analysis (tICA)67-69, Variational Approach for Markovian 
Process (VAMP) based neural networks (VAMPnets)70 or its combination with graph neural networks 
(GraphVAMPnets)71, 72, and State-free Reversible VAMPnets (SRVs)73. In this tutorial, both tICA and 
SRVs will be applied. 

PCA66 can find a small number of principal components by maximizing the variance across the spatial 
scale of the principal components. Alternatively, tICA67-69 can find a set of collective variables 
representing the slowest dynamics of biomolecules by maximizing the time-lagged autocorrelation of 
the transformed components. In tICA, the self-correlation matrix 𝑪"" and time-lagged autocorrelation 
matrix 𝑪"# are constructed from the high-dimensional feature space 𝒙(𝑡) = [𝑥'(𝑡), … , 𝑥B(𝑡)]T, where 
𝑥'(𝑡), … 𝑥B(𝑡) are 𝑑 features at simulation time 𝑡: 

 
𝑪11 = 𝔼0[𝒙(𝑡)𝒙(𝑡))] 

𝑪1' = 𝔼0[𝒙(𝑡)𝒙(𝑡 + 𝜏))] 
(13) 

Here 𝜏 is the chosen lag time and the 𝑑 features can be picked by intuition or generated from feature 
selection methods (e.g., spectral oASIS63). The CVs corresponding to the slowest dynamic modes can 
then be obtained by solving the generalized eigenvalue problem: 

 𝑪1'𝑼 = 𝑪11𝑼𝚲 (14) 

These slowest CVs (called TICs) can then be constructed from dimension reduction of the input 
features that utilizes a sub-matrix of 𝑼 consisting of the top columns corresponding to the largest 
values in the diagonal matrix 𝚲. Both PCA and tICA can generate uncorrelated collective variables by 
using linear combinations of input features. PCA tends to assign importance to large-amplitude 
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motions, even if they are typically irrelevant to the actual function of a protein. A similar challenge 
can be encountered when using tICA, especially when the coordinates involve slow but unimportant 
motions. For example, when tICA is applied to dihedral angles (𝜙, 𝜓) to investigate the folding of a 
helical protein, HP35, it identifies transitions between right- and left-handed helices as the slowest 
processes65, 74, 75. 

The VAMPnets70 was developed based on the variational approach of Markov processes (VAMP) 
theorem. VAMPnets allows for the independent training of two parallel encoders (𝐸1 and 𝐸') to find 
the low-dimensional latent space representation of the collective variables: 𝒚1(𝑡) = 𝐸1(𝒙(𝑡)) and 
𝒚'(𝑡 + 𝜏) = 𝐸'(𝒙(𝑡 + 𝜏)). Minimizing the loss function in VAMPNets is equivalent to maximize the 
VAMP-2 score that is defined as: 

 

𝑪11 = 𝔼0[𝒚1(𝑡)𝒚1(𝑡))] 

𝑪1' = 𝔼0[𝒚1(𝑡)𝒚'(𝑡 + 𝜏))] 

𝑪'' = 𝔼0[𝒚'(𝑡 + 𝜏)𝒚'(𝑡 + 𝜏))] 

𝑅CDEFG = �𝑪11
.'/G	𝑪1'𝑪''

.'/G�
J

G
 

(15) 

Where the subscript 𝐹 represents the Frobenius norm. The VAMPnets can work with the input of 
molecular coordinates, and finally yield a state model that has better performance than previous 
Markov modeling approaches.70 State-free Reversible VAMPnets76 (SRVs) method is largely similar 
to VAMPnets, while the major difference lies in the reversible-dynamics assumption of the SRVs. 
Unlike the VAMPnets that adopts two independent neural networks to train 𝒚1(𝑡) and 𝒚'(𝑡 + 𝜏), the 
SRVs uses the shared neural network for 𝒚(𝑡) = 𝐸(𝒙(𝑡)) and 𝒚(𝑡 + 𝜏) = 𝐸(𝒙(𝑡 + 𝜏)). In the training, 
the SRVs utilize a slightly different loss function (VAMP-2 like loss function): 

 
𝑪01𝒔𝑖 = 𝜆'𝑖𝑪00𝒔𝑖 

𝐿 = −V0𝜆t%1
G

%

 (16) 

Where 𝑪"" and 𝑪"# are computed in the same way as Eq. (15) and 𝜆)% are the generalized eigenvalues. 
The SRVs can achieve higher success rate for training in numerical experiments76. In addition, the 
SRVs only yields the collective variables, unlike the VAMPnets that yield few-state kinetic models. 

Besides the above-mentioned methods, many other algorithms are also available for dimension 
reduction, such as kernel-tICA77, deep-tICA78, time-lagged autoencoder79, variational dynamics 
encoder80, past-future information bottleneck81, state predictive information bottleneck82, transition 
manifold methods83, reaction coordinate flow84, and relaxation mode analysis85, etc. 

3.3. Geometric clustering to generate microstates 
Geometric clustering (Figure 1(d)) involves partitioning the reduced-dimensional conformational 
space spanned by the CVs into a large number of discrete clusters (called microstates). The most widely 
used clustering methods in the MSM/GME construction are the centroid-based algorithms86 such as 
K-Means87, K-Centers88, 89 and K-Medoids90. In K-Means clustering, the primary objective is to 
minimize the sum of squared distances between data points and the centroid of the cluster that the data 
point belongs to, which is calculated as the mean of the data points assigned to that cluster. K-Centers 
clustering aims to minimize the maximum distance or dissimilarity between a data point and the nearest 
cluster center. The cluster centers are evenly distributed. K-Medoids clustering also seeks to minimize 
the sum of distances like K-Means, but it uses actual data points (medoids) as representatives of the 
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clusters. In addition to the centroid-based algorithms, other clustering methods are also available, such 
as Automatic state partitioning for multibody systems (APM)91, shape-Gaussian mixture models 
(shape-GMM)92, Density-Based Spatial Clustering of Applications with Noise (DBSCAN), and 
Adaptive partitioning by local density-peaks (APLoD)93. 

3.4. Kinetic Lumping to produce metastable macrostates 
In this step, we will further lump microstates that can interconvert quickly into a small set of metastable 
microstates (Figure 1(e)). The most widely used kinetic lumping methods94-98 are the Perron-Cluster 
Cluster Analysis (PCCA)94 and Robust Perron Cluster Analysis (PCCA+)95, 96. The PCCA uses the 
structure of the eigenvectors of microstate TPMs to find the metastable states. In PCCA, the sign 
pattern of the eigenvectors corresponding to the largest eigenvalues of TPM is used for finding the 
metastable states that can form a nearly uncoupled Markov chain. Unlike the PCCA that uses a crisp 
assignment of state boundary, the PCCA+96 utilizes almost invariant sets by almost characteristic 
functions 𝜒� , which is a soft assignment for the microstates. 𝜒�  is obtained by maximizing the 
metastability of microstate TPM: tr0𝑊� 1 = ∑ 𝑤�%%% , where 𝑊� = (diag[𝜋]).Gc𝜒�@𝑻9:NOP@𝜒�X

Q
 (𝜋 are the 

stationary populations, and 𝑇9:NOP  is the microstate TPM). In practice, the PCCA+ employs 
perturbation of characteristic functions to optimize the invariant sets 𝜒�. In our tutorial, we utilize the 
PCCA+ algorithm for kinetic lumping.  

3.5. Constructing Markov State Models 
With a set of micro- and macro-states, we can then estimate transition probabilities between pairs of 
states after the lag time 𝜏 from MD simulations: 

 𝑇%*(𝜏) = 𝑝[𝑥(𝑡 + 𝜏) ∈ 𝑗	|	𝑥(𝑡) ∈ 𝑖] =
𝐶%*(𝜏)
∑ 𝐶%*(𝜏)*

 (17) 

Where 𝐶 is the transition count matrix (TCM), and 𝐶%*(𝜏) corresponds to the number of transitions that 
begin from state 𝑖 and end at state 𝑗 after the lag time 𝜏. For equilibrium sampling, the TCM should be 
theoretically symmetric to satisfy the detailed balance: 𝐶%*(𝜏) = 𝐶*%(𝜏) . However, for realistic 
applications, one often needs to symmetrize the TCM using the following equation:  

 𝑪RS9(𝜏) =
𝑪(𝜏) + 𝑪(𝜏)T

2  (18) 

Alternatively, when there are large differences between 𝐶%*(𝜏) and 𝐶*%(𝜏), the Maximum likelihood 
estimator (MLE)99 can be employed to enforce the detailed balance condition using the following 
likelihood function9: 

 𝑝(𝑇|𝐶UV3) ∝ � 𝑇%*
W!#
$%&'%XW!#

'()
(

%,*&'

= �𝑇%*
W!#

(

%,*&'

 (19) 

The resulting MLE algorithm can be written as9, 99: 

 𝜋% =V
𝑐%* + 𝑐*%
𝑁%
𝜋%
+
𝑁*
𝜋*

*

, 𝑇%* =
0𝑐%* + 𝑐*%1𝜋*
𝑁*𝜋% + 𝑁%𝜋*

 (20) 

Where 𝑁%  represents the total number of transition counts starting from state 𝑖 . In an MSM, the 
eigenvectors and eigenvalues of TPMs (𝑇(𝜏)) represent the slowest dynamic modes. Starting from the 
second eigenmode, the (𝑖 + 1)-th eigenvector corresponds to the 𝑖-th slowest dynamic mode, while 
the corresponding eigenvalue 𝜆%X' describes the fraction of molecules that have not undergone the 
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transition after the lag time 𝜏. The first eigenvalue is always 1, and the first eigenvector corresponds 
to the stationary populations of states. 

In various steps of the MSM construction (Figure 1(c,d)), we need to determine several 
hyperparameters, including the optimal number of CVs, lag time in tICA or SRVs, and number of 
microstates. To choose the optimal values for these hyperparameters, we recommend using the 
generalized matrix Rayleigh quotient (GMRQ)100 in our protocol. The GMRQ employed cross-
validation to avoid possible overfitting induced by the violation of variational bounds due to statistical 
uncertainty100. In GMRQ, the whole dataset is divided into a training set and a test set, and the Rayleigh 
quotient is computed from the eigenvectors and correlation matrices of these two parts: 

 𝑅 = Tr(𝑽)𝑪𝑽(𝑽)𝑺𝑽).') (21) 

Where 𝑽 is the right eigenvector of TPM computed from the training set data, 𝑺 and 𝑪 are the diagonal 
matrix of stationary population and TCM computed from the test set data, respectively. In practice, the 
best model should have the highest GMRQ score. 

3.6. Constructing qMSM and IGME models 

Using TPMs and their time derivatives at different lag times as input, one could also construct qMSM, 
a non-Markovian GME-based dynamic model (Figure 1(f)). Given a series of short-time 𝑻(𝑡), qMSM 
employs a brute force approach to numerically compute the memory kernel tensor 𝑲(𝑡) and predict 
the long-time dynamics based on Eq. (9). 

In qMSM, a discrete-time GME at 𝑡 = 𝑛Δ𝑡 is employed as follows: 

 𝑻̇(𝑛Δ𝑡) = 𝑻(𝑛Δ𝑡)𝑻̇(0) − Δ𝑡 V 𝑻0(𝑛 −𝑚)Δ𝑡1𝑲(𝑚Δ𝑡)
9:;[(,	""/Y0]

Z&'

 (22) 

Where 𝜏7 is the memory relaxation time when the memory kernel 𝑲(𝜏) decays to zero: 𝑲(𝑡 ≥ 𝜏7) =
𝟎). Therefore, a straightforward method to compute memory kernel can be derived from the above 
time-discrete GME: 

𝑲(𝑛Δ𝑡) = − 𝑻̇((Y0).𝑻((Y0)𝑻̇(1)
Y0

+ ∑ 𝑻0(𝑛 − 𝑚)Δ𝑡1𝑲(𝑚Δ𝑡)(
Z&'           (𝑛Δ𝑡 ≤ 𝜏7) (23) 

To find 𝜏7, the qMSM employs the mean integral kernel (MIK) to visualize the relaxation of memory 
kernel tensor: 

 MIK(𝑡) =
1
𝑁�V �] 𝐾%*(𝜏)d

0

1
𝜏�

G]

%,*&'

 (24) 

When 𝑲(𝑡) fully relaxes, the MIK will become independent of time. Therefore, the MIK can act as an 
indicator for 𝜏7 in qMSM. Finally, the long-time dynamics can be predicted from Eq. (22) with the 
memory kernels computed from Eq. (23) and 𝜏7 obtained from Eq. (24). In the applications of qMSM, 
we observe that the fluctuations encountered when obtaining	𝑻(𝑡) and 𝑻̇(𝑡) from MD trajectories can 
induce numerical instability in 𝑲(𝑡), especially for complex systems. To address this challenge, we 
have recently developed the IGME method51. 
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The IGME method utilizes 𝑻(𝑡) at 𝑡 ≥ 𝜏7 to compute the two matrices 𝑨 and 𝑻o in Eq. (11). In this 
tutorial, we introduce a least-square fitting (LSF) method to compute  𝑨 and 𝑻o with the row-sum 
restriction of 𝑻(𝑡) : ∑ 𝑇%*E^(𝑡)* ≡ 1 . The least-square fitting method in this tutorial adopts the 
following Lagrangian (see Sec. A1 for details): 

 𝐿 =
1
2V@ln𝑻E^(𝑡) − ln𝑨 − 𝑡 ln 𝑻o@

J
G

0

+V�𝛾%V�ln𝑻o�
%*

*

�
%

 (25) 

Where 𝛾%  is the Lagrange multiplier to guarantee the row-sum rule of 𝑻E^(𝑡). With the Lagrange 
method of the above Lagrangian, we can derive a straightforward least-square fitting method to fit 𝑨 
and 𝑻o (see Eq. (A6) for details). 

In practice, the LSF fitting is performed on a subset of the input TPMs: �𝑇E^0𝜏7_O:`a1, 𝑇E^0𝜏7_O:`a +
Δ𝑡1, … , 𝑇E^0𝜏7_O:`a + 𝐿1�, where 𝜏7_O:`a is the time of the first frame used in LSF, and 𝐿 is the length of 
input data used in LSF. For each fitting, we can compute the resulting 𝑨 = 𝑨0𝜏7_O:`a, 𝐿1 and 𝑻o =
𝑻o0𝜏7_O:`a, 𝐿1. A single run of LSF fitting may be susceptible to numerical fluctuations of simulation data. 
Therefore, we adopted a systematic search for 𝜏7_O:`a and 𝐿 to obtain the best IGME models that match 
the MD simulation data. To quantify the errors of IGME models in reproducing the simulation data, 
we have followed our previous work to utilize the time-averaged root mean squared error (RMSE)51:  

 RMSE = ¢∑ ∑ �𝜋%𝑻%*E^ − 𝜋%𝑻%*bc8d(𝑡)�
G]

%,*&' 𝑑𝑡e*
(&'

𝑁G𝐿f
 (26) 

Where 𝑻bc8d corresponds to the TPMs predicted by IGME, represented as 𝑻bc8d = 𝑨𝑻o. Additionally, 
𝐿g denotes the maximum lag time of 𝑻bc8d(𝑡f)	used for computing the RMSE (𝑡f = 𝐿fΔ𝑡, where Δ𝑡 
is the saving interval of MD simulations). By substituting 𝑻bc8d with 𝑻$8h8 or 𝑻8h8in Eq. (26) the 
same RMSE metric can be employed to evaluate the accuracy of qMSM or MSM50, respectively. 
Specifically, for qMSMs, 𝐿f = 𝑡f/Δ𝑡, while for MSMs, 𝐿f = 𝑡f/𝜏80i%jk  (where 𝜏80i%jk  represents the 
lag time of an MSM). 

In our implementation of IGME, we perform the systematic search for possible values of two 
hyperparameters, 𝜏7_O:`a  and 𝐿 , 𝜏7_O:`a = Δ𝑡, 2Δ𝑡, … , 𝐿1 , and 𝐿 = Δ𝑡, 2Δ𝑡, … , 𝐿1 − 𝜏7_O:`a (𝐿1  is a pre-
determined scanning range). Finally, the IGME models with the smallest RMSE will be used. 

4. Tutorial examples 

In this section, we will provide a detailed tutorial on how to construct non-Markovian dynamic models 
(i.e., qMSM and IGME) from MD simulation datasets using two examples: the alanine dipeptide and 
villin headpiece. To perform the tasks in this tutorial, we will utilize both MSMBuilder101, 102 and 
PyEMMA103 software. All the relevant Python codes for this tutorial are available on GitHub: 
https://github.com/xuhuihuang/GME_tutorials. This tutorial employs MSMBuilder version 2022 
(https://github.com/msmbuilder/msmbuilder2022) and the PyEMMA version 2.5.12 
(https://github.com/markovmodel/PyEMMA/).  

4.1. Alanine Dipeptide 
The first example is the conformational dynamics of the alanine dipeptide in explicit solvent (Figure 
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2(a)). The MD simulation dataset of alanine dipeptide consists of 100 MD trajectories, and each 
trajectory is performed for 10 ns under the NVT ensemble at 310 K. AMBER99SB force field104 is 
used for alanine dipeptide and the TIP3P model105 for water. The snapshots of these MD trajectories 
are stored every 0.1 ps. 

As shown in Scheme 1, we utilize all 45 pair-wise distances among 10 heavy atoms of the alanine 
dipeptide as the input features in the featurization step. Given the relatively small size of this system, 
there is no need for feature selection. 

Scheme 1 | Featurization of alanine dipeptide 
from msmbuilder.featurizer import AtomPairsFeaturizer 
from msmbuilder.dataset import dataset 
import numpy as np 
xyz = dataset(MDtrajs_dir + "*.xtc",  

          topology = MDtrajs_dir + "ala2.pdb", stride=1) 
atom_pair_list = np.loadtxt(MDtrajs_dir + 'heavy_atom_pairs_list.txt') 
featurizer = AtomPairsFeaturizer(atom_pair_list) 
ftrajs = featurizer.fit_transform(xyz) 

 

 
Figure 2. Featurization and cross-validation of microstate tICA-MSM for the alanine dipeptide. (a) 
Structure of alanine dipeptide. The atom distances between the 10 heavy atoms are selected for features. (b) 
Cross-validation based on GMRQ score to select the optimal hyperparameters, including the lag time of tICA, 
number of tICs and number of microstate clusters for K-Centers clustering. Based on the GMRQ scores, we 
chose a 0.2 ps lag time, 3 tICs, and 800 microstates. 

With the input features, the dimensionality reduction was performed with tICA. Specifically, the 
original 45 distance features are transformed into a reduced set of time-lagged Independent 
Components (tICs). In our tutorial, the tICA model is built with 3 tICs at the tICA lag time 0.2 ps. A 
sample Python code for performing the tICA analysis is shown in Scheme 2. Next, we apply the K-
Centers algorithm to generate a microstate model with 800 states based on the top three tICs (see 
Scheme 3).  

Scheme 2 | Dimensionality Reduction using tICA 
from msmbuilder.decomposition import tICA 
tica = tICA(n_components=3, lag_time=2, kinetic_mapping=True) 
tica_trajs = tica.fit_transform(ftrajs) 
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Scheme 3 | Geometric Clustering 
from msmbuilder.cluster import KCenters 
cluster = KCenters(n_clusters=800) 
clustered_trajs = cluster.fit_transform(tica_trajs) 

In the dimensionality reduction (Figure 1(c)) and geometric clustering step (Figure 1(d)), we have 
applied the cross-validation tool, GMRQ, to select the optimal values for several hyperparameters, 
including the lag time of tICA (𝜏_lmD), the number of tICs (𝑛_lmR), and the number of geometric clusters 
(𝑛9:NOPR_`_nR). In the GMRQ analysis, we perform a 5-fold cross-validation (i.e., 100 MD trajectories 
are randomly divided into 5 folds, and we use 4 folds for training and the remaining one for validation) 
and repeat it 10 times by changing the random number when splitting the dataset (see Scheme 4 for 
the Python code). Based on these runs, we report GMRQ scores as box plots (Figure 2(b)). We then 
determine the optimal values (those with the highest median GMRQ score in the box plots) of the 
following three hyperparameters sequentially: 𝜏_lmD = 0.2	ps, 𝑛_lmR = 3, 𝑛9:NOPR_`_nR = 800. 

Scheme 4 | GMRQ Cross-Validation based on the tICA analysis 
# The function TICA_CV is used for cross-validation. 
# More details can be found on the github. 

 
# Cross-validation for lag time 
lt_list = [1,2,4,8,16] 
Parallel(n_jobs=5)(delayed(TICA_CV)\ 

                   (lt=i, n_tics=3, n_clusters=800, para='lagtime') for i in lt_list) 
 

# Cross-validation for number of tICs 
ntics_list = [2,3,4,5] 
Parallel(n_jobs=4)(delayed(TICA_CV)\ 

                   (lt=2, n_tics=i, n_clusters=800, para='n_tics') for i in ntics_list) 
 

# Cross-validation for number of microstates (clusters) 
nc_list = [400, 600, 800, 1000, 1200] 
Parallel(n_jobs=5)(delayed(TICA_CV)\ 

                   (lt=2, n_tics=3, n_clusters=i, para=' n_clusters') for i in nc_list) 

Next, we construct the microstate MSM and calculated the error bar of both ITS and residence 
probabilities of the most populated 8 microstates following the code in Scheme 5. As shown in Figure 
3(a), the slowest three ITS curves reach plateaus at the lag time of 10 ps, indicating that the microstate 
MSM reaches Markovian at 𝜏8 ≥ 10	ps.  To further validate the microstate MSM, we perform the 
Chapman-Kolmogorov test (according to Eq. (5)), and show that an MSM with a lag time of 10 ps can 
predict dynamics in reasonable agreement with the MD simulations (Figure 3(b)). 

Scheme 5 | Microstate-MSM Validation 
# Construct the microstate MSM 
msm = MarkovStateModel(n_timescales=10, lag_time=100, ergodic_cutoff='off', 
                           reversible_type='transpose', verbose=False) 
msm.fit(clustered_trajs) 
# Generate the microstate TPM 
micro_TPM = msm.transmat_ 
# Find the most populated 8 microstates 
states_idx = np.argsort(msm.populations_)[:-9:-1] 
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# Bootstrapping of clustered trajectories for 50 runs 
# More details of the function bootstrapMSM and CK_test can be found on the github. 
num_runs = 50 
lagtime = np.arange(1, 501) 
bootstrap_ITS = np.zeros((num_runs, len(lagtime), 10)) 
bootstrap_RP = np.zeros((num_runs, len(lagtime), 8)) 
for run in range(num_runs): 
    bootstrap_ITS[run], bootstrap_RP[run] = bootstrapMSM(trajs=clustered_trajs, lagtime=lagtime, 
                                                         n_timescales=10, n_RP=8,  
                                                         RP_idx=states_idx, n_states=800, 
                                                         num_samples_per_run=100) 
# Calculate the error bar of bootstrapped data 
ITS_std = np.std(bootstrap_ITS, axis=0) 
RP_std = np.std(bootstrap_RP, axis=0) 
 
# Generate the MSM-predicted TPMs used for CK-test 
MSM_time, MSM_TPM = CK_test(lag=100, TPM= micro_TPM, delta_t=0.1, length=500) 

 

 

Figure 3. Construction and validation of microstate-MSM of alanine dipeptide. (a) Implied timescales (or 
ITS) for the first ten dynamic modes as a function of lag time. (b)  Chapman-Kolmogorov test for the 8 most 
populated microstates. We choose the lag time to be 10 ps. The error bars in the implied timescale and the 
residence probability plots are calculated by bootstrapping with replacement 100 trajectories for 50 times. 

With a validated microstate-MSM, we next apply PCCA+ to lump 800 microstates into 4 metastable 
states (see Figure 1(e) and the sample code in Scheme 6). The number of macrostates is an input 
parameter for PCCA+, and we determine its values as 4 because there exists a persistent and major 
gap between the third and fourth eigenmodes in the ITS plots, as shown in Figure 3(a). The four 
macrostates can be visualized by the projections of their MD snapshots onto two backbone torsion 
angles of the alanine dipeptide (see Figure 4(a)). 

Scheme 6 | Kinetic Lumping 
import numpy as np 
from msmbuilder.lumping import PCCAPlus 
from msmbuilder.msm import MarkovStateModel 
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msm = MarkovStateModel(n_timescales=10, lag_time=5, reversible_type='transpose', 
                       verbose=False, ergodic_cutoff='off') 
msm.fit(clustered_trajs) 
pcca = PCCAPlus.from_msm(msm, n_macrostates=4) 
lumped_trajs = pcca.fit_transform(clustered_trajs) 

 
# Use transpose method to get the symmetrized TPM 
lagtime = np.arange(1, 501) 
TPM = np.zeros((len(lagtime), 4, 4)) 
for i in range(len(lagtime)): 

msm_macro = MarkovStateModel(n_timescales=3, lag_time=lagtime[i],  
                            ergodic_cutoff='off', 
                            reversible_type='transpose', 
                            verbose=False) 
msm_macro.fit(lumped_trajs) 
TPM[i] = msm_macro.transmat_ 

Based on these four macrostates, we next compute the memory kernels (𝑲(𝑡)) and built a qMSM, as 
illustrated in Figure 1(f) and the accompanying sample code in Scheme 7. In Figure 4(c), various 
elements of 𝑲(𝑡) exhibit noticeable fluctuations. To determine the memory kernel relaxation time (𝜏7) 
for propagating GME (Eq. (9) and Eq.(22)) we apply the mean integral of memory kernel elements (or 
MIK, see Eq (24), following our previous work50. The MIK plot, as shown in Figure 4(b), reaches a 
plateau at ~1.5	ps, leading us to select 	𝜏7 = 1.5	ps for building the qMSM. The RMSE (Eq. (26)) 
between our qMSM and the original MD dataset is very small (only 1.5 × 10.o, see Figure 5(a)), and 
the qMSM model has also successfully passed the Chapman-Kolmogorov test (see blue curves in 
Figure 5(b)). It's worth noting that for any choice of 𝜏 greater than 	𝜏7 = 1.5	ps, the memory kernel 
theoretically has fully decayed, and the propagation of dynamics using the GME (Eq. (9)) should yield 
the same accuracy. However, due to numerical fluctuations, qMSMs constructed at different lag times 
when 𝜏  exceeds 1.5	ps  still exhibit varying errors. We will further discuss this issue in the next 
subsection when constructing IGME models. Finally, using GME in our qMSM, we could obtain TPMs 
at any lag times. When the lag time is sufficiently long so that the model reaches Markovian, the GME 
will be reduced to an MSM. Indeed, when 𝜏 = 10	ps, the TPM from our qMSM yields the same 
slowest ITS of 1.14 ns as an MSM for the alanine dipeptide. 

Scheme 7 | Constructing qMSMs for alanine dipeptide 
import sys 
sys.path.insert(0, './scripts') 
from qmsm import QuasiMSM 
delta_t =0.1 # the unit: ps 

 
# Calculate MIK 
qmsm = QuasiMSM() 
qmsm.fit(TPM, tau_k=55, delta_t=delta_t, rmse=False) 
qmsm_mik = qmsm.mik # MIK list with tau_k from 1 to 55 
 
# Build qMSM 
qmsm = QuasiMSM() 
qmsm.fit(TPM, tau_k=15, delta_t=delta_t) 
qmsm_time, qmsm_tpm = qmsm.predict(TPM) # Use qMSM for prediction 
qmsm_rmse = qmsm.rmse # RMSE list of the qMSM models with tau_k from 1 to 15 
qmsm_its = qmsm.timescales(TPM, ITS_t=100) # ITS predicted by qMSM 
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Figure 4. The calculation of memory kernels, 𝑲(𝑡). (a) The projections of MD snapshots onto two backbone 
dihedral angles (𝜓,𝜙) of the alanine dipeptide. The four macrostates (1 to 4) are color-coded as orange, cyan, 
blue, and red, respectively. (b) The mean integral kernel (or MIK) calculated from qMSM (blue) and IGME 
(red) with 𝜏7 = 1.5	ps and 𝐿 = 0.1	ps. (c) The full (4×4) memory kernel matrix (𝑲(𝑡)) shown as a function 
of lag time. 
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Scheme 8 | Constructing IGME models for alanine dipeptide 
import sys 
sys.path.insert(0, './scripts') 
from igme import IGMENS, IGME 
delta_t =0.1 # the unit: ps 

 
# Scan tau_k and L 
igme = IGME() 
scan_output = igme.scan(input_data=TPM, begin=1, end=16) 
 
# Build top IGME 
igme_top = igme.top_model(scan_output, 1) # Select the top IGME model 
igme_tpm = np.array(igme_top.predict(1,len(TPM))) # Use IGME for prediction 
igme_top_rmse = igme_top.rmse # RMSE of the top IGME model 
igme_mik = igme_top.mik / delta_t 
igme_its = igme_top.timescales * delta_t # ITS predicted by top IGME 

 

 

Figure 5. Building qMSM and IGME models for the alanine dipeptide. (a) The RMSE map of the IGME, 
qMSM and MSM. We applied Eq. (26) to compute RMSE and chose 𝐿! = 500 for IGME and qMSM, while 
𝐿! = 50ns/𝜏	for MSM with a lag time of 𝜏 . The saving internal of MD simulations is Δ𝑡 = 0.1𝑝𝑠 . (b) 
Chapman-Kolmogorov test on the 4 macrostates for the selected models. MSM has been tested when lag time 
𝜏 = 1.5	ps and 𝜏 = 10	ps. qMSM has been tested with 𝜏" = 1.5	ps. IGME has been tested when 𝜏" = 1.5	ps 
and 𝐿 = 0.1	ps. The error bars in the residence probability plots of MD data are calculated by bootstrapping 
100 lumped trajectories 50 times, with repeated trajectories allowed.  

In this section, we illustrate the process of constructing IGME models (see Figure 1(f) and Scheme 
8). As discussed in Sec 3.6, we need to determine two hyperparameters, 𝜏7 and 𝐿, when constructing 
IGME models. In this system, we conducted a systematic scan to identify their optimal values, 
resulting in IGME models with the minimized RMSE error (Eq. (26)). Figure 5(a) illustrates that the 
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RMSE of the optimal IGME reaches 1.4 × 10.o  at 𝜏7 = 1.5	ps  and 𝐿 = 0.1	ps . The Chapman-
Kolmogorov test for this IGME model also demonstrates strong consistency between IGME 
predictions and MD simulations (Figure 5(b)). In addition, the slowest dynamics can be directly 
derived from the 𝑇ª  matrix (Eq. (11)). Based on 𝑇ª, we identify that the slowest ITS for the alanine 
dipeptide is ~1.15 ns, consistent with predictions from qMSM and MSM. Moreover, the MIK 
computed from the optimal IGME model (see Eq. (12)) aligns well with that obtained from qMSM 
(Figure 4(b)). 

For the relatively simple alanine dipeptide system with sufficient sampling, all three methods, MSM, 
qMSM, and IGME, yield consistent results. However, MSM requires a significantly longer lag time 
(𝜏8 = 10	ps) to achieve a similar RMSE compared to qMSM (𝜏7 = 1.5	ps) and IGME (𝜏7 = 1.5	ps 
and 𝐿 = 0.1	ps). Consequently, qMSM and IGME can be constructed with shorter MD trajectories 
than MSM. Both qMSM and IGME consistently perform well for the alanine dipeptide. In the 
subsequent example of villin headpiece, we demonstrate that IGME outperforms qMSM by 
substantially reducing numerical instability, providing a more robust approach to constructing non-
Markovian dynamic models for studying protein dynamics. 

B. Villin Headpiece (HP35) 

HP35 is a 35-residue peptide that exhibits ultrafast folding106, 107, making it a suitable benchmark 
system for MD simulations of protein folding.92, 108-110 The HP35 simulation dataset provided by the 
D. E. Shaw Research111 consists of a single ∼ 300µs all-atom MD trajectory of Nle/Nle mutant of 
HP35 (PDB ID: 2f4k) saved at 0.2 ns interval.  

 

Figure 6. Feature selection of Villin headpiece. (a) Structure of villin headpiece. There are 35 residues and 
528 residue-residue distances based on the distances between their alpha carbon atoms with a minimum 
separation of 3 residues. We use all these 528 pairwise distances as raw input features. (b) Feature selection 
using Spectral oASIS. 400 out of 528 features are selected. 

Scheme 9 | Featurization of villin headpiece 
from msmbuilder.featurizer import ContactFeaturizer 
Cfeaturizer = ContactFeaturizer(scheme='ca') 
ftrajs = Cfeaturizer.fit_transform(xyz) 

 

Scheme 10 | Feature Selection using Spectral oASIS 
(a) sys.path.insert(0, './scripts') 
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import FeatureSelection 
 

# Use self-covariance matrix for feature selection 
featureselect =\ 

FeatureSelection.spectral_oasis(num_select=400, num_every_iter=2,  
                                method='spectral-oasis', covariance=True) 

select_columns = featureselect.select_columns 

(b) # Use time-lagged-autocorrelation matrix for feature selection 
featureselect =\ 

FeatureSelection.spectral_oasis(num_select=400, num_every_iter=2,  
                                method='spectral-oasis', covariance=False) 

featureselect.select(ftrajs, lagtime=100) 
select_columns = featureselect.select_columns 
for key in range(len(ftrajs)): 

oasis_trajs.append(ftrajs[key][:, select_columns) 

 

In the featurization step (Figure 1(b)), we first employ all 528 pairwise distances between C-alpha 
atoms with a minimum separation of 3 residues as raw input features (Figure 6(a)). This step is 
conducted using the “ContactFeaturizer” function in MSMBuilder101 (see the sample code in Scheme 
9). Next, we select 400 features from these 528 pairwise distances that can best describe the slowest 
dynamics of protein folding using Spectral oASIS63 in the PyEMMA package103 (see the sample code 
in Scheme 10). In the feature selection step, we employ the time-lagged autocorrelation matrix63 with 
a lag time of 20 ns rather than the self-covariance matrix to achieve better performance. As shown in 
Figure 6(b), the ITS plot demonstrates that the 400 selected features are sufficient to capture the 
slowest dynamics of HP35. 

Following the feature selection, we proceed with the dimensionality reduction and geometric clustering 
(Figure 1(c, d)). We use two different approaches for the dimensionality reduction: tICA and SRVs. 
Following the sample code in Scheme 2 and Scheme 11, we performed tICA and SRVs analysis to 
transform the 400 features into a specific number of CVs (or tICs for TICA) with a designated lag time, 
respectively. Utilizing the obtained CVs, we apply the K-Centers algorithm (Scheme 3) to partition 
the MD dataset into a given number of microstates. Several hyperparameters associated with this step, 
including the lag time, number of CVs (or tICs), and number of microstates, need to be determined. 
We employed the GMRQ cross-validation tool for both tICA (Scheme 4) and SRVs (Scheme 12) to 
sequentially choose their optimal values, starting with the lag time of 40 ns (left panels in Figure 7), 
followed by the selection of 4 tICs for tICA as well as 3 CVs for SRVs(middle panels in Figure 7), 
and concluding with 200 microstates (right panels in Figure 7). 

Scheme 11 | SRVs for dimensionality reduction 
import torch 
import torch.nn as nn 
import sys 
sys.path.insert(0, './scripts') 
from VAMPNet_SRVNet import * 
 
if torch.cuda.is_available(): 
    device = torch.device("cuda") 
    torch.backends.cudnn.benchmark = True 
else: 
    device = torch.device("cpu") 
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network_lobe = nn.Sequential( 
    nn.BatchNorm1d(400),  
    nn.Linear(400, 200), nn.ELU(),  
    nn.Linear(200, 100), nn.ELU(),  
    nn.Linear(100, 50), nn.ELU(),  
    nn.Linear(50, 20), nn.ELU(),  
    nn.Linear(20, 10), nn.ELU(),  
    nn.Linear(10, 5), nn.ELU(),  
    nn.Linear(5, 3)) 
 
network_lobe = network_lobe.to(device=device) 
         
projector = deep_projector(network_type='SRVNet', lobe=network_lobe,  
                           epsilon=1e-6, learning_rate=1e-4, device=device) 
 
past, future = TimeLaggedDataset(trajs=oasis_trajs, lagtime=200, normalize=False) 
# oasis_trajs: generated from Spectral oASIS  
 
train_loader, validation_loader \ 
    =  split_train_validate_data(pastdata=past, futuredata=future,  
                                  validation_ratio=0.2, train_batchsize=50000) 
projector.fit(train_loader=train_loader, num_epochs=15, 
               validation_loader=validation_loader) 

 

Scheme 12 | GMRQ Cross-Validation based on the SRVs analysis 
# The function TICA_CV is used for cross-validation. 
# More details can be found on the github. 

 
# Cross-validation for lag time 
lt_list = [50, 100, 200, 300, 400, 500] 
Parallel(n_jobs=3)(delayed(SRV_CV)(trajs=oasis_trajs,  
                                   lt=i, n_cvs=3, n_clusters=200,  

                                para='lagtime') for i in lt_list) 
 

# Cross-validation for number of CVs 
ncvs_list = [2, 3, 4, 5] 
Parallel(n_jobs=4)(delayed(SRV_CV)(trajs=oasis_trajs,  
                                   lt=200, n_cvs=i, n_clusters=200,  

                               para='n_cvs') for i in ncvs_list) 
 

# Cross-validation for number of microstates (clusters) 
nc_list = [50, 100, 200, 300, 400, 500] 
Parallel(n_jobs=3)(delayed(SRV_CV)(trajs=oasis_trajs,  
                                   lt=200, n_cvs=3, n_clusters=i,  

                               para='n_clusters') for i in nc_list) 
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Figure 7. Cross-Validation of villin headpiece with different methods for dimensionality reduction. (a) 
Cross-validation has been conducted based on GMRQ scores to select the optimal parameters for lag time in 
tICA, the number of tICs, and the number of microstates (or clusters) for K-Centers clustering. The optimal 
parameters chosen are a 40 ns tICA lag time, 4 tICs, and 200 microstates. (b) Cross-validation has been 
performed based on GMRQ scores to select the optimal parameters for the lag time in SRVs, the number of CVs 
and the number of microstates (or clusters) for K-Centers clustering. The optimal parameters chosen are a 40 ns 
SRV lag time, 3 CVs, and 200 microstates. 

 

Figure 8. Construction and validation of microstate-MSMs for villin headpiece. (a, b) Implied timescales 
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(or ITS) for the ten slowest dynamic modes as a function of lag time. (c, d) Chapman-Kolmogorov test for 
the 8 most populated microstates. We choose the lag time to be 100 ns. The error bars in the implied timescale 
and the residence probability plots are calculated by bootstrapping with replacement 150 trajectories for 50 
times. The results from tICA-MSM and SRV-MSM are displayed in the left and right panels, respectively. 

We next validate the microstate MSMs constructed based on both tICA (denoted as tICA-MSM) and 
SRVs approaches (denoted as SRVs-MSM). Specifically, we followed Scheme 5 to perform the ITS 
and Chapman-Kolmogorov test. For both tICA-MSM and SRVs-MSM, the ITS plots reach a plateau 
at ~100 ns (Figure 8(a, b)). Furthermore, both tICA-MSM and SRVs-MSM constructed at this lag 
time successfully pass Chapman-Kolmogorov test (Figure 8(c, d)).  

With validated microstate-MSMs, we next perform kinetic lumping (Figure 1(e)) to group 200 
microstates into 4 metastable macrostates states using PCCA+ (Scheme 6). We chose 4 macrostates as 
there exists a clear separation between the third and fourth eigenmodes based on the ITS plots, 
indicating there are four dominant metastable dynamic processes (see Figure 8(a, b)). As shown in 
Figure 9, State 1 and State 3 are partially folded states. State 2 corresponds to the unfolded state, while 
the most populated State 4 is the folded state. These representative conformations in  Figure 9 are 
chosen from the kinetic lumping results based on the microstate tICA-MSM, and similar state 
decomposition can be obtained using the microstate SRVs-MSM.  

 

Figure 9. Representative conformations from the 4 macrostates. These conformations were chosen from the 
kinetic lumped model from the microstate tICA-MSM. 

We proceed by computing memory kernels and compare the qMSMs constructed using the 4 
macrostates based on tICA (referred to as tICA-qMSM) and  SRV (referred to SRVs-qMSM) 
approaches (see Figure 1(f) and the sample code in Scheme 13). For tICA-qMSM, we examine the 
MIK plots (computed according to Eq (24)) to determine the value of 𝜏7 = 30	ns, where the integral 
of memory kernels has already reached a plateau (Figure 10(a)). The resulting tICA-qMSM exhibits 
a small deviation in reproducing the original MD simulation dataset (with the RMSE as low as 
6 × 10.p, see Figure 10(c)). Utilizing this 4-state tICA-qMSM, we also predicte the slowest ITS to 
be at ~1.87	µs, consistent with the value obtained from the validated 200-microstate MSMs (Figure 
8(a)). To achieve this, we use our tICA-qMSM to obtain the TPM (𝑻(𝑛Δ𝑡)) at 𝑛Δ𝑡 = 500	ns	(Eq (22)) 
to compute the slowest ITS. For the SRVs-qMSM, it takes a slightly shorter lag time (𝜏7 = 25	ns) for 
the MIK plot to reach a plateau (Figure 10(b)). The RMSE of this model is 1.0 × 10.o, and the 
predicted slowest ITS, as computed from	𝑻(𝑛Δ𝑡) at 𝑛Δ𝑡 = 500	ns, is ~1.64	µs. 
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Scheme 13 | Constructing qMSMs for villin headpiece  
import sys 
sys.path.insert(0, './scripts') 
from qmsm import QuasiMSM 
delta_t = 1 # the unit: ns 

 
# Calculate MIK 
qmsm = QuasiMSM() 
qmsm.fit(TPM, tau_k=100, delta_t=delta_t, rmse=False) 
qmsm_mik = qmsm.mik 
 
# Build qMSM 
qmsm = QuasiMSM() 
qmsm.fit(TPM, tau_k=30, delta_t=delta_t) # tau_k = 25 if SRVs-based 
qmsm_time, qmsm_tpm = qmsm.predict(TPM) # Use qMSM for prediction 
qmsm_its = qmsm.timescales(TPM, ITS_t=500) # ITS predicted by qMSM 

In the final step of this tutorial, we constructed tICA-IGME and SRVs-IGME models for HP35 (see 
Figure 1(f) and the sample code in Scheme 14). To determine the values of the two hyperparameters 
(𝜏7 and 𝐿), we conduct a systematical scan within the range of 1 ns to 50 ns (Figure 10(c, d)). For 
tICA-IGME and SRVs-IGME, we identify the best models with the smallest RMSE error at 
{𝜏7 = 31	ns, 𝐿 = 1	ns} and  {𝜏7 = 22	ns, 𝐿 = 1	ns}, respectively. In the Chapman-Kolmogorov test, 
both models accurately predict the time evolutions of state residence probabilities, aligning well with 
the original MD simulations (Figure 10(e-f)). Furthermore, we notice that all top 5% of the IGME 
models exhibited RMSE errors below 1.0 × 10.o, indicating high accuracy. Based on these models, 
we calculate the average value and standard deviations of the slowest ITS (based on 𝑇ª , see Eq. (11)) 
to be 1.95 ± 0.30	µs and 1.87 ± 0.41	µs for tICA-IGME and SRVs-IGME, respectively. As expected, 
the MIK obtained from IGME (Eq. (12)) is consistent with that from qMSM (Figure 10(a, b)). For 
comparisons, we also constructed macrostate MSMs for HP35. For both macrostate tICA-MSM and 
SRVs-MSM, the lag time needs to be as long as 𝜏 = 150	ns for the models to achieve Markovian 
behavior and pass the Chapman-Kolmogorov test (Figure 10(e-f)). This Markovian lag time (𝜏8 =
150	ns ) is several times longer than 𝜏7  for qMSM and IGME models. Furthermore, MSMs 
consistently exhibit larger RMSE errors compared to qMSM and IGME models (Figure 10(c-d)).   

Scheme 14 | Constructing IGME models for villin headpiece 
import sys 
sys.path.insert(0, './scripts') 
from igme import IGMENS, IGME 
delta_t = 1 # the unit: ns 

 
# Scan tau_k and L 
igme = IGME() 
scan_output = igme.scan(input_data=TPM, begin=1, end=50) 
 
# Build top IGME for CK-test 
igme_top = igme.top_model(scan_output, 1) # Select the top IGME model 
igme_tpm = np.array(igme_top.predict(1,len(TPM))) # Use IGME for prediction 
 
# Compute MIK and ITS based on top 5% IGME models 
top_outputs = igme.top_outputs(scan_output, n=0.05, max_its=1e5) 
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igme_mik = np.array(top_outputs['mik'])[:,1] / delta_t 
igme_its = np.array(top_outputs['timescales']) * delta_t 

 

 
Figure 10. Building qMSM and IGME models for the villin headpiece. (a). The mean integral kernel (MIK) 
calculated from qMSM (blue) and IGME (red) for the tICA-qMSM and tICA-IGME models. The red dash line 
is the mean MIK of the top 5% IGME models and the shade area indicates their standard deviations. (b). The 
same as (a) except that the results from SRVs-qMSM and SRVs-IGME models are shown. (c) The RMSE map 
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of the tICA-IGME, tICA-qMSM and macrostate tICA-MSM. We applied Eq. (26) to compute RMSE and chose 
𝐿! = 300 for IGME and qMSM, while 𝐿! = 300ns/𝜏	for MSM with a lag time of 𝜏. The saving internal of 
MD simulations is Δ𝑡 = 1𝑛𝑠. (d). The same as (c) except that the results from SRVs-IGME, SRVss-qMSM and 
macrostate SRV-MSM are shown. (e) Chapman-Kolmogorov test on the tICA-based macrostates models. 
Specifically, the lag time of 𝜏# = 150	ns , 𝜏" = 30	ns , and 𝜏" = 31	ns, 𝐿 = 1	ns  are used for the MSM, 
qMSM and IGME models, respectively. (f) Chapman-Kolmogorov test on the SRVs-based macrostates models. 
Specifically, the lag time of 𝜏# = 150	ns , 𝜏" = 25	ns , and 𝜏" = 22	ns, 𝐿 = 1	ns  are used for the MSM, 
qMSM and IGME models, respectively. In (e, f), the error bars are calculated by bootstrapping 150 MD 
trajectories 50 times with replacement. 

5. Conclusions 

In this tutorial, we offer a comprehensive, step-by-step guide on constructing non-Markovian 
dynamics models, specifically qMSM and IGME, for investigating protein dynamics. Using two MD 
simulation datasets—alanine dipeptide and villin headpiece—we provide detailed instructions along 
with associated sample codes covering the entire model construction protocol (see Figure 1). This 
protocol includes feature selection, dimensionality reduction, geometric clustering, kinetic lumping, 
and the creation of qMSM and IGME models. All the steps and Python codes can be accessed on our 
GitHub repository (https://github.com/xuhuihuang/GME_tutorials). We believe that this tutorial will 
prove valuable to a broad audience in computational biophysics who are interested in exploring the 
dynamics of proteins and other biological macromolecules. 
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7. Appendix 

A1. The least-square fitting method to fit hyperparameters in IGME 
In our implementation, we utilized the following form of Eq (11): 

 ln 𝑻(𝑡) ≈ ln𝑨 + 𝑡 ln 𝑻o (A1) 

A simple Lagrangian to minimize the error of the above equation can be defined as: 

 𝐿q =
1
2V@ln𝑻(𝑡) − ln𝑨 − 𝑡 ln 𝑻o@

J
G

0

 (A2) 

Where the subscribe “𝐹” represents the Frobenius norm. We next introduced an additional constrain 
to the above Lagrangian. As the TPM, 𝑇(𝑡), shall satisfy the row-sum rule, i.e., ∑ 𝑇%*(𝑡)* = 1. To 
consider this constrain, we utilized the logarithm form of the row-sum rule as derived below: 
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V𝑇%*(𝑡)
*

= 1 ⇒ 𝑇(𝑡) ²
1
1…
1
³ = ²

1
1…
1
³ 

⇒ 𝜆'0𝑇(𝑡)1 = 1, 𝑣'0𝑇(𝑡)1 = [1,1, … ,1]T 

⇒ 𝜆'(ln 𝑇(𝑡)) = 0, 𝑣'(ln 𝑇(𝑡)) = [1,1, … ,1]T 

⇒ [ln 𝑇(𝑡)] ²
1
1…
1
³ = 0 ⇒V[ln𝑇(𝑡)]%*

*

= 0 

(A3) 

Where 𝜆' and 𝑣' refer to the first eigenvalue and eigenvector, respectively. In IGME, the input 𝑇(𝑡) 
(i.e., 𝑇(𝜏7), 𝑇(𝜏7 + Δ𝑡), … , 𝑇(𝜏7 + 𝐿)) generated by MSMBuilder already satisfy the row-sum rule. 
However, predicted TPMs, 𝑇(𝑡 > 𝜏7 + 𝐿), may not satisfy the row-sum rule if this constraint is not 
explicitly included in the least-square fitting. In order to guaranteed that all predicted TPMs satisfy the 
row-sum rule, we need to ensure both 𝐴 and 𝑇ª  satisfy the row-sum rule. However, the row-sum rule 

of 𝐴 is automatically satisfied when the input 𝑇(𝑡) and 𝑇ª satisfy the row-sum rule (since ∑ [ln𝐴]%** =

∑ ·ln 𝑇(𝑡) − 𝑡 ln 𝑇ª¸
%*

* , see Eq. (A5)), thus in the least-square fitting we only need to ensure 𝑇ª follows 

the row-sum rule: ∑ 𝑇ª%** = 1 or ∑ �ln 𝑇ª�
%** = 0. Therefore, the complete Lagrangian with the row-sum 

constraint of 𝑇(𝑡) can be written as follows: 

 𝐿 =
1
2V@ln𝑻(𝑡) − ln𝑨 − 𝑡 ln 𝑻o@

J
G

0

+V�𝛾%V�ln𝑻o�
%*

*

�
%

 (A4) 

Here 𝛾%  are Lagrange multipliers for each row of ln 𝑻o. Taking 𝜕/𝜕Tr!# , 𝜕/𝜕s!# 	and 𝜕/𝜕t!  to 𝐿 of Eq. 

(A4), the solution of these Lagrange equations are: 

 

¹𝑡[ln 𝐴]%* + 𝑡G�ln 𝑇ª�%* + 𝛾% − 𝑡[ln 𝑇(𝑡)]%*º �ln 𝑇ª�%* = 0 

¹[ln 𝐴]%* + 𝑡�ln 𝑇ª�%* − [ln 𝑇(𝑡)]%*º [ln 𝐴]%* = 0 

V�ln𝑇ª�
%*

*

= 0 

(A5) 

The above solution can be rewritten into a matrix form for the least-square fitting. For each row 𝑖, the 
least-square fitting is done by solving the following matrix equation to get ln 𝐴, ln 𝑇ª  and 𝛾: 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 𝑡̅ 𝑡̅

…

𝑡G¿
𝑡G¿

…

1
1
…

1
1

…

𝑡̅
𝑡̅

…

0
0
…

0 0 …	 1 1 … 0⎦
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡
[ln 𝐴]%'
[ln 𝐴]%G
…

�ln 𝑇ª�
%'

�ln 𝑇ª�
%G

…
𝛾% ⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑡[ln 𝑇(𝑡)]%'
𝑡[ln 𝑇(𝑡)]%G

…
[ln 𝑇(𝑡)]%'
[ln 𝑇(𝑡)]%G

…
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (A6) 

https://doi.org/10.26434/chemrxiv-2023-kvsvl ORCID: https://orcid.org/0000-0002-7119-9358 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-kvsvl
https://orcid.org/0000-0002-7119-9358
https://creativecommons.org/licenses/by-nc/4.0/


 28 

 

  

https://doi.org/10.26434/chemrxiv-2023-kvsvl ORCID: https://orcid.org/0000-0002-7119-9358 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-kvsvl
https://orcid.org/0000-0002-7119-9358
https://creativecommons.org/licenses/by-nc/4.0/


 29 

8. References 
1. K. Henzler-Wildman and D. Kern, Nature 450 (7172), 964-972 (2007). 
2. I. Bahar, T. R. Lezon, L. W. Yang and E. Eyal, Annu Rev Biophys 39, 23-42 (2010). 
3. F. Brueckner, J. Ortiz and P. Cramer, Current opinion in structural biology 19 (3), 294-299 (2009). 
4. L. Zhang, F. Pardo-Avila, I. C. Unarta, P. P. Cheung, G. Wang, D. Wang and X. Huang, Acc Chem Res 49 (4), 687-
694 (2016). 
5. G. R. Bowman, E. R. Bolin, K. M. Hart, B. C. Maguire and S. Marqusee, Proc Natl Acad Sci USA 112 (9), 2734-
2739 (2015). 
6. J. R. Wagner, C. T. Lee, J. D. Durrant, R. D. Malmstrom, V. A. Feher and R. E. Amaro, Chem Rev 116 (11), 6370-
6390 (2016). 
7. I. C. Unarta, S. Cao, S. Kubo, W. Wang, P. P. Cheung, X. Gao, S. Takada and X. Huang, Proc Natl Acad Sci USA 118 
(17), e2024324118 (2021). 
8. J. D. Chodera, N. Singhal, V. S. Pande, K. A. Dill and W. C. Swope, J Chem Phys 126 (15), 155101 (2007). 
9. J. H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J. D. Chodera, C. Schutte and F. Noe, J Chem Phys 134 
(17), 174105 (2011). 
10. K. A. Konovalov, I. C. Unarta, S. Cao, E. C. Goonetilleke and X. Huang, JACS Au 1 (9), 1330-1341 (2021). 
11. L. Zhang, H. Jiang, F. K. Sheong, F. Pardo-Avila, P. P.-H. Cheung and X. Huang, Methods in Enzymology 578, 343–
371 (2016). 
12. W. Wang, S. Cao, L. Zhu and X. Huang, Wires Comput Mol Sci 8, e1343 (2018). 
13. A. C. Pan and B. Roux, J Chem Phys 129 (6), 064107 (2008). 
14. B. W. Zhang, W. Dai, E. Gallicchio, P. He, J. C. Xia, Z. Q. Tan and R. M. Levy, J Phys Chem B 120 (33), 8289-8301 
(2016). 
15. F. Morcos, S. Chatterjee, C. L. McClendon, P. R. Brenner, R. López-Rendón, J. Zintsmaster, M. Ercsey-Ravasz, C. R. 
Sweet, M. P. Jacobson, J. W. Peng and J. A. Izaguirre, Plos Comput Biol 6 (12), e1001015 (2010). 
16. X. H. Huang, G. R. Bowman, S. Bacallado and V. S. Pande, P Natl Acad Sci USA 106 (47), 19765-19769 (2009). 
17. R. D. Malmstrom, C. T. Lee, A. T. Van Wart and R. E. Amaro, J Chem Theory Comput 10 (7), 2648-2657 (2014). 
18. N. V. Buchete and G. Hummer, J Phys Chem B 112 (19), 6057-6069 (2008). 
19. C. Lorpaiboon, E. H. Thiede, R. J. Webber, J. Weare and A. R. Dinner, J Phys Chem B 124 (42), 9354-9364 (2020). 
20. Q. Qiao, G. R. Bowman and X. H. Huang, J Am Chem Soc 135 (43), 16092-16101 (2013). 
21. F. Noé, C. Schütte, E. Vanden-Eijnden, L. Reich and T. R. Weikl, P Natl Acad Sci USA 106 (45), 19011-19016 (2009). 
22. G. R. Bowman, V. A. Voelz and V. S. Pande, Current opinion in structural biology 21 (1), 4-11 (2011). 
23. N. J. Deng, W. Dai and R. M. Levy, J Phys Chem B 117 (42), 12787-12799 (2013). 
24. H. B. Wan, Y. H. Ge, A. Razavi and V. A. Voelz, J Chem Theory Comput 16 (2), 1333-1348 (2020). 
25. Y. Qiu, M. S. O'Connor, M. Xue, B. Liu and X. Huang, J Chem Theory Comput 19 (14), 4728-4742 (2023). 
26. I. Buch, T. Giorgino and G. De Fabritiis, P Natl Acad Sci USA 108 (25), 10184-10189 (2011). 
27. M. Lawrenz, D. Shukla and V. S. Pande, Sci Rep 5, 7918 (2015). 
28. D. A. Silva, G. R. Bowman, A. Sosa-Peinado and X. H. Huang, Plos Comput Biol 7 (5), e1002054 (2011). 
29. N. Plattner and F. Noé, Nat Commun 6, 7653 (2015). 
30. H. Jiang, F. K. Sheong, L. Zhu, X. Gao, J. Bernauer and X. Huang, Plos Comput Biol 11 (7), e1004404 (2015). 
31. D. A. Silva, D. R. Weiss, F. Pardo Avila, L. T. Da, M. Levitt, D. Wang and X. Huang, Proc Natl Acad Sci USA 111 
(21), 7665-7670 (2014). 
32. K. J. Kohlhoff, D. Shukla, M. Lawrenz, G. R. Bowman, D. E. Konerding, D. Belov, R. B. Altman and V. S. Pande, 
Nat Chem 6 (1), 15-21 (2014). 

https://doi.org/10.26434/chemrxiv-2023-kvsvl ORCID: https://orcid.org/0000-0002-7119-9358 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-kvsvl
https://orcid.org/0000-0002-7119-9358
https://creativecommons.org/licenses/by-nc/4.0/


 30 

33. L. T. Da, F. Pardo-Avila, L. Xu, D. A. Silva, L. Zhang, X. Gao, D. Wang and X. Huang, Nat Commun 7, 11244 (2016). 
34. L. T. Da, E. Chao, B. G. Duan, C. B. Zhang, X. Zhou and J. Yu, Plos Comput Biol 11 (11), e1004624 (2015). 
35. L. T. Da, D. Wang and X. H. Huang, J Am Chem Soc 134 (4), 2399-2406 (2012). 
36. R. D. Malmstrom, A. P. Kornev, S. S. Taylor and R. E. Amaro, Nat Commun 6, 7588 (2015). 
37. B. B. Wang, R. E. Sexton and M. Feig, Bba-Gene Regul Mech 1860 (4), 482-490 (2017). 
38. M. Khaled, A. Gorfe and A. Sayyed-Ahmad, J Phys Chem B 123 (36), 7667-7675 (2019). 
39. E. P. Barros, Ö. Demir, J. Soto, M. J. Cocco and R. E. Amaro, Chem Sci 12 (5), 1891-1900 (2021). 
40. J. Y. Feng, B. Selvam and D. Shukla, Structure 29 (8), 922-933 (2021). 
41. C. Y. Son, A. Yethiraj and Q. Cui, P Natl Acad Sci USA 114 (42), E8830-E8836 (2017). 
42. L. T. Da, F. Pardo Avila, D. Wang and X. Huang, Plos Comput Biol 9 (4), e1003020 (2013). 
43. Y. R. Qiu, M. S. O'Connor, M. Y. Xue, B. J. Liu and X. H. Huang, J Chem Theory Comput 19 (14), 4728-4742 (2023). 
44. B. J. Liu, M. Y. Xue, Y. R. Qiu, K. A. Konovalov, M. S. O'Connor and X. H. Huang, J Chem Phys 159 (9), 094901 
(2023). 
45. A. K.-H. Yik, Y. Qiu, I. C. Unarta, S. Cao and X. Huang, in A Practical Guide to Recent Advances in Multiscale 
Modeling and Simulation of Biomolecules, edited by Y. Wang and R. Zhou (AIP Publishing LLC). 
46. B. Liu, Y. Qiu, E. C. Goonetilleke and X. Huang, MRS Bulletin 47 (9), 958-966 (2022). 
47. M. I. Zimmerman, J. R. Porter, M. D. Ward, S. Singh, N. Vithani, A. Meller, U. L. Mallimadugula, C. E. Kuhn, J. H. 
Borowsky, R. P. Wiewiora, M. F. D. Hurley, A. M. Harbison, C. A. Fogarty, J. E. Coffland, E. Fadda, V. A. Voelz, J. D. 
Chodera and G. R. Bowman, Nat Chem 13 (7), 651-659 (2021). 
48. V. A. Voelz, G. R. Bowman, K. Beauchamp and V. S. Pande, J Am Chem Soc 132 (5), 1526-1528 (2010). 
49. A. J. Dominic, 3rd, S. Cao, A. Montoya-Castillo and X. Huang, J Am Chem Soc 145 (18), 9916-9927 (2023). 
50. S. Cao, A. Montoya-Castillo, W. Wang, T. E. Markland and X. Huang, J Chem Phys 153 (1), 014105 (2020). 
51. S. Cao, Y. Qiu, M. L. Kalin and X. Huang, J Chem Phys 159 (13), 134106 (2023). 
52. A. J. Dominic, 3rd, T. Sayer, S. Cao, T. E. Markland, X. Huang and A. Montoya-Castillo, Proc Natl Acad Sci USA 
120 (12), e2221048120 (2023). 
53. R. Hegger and G. Stock, J Chem Phys 130 (3), 034106 (2009). 
54. C. Ayaz, L. Tepper, F. N. Brunig, J. Kappler, J. O. Daldrop and R. R. Netz, Proc Natl Acad Sci USA 118 (31), 
e2023856118 (2021). 
55. C. Ayaz, L. Scalfi, B. A. Dalton and R. R. Netz, Phys Rev E 105 (5), 054138 (2022). 
56. F. Noé, H. Wu, J.-H. Prinz and N. Plattner, J Chem Phys 139 (18), 184114 (2013). 
57. L. Zhu, H. Jiang, S. Cao, I. C. Unarta, X. Gao and X. Huang, Commun Biol 4 (1), 1345 (2021). 
58. J. Cerrillo and J. S. Cao, Phys Rev Lett 112 (11), 110401 (2014). 
59. S. Presse, J. Lee and K. A. Dill, J Phys Chem B 117 (2), 495-502 (2013). 
60. F. Noé and S. Fischer, Current opinion in structural biology 18 (2), 154-162 (2008). 
61. S. J. Peng, X. W. Wang, L. Zhang, S. S. He, X. S. Zhao, X. H. Huang and C. L. Chen, P Natl Acad Sci USA 117 (36), 
21889-21895 (2020). 
62. R. Patel, T. A. Goldstein, E. L. Dyer, A. Mirhoseini and R. G. Baraniuk, arXiv:1505.05208 (2015). 
63. F. Litzinger, L. Boninsegna, H. Wu, F. Nüske, R. Patel, R. Baraniuk, F. Noé and C. Clementi, J Chem Theory Comput 
14 (5), 2771-2783 (2018). 
64. W. Stacklies, C. Seifert and F. Graeter, Bmc Bioinformatics 12, 101 (2011). 
65. G. Diez, D. Nagel and G. Stock, J Chem Theory Comput 18 (8), 5079-5088 (2022). 
66. A. Amadei, A. B. M. Linssen and H. J. C. Berendsen, Proteins: Structure, Function, and Bioinformatics 17 (4), 412-
425 (1993). 
67. C. R. Schwantes and V. S. Pande, J Chem Theory Comput 9 (4), 2000-2009 (2013). 

https://doi.org/10.26434/chemrxiv-2023-kvsvl ORCID: https://orcid.org/0000-0002-7119-9358 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-kvsvl
https://orcid.org/0000-0002-7119-9358
https://creativecommons.org/licenses/by-nc/4.0/


 31 

68. G. Pérez-Hernández, F. Paul, T. Giorgino, G. De Fabritiis and F. Noé, J Chem Phys 139 (1), 015102 (2013). 
69. Y. Naritomi and S. Fuchigami, J Chem Phys 139 (21), 215102 (2013). 
70. A. Mardt, L. Pasquali, H. Wu and F. Noé, Nat Commun 9, 5 (2018). 
71. B. Liu, M. Xue, Y. Qiu, K. A. Konovalov, M. S. O'Connor and X. Huang, J Chem Phys 159 (9) (2023). 
72. M. Ghorbani, S. Prasad, J. B. Klauda and B. R. Brooks, J Chem Phys 156 (18), 184103 (2022). 
73. H. Sidky, W. Chen and A. L. Ferguson, J Phys Chem B 123 (38), 7999-8009 (2019). 
74. B. E. Husic and F. Noé, J Chem Phys 151 (5), 054103 (2019). 
75. D. Nagel, A. Weber and G. Stock, J Chem Theory Comput 16 (12), 7874-7882 (2020). 
76. W. Chen, H. Sidky and A. L. Ferguson, J Chem Phys 150 (21), 214114 (2019). 
77. C. R. Schwantes and V. S. Pande, J Chem Theory Comput 11 (2), 600-608 (2015). 
78. L. Bonati, G. Piccini and M. Parrinello, Proc Natl Acad Sci USA 118 (44), e2113533118 (2021). 
79. C. Wehmeyer and F. Noé, J Chem Phys 148 (24), 241703 (2018). 
80. C. X. Hernández, H. K. Wayment-Steele, M. M. Sultan, B. E. Husic and V. S. Pande, Phys Rev E 97 (6), 062412 
(2018). 
81. Y. H. Wang, J. M. L. Ribeiro and P. Tiwary, Nat Commun 10, 3573 (2019). 
82. D. D. Wang and P. Tiwary, J Chem Phys 154 (13), 134111 (2021). 
83. A. L. Ferguson, A. Z. Panagiotopoulos, I. G. Kevrekidis and P. G. Debenedetti, Chem Phys Lett 509 (1-3), 1-11 (2011). 
84. H. Wu and F. Noé, arXiv:2309.05878 (2023). 
85. A. Mitsutake, H. Iijima and H. Takano, J Chem Phys 135 (16), 164102 (2011). 
86. J.-h. Peng, W. Wang, Y.-q. Yu, H.-l. Gu and X. Huang, Chin J Chem Phys 31 (4), 404-420 (2018). 
87. S. P. Lloyd, Ieee T Inform Theory 28 (2), 129-137 (1982). 
88. D. S. Hochbaum and D. B. Shmoys, Math Oper Res 10 (2), 180-184 (1985). 
89. Y. Zhao, F. K. Sheong, J. Sun, P. Sander and X. Huang, J Comput Chem 34 (2), 95-104 (2013). 
90. H. S. Park and C. H. Jun, Expert Syst Appl 36 (2), 3336-3341 (2009). 
91. F. K. Sheong, D. A. Silva, L. M. Meng, Y. T. Zhao and X. H. Huang, J Chem Theory Comput 11 (1), 17-27 (2015). 
92. H. Klem, G. M. Hocky and M. McCullagh, J Chem Theory Comput 18 (5), 3218-3230 (2022). 
93. S. Liu, L. Z. Zhu, F. K. Sheong, W. Wang and X. H. Huang, J Comput Chem 38 (3), 152-160 (2017). 
94. P. Deuflhard, W. Huisinga, A. Fischer and C. Schütte, Linear Algebra Appl 315 (1-3), 39-59 (2000). 
95. P. Deuflhard and M. Weber, Linear Algebra Appl 398, 161-184 (2005). 
96. S. Röblitz and M. Weber, Adv Data Anal Classi 7 (2), 147-179 (2013). 
97. Y. Yao, R. Z. Cui, G. R. Bowman, D. A. Silva, J. Sun and X. H. Huang, J Chem Phys 138 (17), 174106 (2013). 
98. W. Wang, T. Liang, F. K. Sheong, X. Fan and X. Huang, J Chem Phys 149 (7), 072337 (2018). 
99. H. B. Wan and V. A. Voelz, J Chem Phys 152 (2), 024103 (2020). 
100. R. T. McGibbon and V. S. Pande, J Chem Phys 142 (12), 124105 (2015). 
101. M. P. Harrigan, M. M. Sultan, C. X. Hernandez, B. E. Husic, P. Eastman, C. R. Schwantes, K. A. Beauchamp, R. T. 
McGibbon and V. S. Pande, Biophys J 112 (1), 10-15 (2017). 
102. G. R. Bowman, X. Huang and V. S. Pande, Methods 49 (2), 197-201 (2009). 
103. M. K. Scherer, B. Trendelkamp-Schroer, F. Paul, G. Perez-Hernandez, M. Hoffmann, N. Plattner, C. Wehmeyer, J. H. 
Prinz and F. Noe, J Chem Theory Comput 11 (11), 5525-5542 (2015). 
104. V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg and C. Simmerling, Proteins 65 (3), 712-725 (2006). 
105. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, J Chem Phys 79 (2), 926-935 (1983). 
106. K. Lindorff-Larsen, S. Piana, R. O. Dror and D. E. Shaw, Science 334 (6055), 517-520 (2011). 
107. J. Kubelka, E. R. Henry, T. Cellmer, J. Hofrichter and W. A. Eaton, Proc Natl Acad Sci USA 105 (48), 18655-18662 
(2008). 

https://doi.org/10.26434/chemrxiv-2023-kvsvl ORCID: https://orcid.org/0000-0002-7119-9358 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-kvsvl
https://orcid.org/0000-0002-7119-9358
https://creativecommons.org/licenses/by-nc/4.0/


 32 

108. D. Nagel, S. Sartore and G. Stock, J Phys Chem Lett 14 (31), 6956-6967 (2023). 
109. P. V. Banushkina and S. V. Krivov, J Chem Theory Comput 9 (12), 5257-5266 (2013). 
110. D. Nagel, S. Sartore and G. Stock, J Chem Theory Comput 19 (11), 3391-3405 (2023). 
111. S. Piana, K. Lindorff-Larsen and D. E. Shaw, Proc Natl Acad Sci USA 109 (44), 17845-17850 (2012). 
 

https://doi.org/10.26434/chemrxiv-2023-kvsvl ORCID: https://orcid.org/0000-0002-7119-9358 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-kvsvl
https://orcid.org/0000-0002-7119-9358
https://creativecommons.org/licenses/by-nc/4.0/

