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ABSTRACT:    We report the catalytic transfer hydrogenation of urea derivatives using 
green hydrogen from methanol, which is the most ambitious effort in this hydrogenation 
world.  On enlarging this methodology, selective N-methylated amines achieved from urea 
which are widely featured in drugs, natural products, paints etc. Moreover, this methodol-
ogy making a sustainable alternative pathway for the synthesis of selective methylated de-
rivative from CO2 derived compound. The key to the success of this transformation is the 
use of a commercially available Pd/C heterogenous catalyst and Methanol which act as 
both H2 and C1 sources.    In addition, several control experiments with the plausible inter-
mediates were performed to analyze this novel pathway. This transformation proceeds in 
an environmentally friendly greener protocol and high atom-economy.

The Future is towards “Hydrogen economy” where hydrogen 
can help to obtain a secure and affordable energy. The Hydro-
gen enormously utilized in the field of oil refining, ammonia 
production, power generation and fuel cells.1, 2  In case of Or-
ganic transformation, the reduction of organic compounds3 
depends on the stoichiometric use of LiAlH4, NaBH4 or other 
hydride reagents. On the other hand, for the hydrogenation of 
chemical compounds where molecular hydrogen is essential.4 
Since Hydrogen is not a natural energy source it must be gen-
erate from fossil fuels,5 biomass,6 natural gas7 and from wa-
ter.8 The traditional process requires harsh conditions which 
greatly obstruct the development of environmentally friendly 
hydrogen production. This provokes the researchers to de-
velop the novel ‘Green hydrogen production’ strategies.9 

Among all the alternative ways, methanol attracts the re-
search focus on the production of green hydrogen because it 
is the essential chemical building blocks and emerging energy 
source.10-12 Traditionally, methanol release hydrogen by 
steam reforming method. 13-16 The production of methanol is 
from renewable sources17 in large-scale where approximately 
160 million metric tons of methanol produced worldwide in 
2021.18 It is widely used in the chemical industry as raw ma-
terial,19  solvents, even in everyday products including paints, 
plastics and fuels. Though methanol is water-soluble and 
readily biodegradable, its usage makes the process greener. 
Moreover, methanol has high H/C ratio, sustainability and 
flexibility which turns methanol as green Liquid hydrogen 
carrier.20, 21 In order to find the hydrogen production effi-
ciency from methanol we targeted the difficult functional 
group hydrogenation reactions.  

 
Fig. 1: a, Urea hydrogenation using Non-greener H2 gas. b, Methylation 
of nitroarenes using CH3OH and the present work to hydrogenate and 
methylate the urea derivatives consecutively.   

In that row, the urea hydrogenation is the most challenging of 
all polar carbonyl bonds due to their low polarizability. Since 
these carbonic acid derivatives has lower electrophilicity ow-
ing to resonance effect of the nitrogen in urea,22 only few 
groups overcome these challenges. Firstly, Milstein group 
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have been reported the catalytic hydrogenation of urea deriv-
atives using Bipyridyl- based PNN Ru(II) pincer complex.23 
Then Saito,24 Leitner,  Klankermayer groups,25 utilized their 
Ruthenium complexes for urea hydrogenation.26 Later Mil-
stein developed the first Mn-[PNN] catalyst for the hydro-
genation of carbamates and urea derivatives.27 Finally, in 
2021 Amit Kumar group presented the catalytic hydrogena-
tion of urea and polyureas based on a ruthenium or an iridium 
pincer complex.28 In all these cases, high pressure of molecu-
lar hydrogen gas plays the vital role for hydrogenation. But 
the demand for molecular hydrogen has grown more than 
threefold and continues to rise.29 Considering the significance 
and difficulty level associated with the production of hydro-
gen gas and other hydrogenating agent, it is important to ex-
plore new methodology to produce green hydrogen from 
methanol for the sustainable hydrogenation of urea deriva-
tives to corresponding amines. 

Nevertheless, contrary to the resulted amine compounds 
through hydrogenation, N-methylation process are highly de-
sired in view of the fact that N-methylated amines plays the 
important role in the production of biological compounds, 
pharmaceuticals, surfactants and dyes. In addition, N-methyl-
ated moieties greatly contribute in biomedical research and 
in drug discovery.30-33 Moreover, N-methylated drugs are in 
top selling which implements their enormous activity.34 In 
general, these N-methylamines are produced by using highly 
active methylating agents which are toxic,35, 36  or by using for-
maldehyde which serve as carcinogen. By considering these 
facts, we are greedy to achieve the selective N-methylation of 
urea by using “Methanol” where methanol itself serves as a 
sustainable C1 source apart from the hydrogen source.37-40  
Remarkably, methanol is an abundant, renewable feedstock 
and cheapest C1 source among all.  Although methanol medi-
ated N-methylation reactions are based on homogeneous cat-
alyst but it requires complicated ligands/complexes and even 
it is difficult to recycle and reuse.41-47 In contrast hetero-
genous catalysts are preferable because of their recycling and 
reusability fact.48-50 Thus, heterogenous catalyst are of great 
importance for reduction process and in the dehydrogenation 
of methanol too. Moreover, heterogenous material mediated 
catalysis are easily accessible and convenient. In this array, 
commercially available heterogeneous catalysts are favora-
ble.  

Interestingly, palladium-based catalyst favored the N-methyl-
ation of amines using methanol as C1 source. Initially, 
Pd/TiO2 catalyst used for N-methylation of amines and amino 
acids using methanol as methyl source.51 Later on Beller 
group established the selective mono-N-methylation of ni-
troaromatics using phosphine ligands containing palladium 
complex with methanol.52 Natte published N-methylation ni-
troarenes and amine by using commercially available Pd/C 
with methanol as both a C1 and Hydrogen source.53 Till now, 
the hydrogenation of urea is feasible only with homogenous 
Ru and Mn complexes. Here we reported the first hetero-
genous Pd/C catalyzed the N-methylation of urea derivatives 
using methanol as hydrogen source for the hydrogenation of 
urea to aniline derivatives and then as C1 source which meth-
ylated the aniline in sequential manner. This tandem reaction 
is atom economical and greener. 1,3-Bis(4-methoxy-
phenyl)urea (1a) was selected as a model substrate for the 
study of hydrogenation followed by methylation of aryl ureas.  

Our initial optimization was studied using various catalysts 
(Table 1, entry 1-4) and t-buOK (0.6 mmol) in the presence of 
methanol (2 ml) at 130 °C for 48 h. On screening the catalysts, 
Rh/C and Ru/C (entry 1,3) resulted in p-anisidine 1ab 42% 
and 38% respectively, hence poor selectivity towards meth-
ylated product 1aa. Only 17% of p-anisidine 1ab was ob-
served using activated carbon as a catalyst (entry 4). Interest-
ingly, N-methylation of 1,3-Bis(4-methoxyphenyl)urea (1a) 
resulted in 99% yield of methylated product 1aa on using  
Pd/C (10 mg) (entry 2). Thus, Pd facilitates the methylation 
reaction rather than other metals. Furthermore, on alternat-
ing the base from t-buOK to carbonates or acetates (entry 5-
7) results in lower yield of 1aa whereas moderate yield occurs 
in the case of KOH and NaOH (entry 8,9). Surprisingly, the 
poor nucleophile (t-buOK) potassium tert-butoxide was 
enough to facilitate N-methylation of urea. Base is required 
for dehydrogenation of methanol. However, on decreasing 
the t-buOK loading to 0.4 mmol, only 82% of 1aa was ob-
served (entry 11). Whereas on reducing the bath temperature 
to 100 °C, 55% of desired product was observed (entry 12).  

Table 1. Optimization of N-methylation of urea derivatives 

 

Entrya Catalyst Base 1aab 1abb  

1 Rh/C t-buOK -- 42% 

2 Pd/C t-buOK 99% -- 

3 Ru/C t-buOK -- 38% 

4 Carbon t-buOK -- 17% 

5 Pd/C Na2CO3 11% 24% 

6 Pd/C K2CO3 30% 54% 

7 Pd/C CH3CO2K 36% 15% 

8 Pd/C KOH 78% -- 

9 Pd/C NaOH 70% -- 

10 Pd/C Nil -- -- 

c11 Pd/C t-buOK 82% -- 

d12 Pd/C t-buOK 55% 44% 

e13 Pd/C t-buOK 52% 46% 

a Conditions: p-OMe urea (0.2 mmol), catalyst (10 mg), base (0.6 mmol) 
and Methanol (2 ml), heated in oil bath at 130 °C for 48 h. bYields and con-
versions determined by GC analysis using mesitylene as internal stand-
ard. c t-buOK 0.4mmol, d temp 100 °C, e time 24. 

This tandem reaction required 48 h to get methylated 1aa 
product whereas 24 h reaction resulted in 46% yield of p-
anisidine 1ab, and 54% yield of methylated product 1aa [en-
try 13]. Thus, the optimal reaction condition was 0.1 mol % of 
Pd/C, 0.6 mmol of t-BuOK and 2 mL of methanol at 130 °C and 
48 h for the selective N-methylation of Urea. 
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a Conditions: urea derivative (0.2 mmol), catalyst (10 mg), base (0.6 
mmol) and Methanol (2 ml), 130 °C, 48 h. Products were detected by the 
NMR. The conversion and yield were determined by GC.  

We next explored the scope of the urea under the optimized 
conditions (Table 2). An electron-donating group at the para 
position of aromatic substituted urea enhanced the reactivity 
of the urea substrates (entry 2-7). Among these 1,3-Bis(4-
methoxyphenyl)urea shows excellent yield of 95% (entry 2) 
but meta and ortho methoxy substituted ureas retarded the 
reaction and resulted in 76% & 54% due to steric factor (entry 
3 and 4). On enhancing the electron donating group in urea, 
the reactivity decreases where para-methyl, dimethyl and t-
butyl groups gave corresponding methylated product in  92%, 
72% and 69% respectively (entry 5-7). Similarly substrates 
with an electron-withdrawing groups like chloro, iodo and 
CF3 at para position gives good yield of 82%, 90% and 50% 
(entry 8-10) except 1,3-Bis(4-fluorophenyl)urea. Fluro sub-
stituted urea undergoes hydrohalogenation due to the oxida-
tive addition of carbon halogen bond (entry 19 and 20).54 On 
the other hand, the functional groups namely alcohol and ac-
etamide bearing ureas were resulted in 55% and 50% yields 
(entry 11-13) but no reaction occurs in the case of ester func-
tional group (entry 14). Moderate yield was obtained in the 
case of p-ketone, p-CN, p-NO2 and m-NO2 due to the self-hy-
drogenation of these functional group rather than urea hydro-
genation (entries 15-17). On the contrary, urea derivatives 
bearing aliphatic substituents (entries 18) shows good yield 
of 82%.  
 

 

In addition, we performed the direct N-methylation of 1,3-
Bis(4-methoxyphenyl)urea (1a) on a gram scale where 70% 
of the desired product obtained (Fig 2). We also demonstrated 
the recycling and reusability of the Pd/C for the N-methyla-
tion of 1,3-Bis(4-methoxyphenyl)urea via transfer hydro-
genation under standard conditions. Due to Pd-leaching fac-
tor, we observed the yield of the desired product was dropped 
in second and third cycles which shows the loss in catalytic 
activity (Fig 2).55  
 

Fig 2: Gram scale synthesis and Recyclability of the Pd/C  

A series of control experiments were explored to evaluate the 
protocol of selective N-methylation of urea derivatives. First 
and foremost, the generation of hydrogen gas was confirmed 
by the dehydrogenation of methanol under the standard 
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condition without the substrate which is detected by GC (See 
SI). On deuterated studies, we concluded methanol act as hy-
drogen and C1 source and confirmed the selective N-methyl-
ated product through NMR and HRMS (See SI). In order to an-
alyze the intermediates of this reaction the time course exper-
iments were conducted. After 3h, 48% of unreacted urea was 
observed but within 6h, 30% of aniline (1ab) and 17% of N-
methylaniline (1aa) was obtained. On increasing the reaction 
time, gradually aniline (1ab) converted to N-methylaniline 
(1aa). Accordingly, within 24h 46% of methylated product 
and 54% of aniline product were observed in crude NMR (See 
SI). In this regard, selectivity of N-methylaniline (1aa) was ob-
served at 48h. This reaction time experiments shows that ani-
line (1ab) act as a one of the intermediate in this transfor-
mation.  Moreover, we conducted the control studies to un-
derstand the urea hydrogenation pathway in which the pres-
ence of N-phenylformamide was observed by the HRMS in the 
deduction of t-buOK (0.1 mmol) and reaction time (16h).  

 

Fig. 3: Control experiments: A, Methanol dehydrogenation B, Deuter-
ated Studies C, Intermediate Analysis D, Reaction Intermediates 

Based on the control experiments, a proposed pathway for the 
selective N-methylation of urea derivatives has been outlined 
in Fig 4. Initially, hydrogen and formaldehyde are produced 
through the methanol dehydrogenation56-58 in the presence of 
Pd/C and t-buOK.  This hydrogen interacts with Pd/C and the 
active species Pd-H will generate. Then, this Pd-H react with 
urea to give corresponding aniline (II) and N-phenylforma-
mide (III). Followed by hydrogenation, condensation occurs 
between formaldehyde and aniline (II) from urea with the 
help of base resulted in imine formation (IV).59 Then, imine is 
hydrogenated by Pd-H species to give desired product N-
methylaniline and regenerates the Pd metal sites on the cata-
lyst surface. 

In conclusion, selective N-methylation via the occasional hy-
drogenation of urea derivatives using methanol in the pres-
ence of Pd/C has been accomplished. We have developed this 
greener methodology by avoiding the use of high pressure of 
molecular hydrogen. This is the first demonstration of Pd/C 
heterogenous catalyzed transfer hydrogenation followed by 
N-methylation of organic urea using sustainable methanol. 
Remarkably, 1) the commercial Pd/C is easily recycled and re-
used 2) Methanol is the sustainable liquid hydrogen carrier. 

3) Indirect conversion of CO2 to C1 source through transfer 
hydrogenation of Urea derivatives. These above factors facili-
tate this atom economical approach in future industrial scale. 

  

Fig. 4: Plausible reaction mechanism for the Pd/C catalyzed N-methyla-
tion of Urea. 
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