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Nanoparticles present in various environments can interact with living organisms, potentially leading
to deleterious effects. Understanding how these nanoparticles interact with cell membranes is crucial
for rational assessment of their impact on diverse biological processes. While previous research has
explored particle–membrane interactions, the dynamic processes of particle wrapping by fluid vesicles
remain incompletely understood. In this study, we introduce a force-based, continuum-scale model
utilizing triangulated mesh representation and discrete differential geometry to investigate particle–
vesicle interaction dynamics. Our model captures the transformation of cell membrane shapes and
nanoparticle wrapping by calculating the forces arising from membrane bending energy and particle
adhesion energy. The simulation is validated through comparisons with theoretically predicted min-
imal bending energy and corresponding vesicle shapes. We then examine the interactions between
spherical vesicles and individual nanospheres, both externally and internally, and quantify energy
landscapes across different wrapping fractions of the nanoparticles. Furthermore, we explore multi-
ple particle interactions with biologically relevant fluid vesicles with nonspherical shapes. Our study
reveals that initial particle positions and interaction sequences are critical in determining the final
equilibrium shapes of the vesicle–particle complex in these interactions. These findings emphasize
the importance of nanoparticle positioning and wrapping fractions in the dynamics of particle–vesicle
interactions, providing crucial insights for future research in the field.

1 Introduction
Recent advancements in nanotechnology have sparked sig-
nificant interest in the interactions between living organ-
isms and nanoparticles produced from primary and secondary
sources6,20,36. Metal and polymer nanoparticles are particu-
larly promising in biomedical research for drug delivery, offer-
ing advantages such as targeted delivery and controlled release
of therapeutic agents19,20,29,55,65. Despite these potential bene-
fits, there are growing concerns about the safety of engineered
and industrial nanoparticles directly released into the environ-
ment. The term "nanotoxicity" refers to the possible harmful ef-
fects of nanoparticles on living organisms and represents a signif-
icant concern due to their wide range of applications43–45,51,69.
Besides those from primary sources, trillions per liter of secondary
nanoparticles can be generated from common consumer plas-
tic produces during normal use and many more are produced
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by environmental degradation of enormous plastic waste30,76.
Given this concern, there has been a surge in efforts to eluci-
date how nanoparticles interact with biomembranes and living
cells1,3,4,73,78. Investigating the intricate dynamics of cellular
nanoparticle uptake has been a subject of extensive experimental
interest, as evidenced by notable studies10,23,31,70,80. Yet, direct
observation remains challenging due to the complexity of these
interactions and inherent technical constraints. Hence, compu-
tational simulations have emerged as a promising tool, shedding
light on dynamic processes like nanoparticle encapsulation by cel-
lular membranes4,5,53,74,75. In this study, we utilize computa-
tional modeling to reveal the intricate dynamics governing the in-
teractions between spherical nanoparticles and three-dimensional
(3D) fluid vesicles.

The cell membrane, a lipid bilayer, acts as a selectively per-
meable barrier that separates the cell from its external environ-
ment. For nanoparticles to enter or exit the cell, they must tra-
verse this barrier14,16. Nanoparticle transport modes can be clas-
sified into direct penetration through passive diffusion and active
translocation based on particle size. Small hydrophobic nanopar-
ticles with sizes of a few nanometers can penetrate the mem-
brane directly via thermal diffusion. Oppositely, particles sig-
nificantly larger than the membrane thickness resort to energy-
intensive transport processes such as endocytosis and exocytosis.
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During these processes, the membrane substantially deforms and
engulfs around the nanoparticles9,22,27,73. Spontaneous wrap-
ping is initiated when the adhesive energy between the nanopar-
ticle and the membrane outweighs the energy penalty associated
with bending the membrane to wrap the particle4. Continuum-
scale models based on Helfrich theory35 and dynamic triangu-
lated surfaces26,33,41,48,49,52 have been predominantly employed
to describe cell membrane elasticity and study the interactions
of fluid vesicles with nanoparticles. Notably, Bahrami et al.3 as
well as Saric and Cacciuto60 pioneered the investigation of vesi-
cle tabulation triggered by nanoparticle adsorption and ensuing
nanoparticle aggregation. These models were later extended to
study the wrapping of particles with anisotropic shapes, including
ellipsoids, rods, and cuboids2,17,18, as well as those with hetero-
geneous surface chemistry5.

Recently, modeling studies have expanded to reveal the effects
of vesicle properties. Yu et al.75 investigated interactions between
nanoparticles and vesicles with different shapes (stomatocytes,
prolates, and oblates), systematically characterizing the effects of
vesicle volume and membrane curvature on particle wrapping.
They also examined cuboid particles and biconcave vesicles to
identify the energy-minimized shapes of these vesicles. The same
group further predicted phase diagrams for spherical nanoparti-
cles wrapped by vesicles with varying osmotic pressure74. Their
findings elucidated that the energy barrier of discontinuous envel-
opment transition increases with increasing osmotic concentra-
tion, stabilizing partially wrapped states. Another recent study by
Sadhu et al.56 modeled the effect of curvature-inducing proteins
on the engulfment of a rigid spherical particle via the Metropolis
Monte Carlo algorithm. Their study demonstrated proteins with
concave shapes can augment the wrapping process by decreas-
ing the bending energy cost of the membrane and adhering the
particle to the surface.

While existing research offers valuable insights into the final
equilibrium states of particle–vesicle systems, they predominantly
rely on energy minimization techniques53,56. In the context of
membrane shape optimization, energy minimization involves it-
eratively adjusting the shape of the membrane to find a configu-
ration where the potential energy of the system is minimized. A
considerable shortcoming of these energy-centric methods is their
inability to explicitly depict the dynamics of particle interactions
and membrane deformations56. To probe interaction dynamics,
particle-based methods such as molecular dynamics and dissipa-
tive particle dynamics are often employed59,72,73. Nonetheless,
these simulations suffer from limitations in temporal and spatial
scales37,71, hindering their ability to model the wrapping dynam-
ics on a cellular scale. To bridge this gap, we built a compu-
tational framework using triangulated membrane representation
and discrete differential geometry to compute forces acting on
membrane and particle and accurately simulate the nanoparticle
wrapping dynamics by fluid vesicles.

In this study, our initial step was to validate the numerical
method by predicting the shape transformations of fluid vesicles.
Subsequently, we simulated the dynamics of a single-particle in-
teraction and wrapping by a spherical fluid vesicle, delving into
the interaction energy landscapes and induced shape changes.

Both external and internal nanoparticle wrapping processes were
examined quantitatively. We further investigated how two ini-
tially distant nanoparticles interact with the vesicle, characteriz-
ing the energy profiles and the evolution of particle configura-
tions driven by membrane-mediated interactions. Finally, aiming
to model biologically relevant uptake, we analyzed the impact of
nanoparticle positioning during the wrapping process as they in-
teracted with a biconcave-shaped vesicle, a shape reminiscent of
a red blood cell.

2 Theoretical Background and Simulation Setup

2.1 Membrane elasticity theory
The continuum theory of membrane elasticity describes the defor-
mation of a lipid bilayer membrane using the Helfrich-Canham-
Evans Hamiltonian (referred to as the Helfrich Hamiltonian be-
low)13,24,32,35. The membrane is considered a curved two-
dimensional (2D) surface embedded in three-dimensional (3D)
space, which exhibits fluid-like behaviors in the plane of the mem-
brane while resisting stretching and bending. The fluidity of bi-
ological membranes is attributed to the lateral diffusivity of lipid
molecules within the lipid bilayer. The membrane does not con-
tain any memory of the previous shape or configuration, indi-
cating the energy functional is solely dependent on the current
geometry21. The bending free energy of the membrane can be
expressed as a functional of mean curvature (H), spontaneous
mean curvature (H0), and Gaussian curvature (G) as follows50:

Eb =
∮

dA
{

2κb (H −H0)
2 +κGG

}
(1)

Here, H = (c1 + c2)/2 and G = c1 · c2 with c1 and c2 represent-
ing two principal curvatures. The spontaneous mean curvature
H0 can be influenced by various factors, including embedded pro-
teins and lipid composition asymmetry between the two leaflets.
The local elastic properties of the membrane are described by
κb and κG, which represent the bending and Gaussian curvature
moduli, respectively. When there is no change in the membrane
topology, the Gaussian curvature term can be neglected because
the corresponding surface integral remains constant according to
the Gauss-Bonnet theorem15,46. The minimization of the Hel-
frich Hamiltonian thus results in a fourth-order nonlinear partial
differential equation that describes the optimized shape of the
membrane possessing the lowest bending energy. However, this
formidable “shape” equation has only been solved analytically for
a limited number of highly symmetric cases64.

Besides the bending energy, the physical models for 3D vesicles
also often include the contributions from surface tension energy
(Ea) and osmotic pressure energy (Ev). The area energy can be
expressed by the following equation11,64:

Ea = κa
(A−A0)

2

A0
(2)

Here, At and A0 represent the current and preferred total areas
of the membrane, respectively. κa is the area expansion modulus
that controls the strength of penalty to maintain a preferred vesi-
cle area67, which can also be interpreted as a Lagrange multiplier
that helps to fix the total area. A closed membrane also regulates
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the enclosed volume accordingly. Therefore, we consider a vol-
ume energy of the vesicle as11,28,64:

Ev = κv
(V −V0)

2

V0
(3)

Here, V and V0 denote the current and preferred volumes en-
closed by the membrane, respectively. The volume constraint
modulus, denoted by κv, acts as a control parameter that influ-
ences how strongly the system penalizes deviations from the de-
sired volume62. The volume control term can also be interpreted
as the contribution of osmotic pressure when the system is close
to the isosmotic condition74,81. Thus, the total energy of the vesi-
cle is composed as follows:

Evesicle = Eb +Ea +Ev (4)

2.2 Calculation of discrete geometric properties

Due to the challenging math involved in solving the shape equa-
tion, an alternative approach to the problem of membrane shape
optimization is to discretize a smooth surface into a triangulated
mesh. Discrete differential geometry34 is used to calculate the
surface geometric quantities necessary for computing the energy
functional. We convert a 2D surface M into a triangular mesh
network. The mesh consists of vertices V , edges E, and trian-
gles T . Each vertex vi ∈ V represents a point on the original sur-
face, and its 3D coordinates determine the shape of the surface.
Each triangular element ti ∈ T is defined by a group of 3 vertices(
vi,v j,vk

)
∈ V sharing a common triangle. In order to compute

the bending energy and force, it is necessary to determine the
curvatures and surface normal at each vertex of the triangulated
surface. Meyer et al.47 proposed a method to define surface ge-
ometric properties at discrete mesh vertices as spatial averages.
The averaging process is performed within the immediate neigh-
boring triangles, referred to as the “1-ring neighborhood”. Figure
1 provides a schematic representation of the 1-ring neighborhood
surrounding a particular vertex i with its position given by a vec-
tor xi. Meyer et al.47 introduced a mixed vertex area to ensure
the proper tiling of the surface area in the presence of obtuse tri-
angles to minimize the error originating from spatial averaging.

The mean curvature of a 2D smooth surface is related to its
Laplacian at position x by the following equation:

∆sx = 2Hn (5)

Here, n is the unit outward normal vector of the surface. Thus,
the discrete mean curvature H(xi) at a vertex i can be calculated
by the cotangent formula:

H(xi) = |K(xi)|=
1

4Ai
mixed

∣∣∣∣Nv(vi)

∑
j

(cotαi j + cotβi j)(xi −x j)

∣∣∣∣ (6)

Here, αi j and βi j respectively correspond to the angles opposite
to edge (xi,x j), and Nv(vi) is the set of 1-ring neighbor vertices of
i. The sign of the mean curvature H is determined by whether the
direction of the outward normal vector n(xi) matches the sign of
the mean curvature vector K(xi) at vertex i. n(xi) can be calcu-

Fig. 1 Schematic diagram of a spherical vesicle mesh and the 1-ring
neighborhood of a vertex. The shaded region enclosed by the dashed
lines represents the mixed vertex area Amixed .

lated by the "mean weighted angle" approach39. When the signs
are the same, the mean curvature is considered positive; other-
wise, it is regarded as negative. The discrete Gaussian curvature
G(xi) can be obtained as a vertex angular deficit by employing the
discrete version of the Gauss-Bonnet theorem40,46:

G(xi) =
1

Ai
mixed

(
2π −

Nt (vi)

∑
t

θ
t
i

)
(7)

with θ t
i representing the angle at vertex i in triangle t. Nt(vi) is

the set of 1-ring neighbor triangles of vi.

The total volume of the vesicle can be defined as V =
Nt

∑
t

V t ,

where V t is the volume of the tetrahedron formed by a triangle
and an arbitrary point (selected as the origin here) and Nt is the
total number of triangles of the mesh. This volume is calculated
by the following formula15:

V t =
1
3

Ath (8)

Here, At is the area of the triangle and h is the corresponding
height of the tetrahedron. The total area of the membrane surface
is computed by summing up areas of all triangles:

A =
Nt

∑
t

At (9)

Detailed benchmarks of numerical calculations of the mean cur-
vature and the Laplacian of the mean curvature can be found in
Section 1 of the Electronic Supplementary Information (ESI) (also
see Figures S1 and S2)
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2.3 Forces on discretized surface

The bending force acting on each vertex of the triangular mesh
can be calculated from the force density vector f, which is given
by the first variation of the bending energy functional42,66,79

f = 2κb

[
2(H −H0)(H2 +H0H −G)+∆sH

]
n (10)

Here, ∆sH denotes the Laplacian of the mean curvature, which
again can be calculated by the cotangent expression on dis-
cretized surfaces. The nodal bending force is then calculated by
multiplying the mixed vertex area with the force density vector
evaluated at vertex i

fb = f(xi)Ai
mixed (11)

The area constraint force is calculated by taking the negative po-
sitional gradient of the energy:25,81:

fa =−∂Ea

∂xi
=−κa

2(A−A0)

A0

Nt

∑
t

∂At

∂xi
(12)

The discretized form of the area gradient for vertex i is described
below11:

Nt

∑
t

∂At

∂xi
=

1
2

Nv(vi)

∑
j

(cotαi j + cotβi j)(xi −x j) (13)

Similarly, the force derived from the volume constraint can be
calculated by using the following equations11,81:

fv =−∂Ev

∂xi
=−κv

2(V −V0)

V0

Nt

∑
t

∂V t

∂xi
(14)

Here, the volume gradient term can be obtained by the following
expression11:

Nt

∑
t

∂V t

∂xi
=

1
3

Nt

∑
t

Atnt (15)

Here, nt is unit face normal for each triangle At .

2.4 Membrane–particle interaction

The adhesion energy between the membrane surface and particle
surface regulates the process of particle wrapping by a membrane.
We can express the adhesion energy between the discretized sur-
face and the particle as follows2,3:

Ead =
Nv

∑
i

V (di)Ai
mixed (16)

Here, V (di) is the particle–membrane interaction energy per unit
area, which depends on the distance between the vesicle vertices
and the surface of the particle di = |xi−x0|−Rp with x0 represent-
ing the particle center and Rp denoting the particle radius. The
interaction between particle and membrane can be attributed to
electrostatic and van der Waals forces, as well as the binding of
specific receptor and ligand molecules anchored in the membrane
and on the particle surface. In this study, we model adhesion us-
ing a continuous Morse potential1,53,54

VM(di) =U(e−2di/ρ −2e−di/ρ ) (17)

Fig. 2 Energy profile of the Morse potential.

which is characterized by its depth U and potential range ρ as
shown in Figure 2. The potential takes the minimal value of −U
at di = 0, corresponding to the equilibrium distance between the
particle and bound membrane patch. By comparing the adhesion
energy to the bending energy, we can define a rescaled adhesion
energy u = UR2

p/κb, governed by bending modulus κb, adhesion
energy density U , and particle radius Rp. u = 2 is the critical value
at which the unwrapped and fully wrapped state of the particle
theoretically have equal total energies1. Similar to other nodal
forces, the adhesion force on each vertex is given by

fad =−∂Ead

∂xi
(18)

The total energy of the system including the contribution from
the adhesion energy is

Etotal = Evesicle +Ead (19)

2.5 Time integrator and mesh regularization
The forward Euler method is a commonly used time integrator
in numerical simulations, particularly when solving differential
equations that govern the evolution of a system over time. It
serves as a fundamental tool for advancing the solution in discrete
time steps61. This explicit method is applied to update a system
state. The total force (ftotal) of each vertex is calculated to obtain
the vertex velocity (v). The new vertex position is given for the
following time step.

v = ẋ = ftotal/γ = (fb + fa + fv + fad)/γ (20)

Here, γ is an effective drag coefficient representing the strength
of viscous dissipation from the background, considering the vesi-
cle is immersed in a liquid. In terms of optimization, the forward
Euler scheme is equivalent to the gradient descent algorithm for
minimizing an objective function, which herein is the discrete en-
ergy. Being a first-order approach, the accuracy of the integrator
increases linearly as the time step size decreases. There is a trade-
off between accuracy and efficiency, as smaller time increments
also increase the computational cost of the simulation. Notably,
the forward Euler method has some drawbacks despite its ease
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of use. For instance, they may be unstable for simulations in-
volving rigid systems or solutions that oscillate quickly. More so-
phisticated temporal integrators, such as the velocity-verlet or im-
plicit methods, may be more suitable in certain circumstances. In
simulations with multiple particles, the relative motion between
particles during their interaction with the vesicle is of interest.
Thus, the particle dynamics is modeled by simply calculating the
reaction force (fp) of the adhesion force according to Newton’s
third law. Notably, different from fad which includes contribu-
tions from variations in both Morse potential and membrane ver-
tex area (see Eqs. 16 and 18), the reaction force on the particle
accounts for only the contribution from the adhesion potential. To
prevent particle overlap, a linear excluded volume repulsion (fev)
is also introduced. The particle velocity (vp) is then calculated by
vp = (fp + fev)/γp with γp being the effective drag coefficient for
nanoparticles.

We observed that the triangulated mesh configuration of the
vesicle could suffer from significant distortions when interacting
with particles, such as elongation in one direction or the genera-
tion of obtuse angles. In this force-based scheme, the nodal forces
depend sensitively on the underlying mesh geometry. When the
mesh structure deforms abruptly, the force variations can lead to
numerical instability, convergence issues, or even divergence of
the simulation. As a result, the system energy is also significantly
affected by mesh quality. To improve simulation stability and en-
sure the accuracy of the energy analysis, two mesh regularization
schemes are implemented. The first regularization scheme is the
equiangulation12, also known as the T2 bond flipping33. By us-
ing this method, we aim to optimize the triangular configurations
of the mesh to achieve equilateral or near-equilateral triangles.
The second regularization scheme is the “vertex averaging”12 to
redistribute the vertices to improve the mesh homogeneity. For
each vertex, this operation computes a new position by taking
the area-weighted average of the centroids of the triangles con-
nected to the vertex. Both regularization schemes play crucial
roles in preserving the quality of the triangulated mesh during its
evolution. By mitigating mesh distortion and preserving uniform
triangular elements, these techniques contribute to more reliable
simulations of the particle–vesicle system.

Determining the geometric properties of the triangulated sur-
face of the vesicle constitutes a pivotal component in the com-
putation of force and energy terms. To increase computational
efficiency, we utilized the libigl C++ library for the geometric cal-
culations38. The simulations were performed by in-house C++
code.

3 Results and Discussion

3.1 Vesicle shape transformation

We performed a comprehensive validation of our model by re-
producing previously observed phase diagrams of vesicle shapes.
The initial vesicle shapes were selected as oblate and prolate
spheroids. The bending modulus κb, volume modulus κv, and
area modulus κa were set to 0.01, 2.0, and 1.0 respectively. The
preferred surface area A0 was set to the surface area of a unit
sphere 4π. The preferred vesicle volume is calculated accord-

Table 1 Model parameters used for vesicle shape transformation and
nanoparticle–vesicle interaction simulations

Parameters Values
Spherical vesicle radius (Rv) 1.0
Spontaneous mean curvature (H0) 0.0
Bending modulus (κb) 0.01
Area expansion modulus (κa) 1.0
Volume constraint modulus (κv) 0.0 (Spherical vesicles)

or 2.0 (Biconcave vesicle)
Particle radius (Rp) 0.2-0.4
Rescaled adhesion energy (u) 2.0
Morse potential range (ρ) 0.01
Membrane drag coefficient (γ) 1.0
Particle drag coefficient (γp) 100.0
Time step (δ t) 0.01

ing to the reduced volume, which is the ratio of the vesicle vol-
ume V to the volume of a sphere with the same surface area A,
v = 6

√
πV/A3/2. Other simulation parameters are given in Table

1.

Fig. 3 Minimized energy states at different reduced volumes for vesicles
with the oblate and prolate spheroids as the initial shapes. The number of
triangles of the mesh is 5120. The dashed lines represent the theoretical
results adapted from Ref.63. The insets show representative dumbbell
and biconcave shapes of vesicles at low reduced volume.

Figure 3 presents the energy curves following different reduced
volumes for initial oblate and prolate vesicle configurations. This
diagram delineates the normalized bending energy of the vesicles
in relation to the reduced volume. Notably, the phase diagram we
derived from vesicle shape optimization aligns closely with theo-
retical predictions in both energy and shapes. Figure S3 in ESI
showcases the final equilibrium shapes of both prolate and oblate
branches for v ranging from 0.6 to 1.0. For the prolate branch,
the vesicle elongates as the reduced volume decreases. When v
reaches 0.67, the vesicle adopts a dumbbell shape. Further reduc-
tions in volume lead to the emergence of metastable states11. In
contrast, vesicles initially shaped as oblates flatten as v decreases
and transition to a biconcave form when the reduced volumes lie
between 0.59 and 0.65. Crucially, it is observed that a single target
reduced volume can yield two distinct, locally minimized energy
states, contingent on the initial shape of the vesicle.
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3.2 Interactions of single particles with spherical vesicles

Endocytosis and exocytosis are cellular processes involved in the
transport of colloidal particles across cell membranes57,58,68,77.
Endocytosis is the process by which a cell takes in substances
from its surroundings. Exocytosis, on the other hand, helps the
cell release substances into the external environment. To model
these two processes, we explore the interaction of vesicles with
external and internal particles. A sign convention is employed to
differentiate between the particles located inside and outside the
vesicle such that the relative curvature Cr = ±Rp/Rv = ±Rp with
Rv = 1. The positive and negative signs correspond to the parti-
cles outside and inside the vesicle, respectively. Due to the use of
continuous Morse potential with a finite potential range, we in-
troduce an effective wrapping fraction of the nanoparticles based
on adhesion energy to quantify the wrapping state. Namely, it is
defined by the ratio of the adhesion energy Ead computed in the
simulation to the theoretical adhesion energy corresponding to
the wrapping of the entire particle, given as χe f f = Ead/

(
4πUR2

p
)
.

The nanoparticle is fixed during the wrapping.

We examine the total and bending energies of the particle–
vesicle system to gain quantitative insights into their interactions.
The theory predicts significant energy barriers associated with the
wrapping of external particles4. Therefore, to explore and sam-
ple states that are energetically unfavorable, we introduce a har-
monic biasing potential, which resembles the ideas of umbrella
sampling7,8 used in molecular dynamics simulations. This poten-
tial adds a restraining force that assists in reaching target wrap-
ping fractions.

Figure 4a plots the total equilibrium energies of the particle–
vesicle complex at different wrapping fractions. The profiles ex-
hibit distinct behaviors between internal and external particle
wrapping. For external particles of Cr = 0.3 and 0.4, the total
energy first increases and then decreases as χe f f increases. The
maximum corresponds to an energy barrier that inhibits sponta-
neous wrapping. However, if the energy barrier were overcome,
the wrapping would proceed until membrane fission to complete
the internalization of the fully wrapped particle (not incorporated
in the present model). Interestingly, the profile for the Cr = 0.2
particle also shows a minimum around χe f f = 0.2 in contrast
to the theoretical predictions4, which suggests limited sponta-
neous wrapping of small external particles. This discrepancy is
attributed to the effects of membrane surface discretization (dis-
cussed in detail below) and the interaction potential with a finite
range. Oppositely, when particles interact with the membrane
from the inside, the total energy monotonically decreases until
an effective wrapping fraction of approximately 0.6 is reached,
indicating spontaneous wrapping. This observation suggests that
internal particles naturally affiliate with the membrane. How-
ever, additional energy is required to exceed the optimal degree
of wrapping. Compared with external wrapping showing pro-
nounced particle size effects, the wrapping of internal particles
is significantly less sensitive to the relative curvature, evinced by
the collapse of energy curves.

Figure 4b shows the variations in the bending energy of the
vesicle induced by particle wrapping. When particles are not

Fig. 4 Normalized (a) total and (b) bending energies as functions of
effective wrapping fractions (χe f f ) and relative curvature (Cr) of the par-
ticles. Cr is positive for a particle outside the vesicle (closed markers)
and negative for a particle inside the vesicle (open markers).

wrapped, the bending energies converge to that of an unal-
tered spherical vesicle, specifically 8πκb. As the wrapping frac-
tion increases, the bending energies rapidly increase due to the
adhesion-induced vesicle deformation. As the wrapping fraction
is close to 1.0, the bending energy approaches 16πκb regardless
of the particle location. This limiting state corresponds to the
full wrapping in which two spherical membrane patches are con-
nected by an infinitesimal neck. Notably, external particles induce
a steeper bending energy increase relative to those inside. Con-
sistent with the total energy profiles, the particle size has a pro-
nounced effect on external wrapping while the bending energy
differences among internal particles are negligible. This observa-
tion underscores that external particles exert a more significant
influence on vesicle deformation dynamics.

Figures S4 and S5 in the ESI showcase the vesicle morphol-
ogy changes when interacting with external and internal parti-
cles, respectively. At low wrapping fractions, vesicles retain a
nearly spherical shape. Yet, as χe f f rises, specifically within the
range from 0.3 to 0.7, the vesicle undergoes notable deformations
both local to the particle as well as in the global shape due to
the conservation of membrane area. Depending upon the particle
location, the local deformations can adopt either concave or con-
vex configurations. When wrapping a large external particle, the
vesicle morphs into a distinct kidney-like shape. In contrast, the
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vesicles interacting with internal particles predominantly evolve
into teardrop shapes as wrapping progresses, consistent among
different particle sizes. At χe f f = 0.9, the simulation snapshots
clearly show the formation of a neck connecting the membrane
patch wrapping the particle to the parent vesicle. Particularly in
external wrapping, the neck region resembles a catenoid, an ex-
emplary minimal surface with zero mean curvature and thus zero
bending energy.

In Figure 4, it is evident that for the smallest particles of size
0.2 (highlighted by square markers), the systems cannot reach
target wrapping fractions greater than 0.9 and 0.8 for external
and internal wrapping, respectively. Moreover, the energy pro-
files exhibit anomalous variations at high wrapping fractions. We
assert that this behavior is attributed to insufficient mesh resolu-
tions to accurately capture the high curvature bending induced
by the small particles. Thus, we conducted a mesh-sensitivity
study to assess the influence of mesh density and particle size on
the wrapping state. Our tests utilize a coarser mesh consisting
of 5120 triangles and a finer mesh having 20480 triangles. Fig-
ure S6 demonstrates substantial deviations in both the bending
and total energy profiles between the coarser and finer meshes.
The finer mesh not only enables the simulation of higher effective
wrapping fractions but also results in smoother variations in the
energy profiles. However, for particles with a radius of 0.3 shown
in Figure S7, the differences between the two meshes are much
less discernible, suggesting the interaction is accurately captured.
We also note that the total energy for external wrapping plateau
at the extreme target wrapping fractions of 0.95, deviating from
the further decrease predicted by the theory1.

To further understand the mesh resolution effect, Figure S8
presents a visual sequence illustrating neck formation in a system
with a high wrapping fraction around 0.9. Notably, an interme-
diate state where the membrane shape is still evolving features
an unstable neck morphology, as shown in Figures S8a,b. The-
oretically, the neck radius would shrink asymptotically to zero
(corresponds to the membrane fission) as the wrapping fraction
approaches 1.0. The triangulated surface will inevitably fail to ac-
curately represent the small neck with high curvature, resulting
in an overestimation of the mean curvature and bending energy.
Consequently, the neck expands unphysically to relieve the excess
bending energy as shown in Figures S8c,d, leading to the reduc-
tion in the effective wrapping fraction. These findings shed light
on the intricate evolution of vesicle morphology in response to
particle introduction, further elucidating the interplay between
particle size, curvature, and resulting vesicle shapes. Despite ex-
ternal wrapping at extreme wrapping fractions, the interactions
of nanoparticles of radius 0.3 are accurately modeled. Thus, we
focus on this particle size in the following simulations.

3.3 Interactions of two particles with spherical vesicles

In this section, we delve into the dynamics of a spherical vesicle
concurrently interacting with two nanoparticles, each with a size
parameter of Cr = 0.3 at different wrapping fractions. We con-
sider relative particle motion to efficiently probe the interaction
dynamics, as described in Section 2.5. As in our previous analy-

Fig. 5 Normalized (a) total and (b) bending energies of spherical vesicles
interacting with two nanoparticles having a relative curvature of 0.3 at
different effective wrapping fractions. The solid and open markers rep-
resent the states with particles located outside and inside of the vesicle,
respectively. Dotted lines present the energy profiles for the correspond-
ing single-particle interaction for comparison.

ses, we employ the umbrella potential to explore states that are
energetically less favorable. Our findings reveal that when a vesi-
cle interacts with two particles, the resulting equilibrium energy
profiles (both total and bending) resemble those for the single-
particle interactions, as detailed in Figures 5a,b. The bending
energies of both external and internal wrapping are significantly
higher because the vesicle has to deform more to accommodate
extra particles. Compared to a single particle, the external wrap-
ping of two particles needs to overcome a higher energy barrier,
while the wrapping of two inside particles is energetically more
favorable. Notably, both the minimum and maximum of the to-
tal interaction energy are located at χe f f of approximately 0.7,
slightly higher than in the single-particle interactions.

We quantify the distances between the two particles as they
interact and become wrapped by the vesicle. As shown in Fig-
ure 6, for particles within the vesicle, the interparticle distance
(dp) increases proportionally with the increasing wrapping frac-
tion. Concurrently, there is a noticeable elongation of the vesicle,
with the particles positioning themselves at opposite poles. Op-
positely, during external wrapping, dp decreases monotonically.
Initially, at low wrapping degrees (0 ≤ χe f f ≤ 0.5), the vesicle ap-
pears squeezed by the particles due to the wrapping. However,
as the wrapping fraction exceeds 0.5, the vesicle tends to revert
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Fig. 6 Relation between particle wrapping fraction and interparticle dis-
tance for two particles of size 0.3 interacting with a vesicle simultaneously.
Insets show corresponding equilibrium configurations for different wrap-
ping states.

to a nearly spherical shape, enclosing the particles within its in-
terior. At very high wrapping fractions, particles approach each
other until contact. This close proximity can lead to changes in
the vesicle topology through membrane fusion (not accounted for
in this study).

3.4 Interactions of particles with biconcave-shaped vesicles
We further probe the interactions between particles and vesicles
with biologically relevant shapes. Due to the extensive interest in
cellular responses of nanoparticle exposure, we model biconcave
discoid vesicles, which resemble healthy red blood cells (RBCs).
Unlike the previous model of spherical vesicles, the biconcave
vesicle is subjected to a constant volume constraint with κv = 2.0
to mimic a cell. Additionally, we set a target reduced volume (v)
of 0.65 for the vesicle.

Fig. 7 (a) Initial and (b) final equilibrium snapshots of a biconcave-
shaped vesicle interacting with a single particle. (c) Initial and (d) final
equilibrium snapshots of the successive interaction with the second par-
ticle are also shown. Particles in red color represent spontaneous inter-
action with a bias potential.

We initiate our study by introducing a single particle on top of
a discocyte vesicle in the concave region (Figure 7a). The interac-

tion between the particle and vesicle occurs spontaneously with-
out any externally imposed biasing potential. Due to the intrinsic
concavity, the cell membrane naturally wraps around the particle,
as shown in Movie S1. As the system reaches equilibrium, we ob-
serve an effective wrapping fraction χe f f ≈ 0.87, confirming the
successful uptake of the particle by the cell membrane (Figure
7b). After reaching the equilibrium state with the first particle,
we position a second particle beneath the vesicle, again without
applying any biasing potential (Figure 7c). Interestingly, the sec-
ond particle achieves a considerably lower wrapping fraction of
only 0.19, while the top particle maintains the same degree of
wrapping. This difference in the final state is attributed to the
morphological changes of the vesicle induced by the uptake of
the first particle. Specifically, the lower concavity of the vesicle
disappears, resulting in an unfavorable interaction between the
second particle and a locally convex membrane region. In addi-
tion, the two particles come into contact after interaction with the
vesicle. Figure 7(d) also illustrates the vesicle response, showing
a slight shift of the top particle from the center axis. This shift can
be attributed to the non-axisymmetric initial mesh configuration
(see Movie S1).

Fig. 8 (a) Initial and (b) equilibrium snapshots of the interaction between
the biconcave-shaped vesicle and two particles simultaneously placed at
the waist of the vesicle. (c) Initial and (b) equilibrium snapshots when
the particles are initially located at the top and bottom concave regions
of the vesicle. Particles in red color represent spontaneous interaction
with no biasing potential.

To further investigate the effect of interaction sequence and
local membrane geometry, we conduct simulations having two
spherical nanoparticles simultaneously introduced to distinct re-
gions (Figure 8). Figures 8a,b demonstrate that the vesicle fails to
uptake the particles positioned at the waist due to the local con-
vexity of the membrane. Namely, the degree of wrapping does not
exceed 0.1, indicating a substantial energy barrier. In contrast,
similar to the previous case, the membrane readily wraps the two
particles located near the concave regions of the vesicle (Figure
8c), gradually achieving an effective wrapping fraction ≈ 0.46
for both particles, as illustrated in Figure 8d. The results un-
derscore that the outcome of the interaction is influenced by the
local membrane curvature. This behavior highlights that the con-
cavities in the biconcave vesicle shape facilitate nanoparticle up-
take and emphasizes the importance of the interaction sequence.
Notably, the successful uptake of two particles would result in
the contact of the membrane patches wrapping the particles (see
Movie S2). We speculate that this membrane contact will lead to
membrane fusion and the creation of a hole in the vesicle at the
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contact point, corresponding to a topological change. This non-
trivial shape transformation could disrupt the structural integrity
of the cell and potentially its biological functions, or even induce
wrapping-induced lysis.

Finally, we explore the dynamics of a discocyte vesicle in the
presence of two strongly interacting particles positioned along its
waist (see Figure 9 and Movie S3). Here, we impose the um-
brella potential to enforce particle wrapping with a target wrap-
ping fraction of 0.5. In the initial phase of the simulation (Fig-
ure 9b), we observe the vesicle elongate horizontally to facilitate
particle wrapping. Consequently, the particles move apart with
an increasing interparticle distance of approximately 3.76. No-
tably, the vesicle transitions to a dumbbell shape as a result of
the particle interaction. As the simulation progresses (Figure 9c),
the vesicle begins to contract, reducing dp to approximately 2.77.
Subsequently, dp further decreases to approximately 1.96 and the
two particles move toward each other along the vesicle (Figure
9d). Approaching equilibrium (Figures 9e-h), the particles aggre-
gate toward the middle section of the vesicle, eventually coming
into contact. The vesicle forms a localized dip that encapsulates
both particles. Both nanoparticles achieve an effective wrapping
fraction of ≈ 0.50 at the equilibrium. This result showcases the
membrane-mediated nanoparticle aggregation on vesicles with
complex shapes.

4 Conclusions
This study employed a force-based, continuum scale model to in-
vestigate the dynamics of fluid vesicles in response to the interac-
tions of nanoparticles that exhibit adhesive interactions and pos-
sess dimensions greater than the membrane thickness. The mem-
brane bending energy and total free energy profiles correspond-
ing to the full range of wrapping fractions (0.05 ≤ χe f f ≤ 0.95)
were systematically characterized for a single nanoparticle inter-
acting with a spherical vesicle at various curvature ratios (0.2 ≤
Cr ≤ 0.4). The results demonstrate that a nanoparticle interacting
from outside the vesicle must overcome a substantial energy bar-
rier to achieve full wrapping, whereas an internal particle spon-
taneously attains an intermediate wrapping fraction. The parti-
cle size affects external wrapping more significantly than internal
wrapping. Due to the discretization effects, the energy maxima
and minima were observed at wrapping fractions higher than 0.5
predicted by the analytical theory4. When wrapping an extra par-
ticle, the vesicles exhibit similar energy variations, but the mag-
nitudes of energy changes increase. The progressive wrapping
of dual particles also results in opposite trends in the interparti-
cle distance for the particles located inside or outside the vesicle.
While the wrapping of internal particles drives their separation,
the external particles aggregate as being wrapped more.

Furthermore, our research extends to multiple particle inter-
actions with biological vesicles of red blood cell shapes. We
elucidate the effects of initial particle positions and interaction
sequences in determining the equilibrium configurations of the
vesicle-particle complexes. The results show that the membrane
concavity facilitates particle uptake while the convex membrane
region repels adhesive particles. Vesicle shape changes induced
by the interaction of the first particle influence the wrapping of

ensuing particles. Finally, the simulation demonstrates highly dy-
namic shape variations of the biconcave vesicle when interacting
with strongly adhesive particles. To conclude, this study high-
lights the intricacies of particle–vesicle interaction dynamics and
reveals the importance of wrapping fractions and particle posi-
tioning in governing equilibrium configurations. Our results also
provide insights into the potential effects of nanoparticles on bio-
logical structures.
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