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ABSTRACT: Spin crossover (SCO) complexes are materials that exhibit changes in spin state in 
response to external stimuli with potential applications in molecular electronics. It is challenging 
to know a priori how to design ligands to achieve the delicate balance of entropic and enthalpic 
contributions needed to tailor a transition temperature close to room temperature. We leverage the 
SCO complexes from the previously curated SCO-95 data set [Vennelakanti et al. J. Chem. Phys. 
159, 024120 (2023)] to train three ML models for transition temperature (T1/2) prediction, using 
graph-based revised autocorrelations as features. We perform feature selection using random 
forest-ranked recursive feature addition (RF-RFA) to identify the features essential to model 
transferability. Of the ML models considered, the full feature set random forest (RF) and recursive 
feature addition RF models perform best, achieving moderate correlation to experimental T1/2 
values. We then compare ML T1/2 predictions to those from three previously identified best-
performing density functional approximations (DFAs) which accurately predict SCO behavior 
across SCO-95, finding that the ML models predict T1/2 more accurately than the best-performing 
DFAs. In addition, we study ML model predictions on the set of 18 SCO complexes for which 
only estimated T1/2 values are available. Upon excluding outliers from this set, the RF-RFA RF 
model shows strong correlation to estimated T1/2 values with a Pearson’s r of 0.82. In contrast, 
DFA-predicted T1/2 values have large errors and show no correlation to estimated T1/2 values over 
the same set of complexes. Overall, our study demonstrates reasonable performance of ML models 
in comparison to some of the best-performing DFAs, and we expect ML models to improve further 
as larger data sets of SCO complexes are curated and become available for model training.  
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1. Introduction. 

Spin crossover (SCO) complexes1-3 exhibit a change in spin state from low-spin (LS) to 

high-spin (HS) or vice versa, as a function of external stimuli4 like temperature5,6, pressure1,5-8, or 

light7,9-12. These complexes find a variety of applications13 in molecular spintronics14, memory 

devices15, sensors16, optical devices17, and displays18. Fe(II) SCO complexes with nitrogen-

coordinating ligands are studied extensively19 since they exhibit greatest structural differences 

between HS and LS states,20-25 allowing for clear distinction between the two spin states and 

leading to better switching properties in molecular memory devices. A multitude of experimental 

techniques such as magnetic susceptibility measurements,26-28 Mössbauer spectroscopy,26-28 

variable-temperature IR29-31 and NMR,31-33 UV/Vis,32-34 Raman,30,31,35 and X-ray 

crystallography,26-28 are employed to characterize SCO behavior. While experimental techniques 

characterize SCO behavior through structural changes and measurement of transition temperature 

(T1/2), it remains challenging3,36,37 to tailor SCO T1/2 for use in molecular devices25. Computational 

investigations12,37-42 of SCO behavior aim to bridge the gaps in experimental studies of SCO 

complexes. 

Computational predictions of SCO behavior are carried out using ab initio methods such 

as density functional theory (DFT), but predictions are highly sensitive to the choice of density 

functional approximation (DFA) from a wide range of available functionals. DFT43 is widely 

employed for its relatively modest cost44-46 but suffers from self-interaction error or delocalization 

error47-50 and static correlation error.51,52 Prior work39 has demonstrated the barriers to high-

throughput screening of SCO complexes with DFT, highlighting the challenges of identifying best-

performing functionals. For example, while hybrid functionals and DFT+U make suitable 

predictions of spin splitting energies, the former are computationally expensive and the latter 
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makes structure and property predictions worse.39 Prior studies with DFT found B3LYP53, 

B3LYP* (i.e., B3LYP with a Hartree–Fock (HF) admixture (aHF) of 0.15)54,55, TPSSh56-58, and 

B2PLYP59,60 to predict differences in HS and LS states of Fe(II) complexes accurately. Given that 

these studies are mostly small in scale 61,62 and disagree on what functionals best predict SCO 

behavior, we recently studied 95 Fe(II) SCO complexes in a data set we curated called SCO-9540 

with over 28 DFAs to determine which functionals make the best predictions of SCO behavior on 

a larger data set. Although we identified B3LYP (aHF = 0.10), TPSSh, and M06-L63 to accurately 

predict the spin splitting Gibbs free energies, we showed they fail to predict the experimental T1/2 

values we curated from the literature accurately.  

Machine learning (ML) has emerged as a powerful tool to complement ab initio 

calculations and accelerate chemical discovery, especially with ML models trained on large sets 

of experimental data showing comparable accuracy to results from DFT. ML models have found 

applications in orbital-free DFT,64,65 accelerating molecular dynamics simulations,66-68 

heterogeneous catalyst design,69-73 materials discovery,74-77 force fields,78-80 potential energy 

surface representations,81-85 and many-body expansions.86,87 ML models have also been used 

extensively to predict band gaps,88-90 excited state properties,91-93 redox potentials,94,95 electron96,97 

and spin densities,98-101 and the spin splitting energies102 highly relevant to predicting SCO 

behavior. Prior studies103,104 have also leveraged ML to describe magnetism in materials, which is 

particularly challenging due to its strong dependence on local environments. One approach103 

employed spin-dependent atom-centered symmetry functions as a type of descriptor for a high-

dimensional neural network potential while another104 built a Euclidean equivariant neural network 

that preserved the crystallographic symmetry.  

Highly relevant to SCO prediction, ML models have been trained to predict more 
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challenging properties such as the spin states of transition metal complexes (TMCs). Prior 

studies41,42,105 from our group used different ML approaches to predict SCO behavior. Through a 

combination of genetic algorithm and artificial neural networks (ANNs) trained on density 

functionals with different amounts of HF exchange102, SCO behavior was predicted through 

evaluations of ML-predicted102 spin splitting energies.105 Another study41 from our group trained 

ANNs informed by 23 DFAs to predict SCO behavior through accurate predictions of spin splitting 

energies. Besides predicting SCO behavior by predictions of spin splitting energies, a study42 from 

our group demonstrated the utility of ANNs trained on hybrid DFT by data-mining the literature 

for SCO complexes by correctly assigning almost all spin states in a set of 46 Fe(II) SCO 

complexes. Other approaches to predict spin state ordering have used interpretable linear models106 

or neural networks trained using only the local structure around the TM centers.107  

 While ML has been previously leveraged to predict SCO behavior through predictions of 

spin splitting energies or structural differences between spin states, in this study we use ML models 

to make predictions of transition temperatures of SCO complexes from the previously curated 

SCO-95 data set.40 We train interpretable ML models, i.e., random forest (RF) on a full feature set 

as well as RF or kernel ridge regression (KRR) on a feature sets selected by RF-ranked recursive 

feature addition (RF-RFA), on a set of 76 SCO complexes for which experimental T1/2 values are 

available, and we show that these models perform as well or better than the previously-identified 

best-performing DFAs at predicting experimental transition temperatures. We perform feature 

selection to identify the most important properties for predicting T1/2 values, showing that non-

local features are essential to distinguishing the behavior of known SCOs. We also make 

predictions of T1/2 values for a set of 18 SCO complexes for which experimental T1/2 values are 

not reported but can be inferred based on experimental conditions, and, despite the small training 
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set size, we show ML models to outperform the best-performing DFT functionals on this task. 

2. Computational Details. 

2a. Feature set. 

We use a series of revised autocorrelations94,108 (RACs) as descriptors for all our machine 

learning (ML) models as prior work41,95,108-110 demonstrated RACs to be predictive features for 

transition metal complex (TMC) properties such as ionization potential, electron affinity, redox 

potential, and spin-splitting energy. Autocorrelations (ACs) are compact descriptors with d+1 

dimensions per physical property encoded at a maximum depth d, which is the maximum bond-

wise path between atoms. These descriptors depend only on connectivity and do not require 

structural information such as Cartesian or internal coordinates. The properties we employ are five 

atom-wise heuristic properties on the 2-dimensional molecular graph: Pauling electronegativity 

(c); topology (T), which is the coordination number of an atom; nuclear charge (Z); covalent radius 

(S); and identity (I), which is 1 for any atom. RACs are variants of graph autocorrelations111-114 

that include both sums of products in standard ACs as well as differences, with distinct scopes 

from ACs, forming a feature set with metal-centric, coordinating atom-centric, and whole-complex 

descriptors. A standard AC is evaluated over all atoms in a molecule that are d bonds apart: 

Pd = ∑ 	∑ 	!!"
"

!!"
# Pi Pj d (dij, d)        (1) 

where Pi and Pj are the specific properties of the ith and jth atoms, respectively, d is the Kronecker 

delta, and dij is the number of bonds separating these two atoms. A RAC can have a “start” in the 

summation, which constrains the atoms that correspond to the summation starts with i, e.g., the 

metal, from which we can branch out to generate RACs while “scope” dictates the atoms that are 

permissible as the ends of these branches, e.g., axial ligands, in the summation starting with atom 
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j. The start definition includes RACs that are metal-centered (mc) (i.e., the metal is the start atom), 

ligand-centered (lc) which are centered on the coordination atoms of ligand (i.e., the ligand 

coordinating atoms are the start atoms), or over the full molecule (f). The scope definition includes 

RACs that span to axial (ax) ligands, equatorial (eq) ligands, or all ligands and the metal. This 

results in six types of RAC start/scope definitions: f/all, f/ax, f/eq, mc/all, lc/ax, and lc/eq. Each of 

the five atomic property product RACs (eq. 1) have 6d+6 associated RACs (taking into account 

the six start/scope definitions), resulting in a total of 30d+30 product RACs. Difference RACs, 

which are defined as 

𝑃$% = ∑ 	∑ 	("∈'()*+#∈',-., Pi – Pj) d (dij, d) ,      (2) 

can be computed non-trivially only for mc and lc RACs for d > 0, and only if the atomic property 

being considered is not I. Difference RACs are therefore evaluated over four atomic properties 

with three start/scope definitions, resulting in 12d difference RACs. In total, the product and 

difference RACs sum to 42d+30 theoretical RAC features.94,108  

 As reported in prior work,94 the typical cutoff of three for the maximum bond depth results 

in a total of 156 possible RACs. Because we study mononuclear octahedral TMCs in this work, 

we exclude five constant features corresponding to connectivity around the metal center (e.g., 

metal coordination number), reducing our feature set to 151 RACs. All the TMCs in our data set 

have the same metal, i.e., Fe, resulting in three additional constant mc-descriptors: 𝜒/-00
1( , 𝑍/-00

1( , 

and 𝑆/-00
1( , corresponding to zero-depth RACs with mc/all start/scope definition, and properties of 

electronegativity, nuclear charge, and covalent radius. Discarding these descriptors leads to a set 

of 148 RACs. In the original work,94 four additional descriptors are added to the set of 151 RACs, 

leading to the RAC-155 feature set. These additional descriptors are the oxidation state, spin state, 
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Hartree–Fock exchange fraction (aHF) in the density functional, and ligand denticity. However, in 

our SCO-95 data set, all the complexes have the same oxidation state, i.e., Fe(II), and the same 

spin state, e.g., they are all in either a high-spin quintet or a low-spin singlet state. We also do not 

study TMC properties as a function of aHF in this work since we obtain all data from experiments. 

Thus, we do not include these three descriptors (oxidation state, spin state, and aHF) to our set of 

148 RACs. However, we do add axial and equatorial ligand denticity descriptors to our feature set 

to arrive at a final total of 150 features. 

2b. Machine learning models and feature selection. 

We train three ML models to independently predict transition temperatures (T1/2 values) of 

spin crossover (SCO) complexes: random forest115 (RF) with a full feature set, RF with features 

from random-forest-ranked recursive feature addition (RF-RFA), and a kernel ridge regression 

(KRR) model with features from RF-RFA following the protocol from prior studies.108,116 In this 

work, we used 1000 trees to train the RF and RF-RFA models using sklearn117 v0.24.2 for a 

80%/20% train/test split. Additionally, we trained 1000 RF models by changing the random seed 

and obtained an average of performance metrics for a given train/test split. We pre-process the 

features using Z-normalization where each feature is normalized to a zero mean and unit variance 

over the train and test data. Feature selection reduces the dimensionality of the original 

representation of the data set by eliminating uninformative features, and this process can lead to 

improved out-of-sample performance of RF-RFA and RF-RFA KRR models.94,108,118 Feature 

selection in RF-RFA models is carried out by first assessing model performance when each 

descriptor is randomly permuted119, thus yielding an importance score for each descriptor. These 

descriptors are then provisionally added in order of their importance to the final feature set, which 

starts with 10 most important features. Following the procedure from prior work,94 the RF-RFA 
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procedure only permanently includes a descriptor in the final feature set if its inclusion improves 

model test set performance (coefficient of determination) by at least 1%. If a descriptor is 

permanently included, the next feature that is considered is provisionally added to an updated 

version of the final feature set. 

In kernel-based methods, i.e., as in our RF-RFA KRR model, inputs are nonlinearly 

transformed into a higher-dimensional space using the so-called kernel trick. In our KRR models, 

we focus on tuning two adjustable hyperparameters: the regularization coefficient and kernel 

width. For RF-RFA KRR models, we accelerated selection of these hyperparameters using the 

Bayesian optimization Python library Hyperopt120 v0.2.3. We carried out hyperparameter selection 

with 200 evaluations on a range of hyperparameters using a random 80/20% train/validation split 

of the training subset of the original 80/20% train/test split. As in prior work,41,108,116 recursive 

feature addition was carried out on random-forest-ranked features (i.e., RF-RFA) to obtain a 

feature set that gives the best-performing KRR model with the lowest mean absolute error. At each 

step of the recursive feature addition, a KRR model is trained with an additional descriptor 

included, and the descriptor is kept only if it improves model performance. All KRR models were 

implemented in scikit-learn117 v0.24.2 with a radial basis function kernel.  

2c. Data set and density functional theory (DFT) calculations. 

 As detailed in prior work,40 we curated the SCO-95 data set of 95 octahedral, mononuclear 

Fe(II) spin crossover (SCO) complexes from the Cambridge Structural Database.121 Previously,40 

we both curated experimental transition temperatures (T1/2 values) along with DFT-predicted 

values, which corresponds to the temperature at which SCO is observed for these complexes 

(Figure 1). For the predictions, we used DFT with 28 density functional approximations (DFAs) 
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across the various rungs of “Jacob’s ladder”122 along with free energy corrections obtained at a 

single temperature (T = 300 K) and functional, i.e., modified B3LYP (modB3LYP) with Hartree–

Fock (HF) exchange (aHF) of 0.10. In the present work, we report the previously computed T1/2 

values for the three best-performing functionals from the original 28 DFA set, modB3LYP (aHF = 

0.10), M06-L, and TPSSh. Of the 95 complexes in our data set, experimental transition 

temperatures were reported for 76 complexes, while the remaining 19 complexes exhibit a two-

step SCO behavior or a single-step SCO without an experimentally reported T1/2 value (Figure 1). 

Experimental T1/2 values mostly range from 100 K to 375 K for the complexes in SCO-95 data 

set,40 with two outliers (refcodes: EXARAY123 and ESOSOW124) closer to 450 K (Figure 1 and 

Supporting Information Figure S1). In this study, we train ML models on T1/2 values of all 76 

complexes and also on 74 complexes after removing the two outliers to understand how their 

exclusion affects model performance. We then use the trained ML models to predict transition 

temperatures for the remaining 19 complexes for which experimental T1/2 values are not reported. 

We compare the ML-predicted values to the estimated experimental T1/2 obtained as the average 

of low-temperature (low-T) and high-temperature (high-T) of crystallization. We also compare the 

estimated T1/2 values of the 19 complexes to those from DFT calculations. 

Figure 1. (Left) Histogram of experimentally (expt) reported transition temperatures (T1/2 in K) 
for N = 76 complexes. Representative low-temperature, low-spin Fe(II) SCO complexes 
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corresponding to a wide range of T1/2 values are shown as insets. Complexes with refcodes 
GOGSAZ,125 YAQVIY,126 UXOHEW,127 and ESOSOW124 exhibit SCO behavior at T1/2 values of 
114 K, 190 K, 290 K, and 445 K, respectively. The bin width of the histogram is 25 K, and bins 
containing inset structures are indicated with color-matched stars. Hydrogen, carbon, nitrogen, 
oxygen, sulfur, and iron are shown in white, gray, blue, red, yellow, and brown, respectively. 

 

3. Results and Discussion. 

3a. T1/2 predictions from ML models vs DFT. 

In prior work,40 we computed Gibbs free energy spin splitting energies (DGH-L) and 

transition temperatures (T1/2 values) with 28 density functional approximations (DFAs) for Fe(II) 

spin crossover (SCO) complexes in the SCO-95 data set. From this initial set, three functionals, 

i.e., M06-L, TPSSh, and modB3LYP (aHF =0.10), performed best by predicting DGH-L values that 

would be suggestive of experimental spin crossover behavior. Although these functionals 

qualitatively predicted SCO behavior, they still failed to accurately predict T1/2 values. Instead, 

they predict an unphysically wide range of T1/2 values (-200 K to 1200 K), in contrast to the 100 

K to 450 K range of experimentally reported T1/2 values for 76 SCO complexes in the SCO-95 

data set. In this study, we trained machine learning (ML) models on T1/2 values to find out if ML 

models can make better predictions of experimental T1/2 values. 

We trained three machine learning (ML) models, namely, RF with a full feature set, RF 

with an RF-RFA selected feature set, and KRR with an RF-RFA selected feature set, on 

experimentally reported T1/2 values in the SCO-95 data set and made predictions on a set-aside test 

set. RF and RF-RFA RF models trained on T1/2 values of 59 SCO complexes outperform the RF-

RFA KRR model (Figure 2 and Supporting Information Table S1). Given the small dataset size 

and difficulty of predicting a narrow range of T1/2 values, unsurprisingly none of the models 

perform particularly well. RF and RF-RFA RF models exhibit smaller mean absolute errors (MAE) 

https://doi.org/10.26434/chemrxiv-2023-mhb4c ORCID: https://orcid.org/0000-0001-9342-0191 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-mhb4c
https://orcid.org/0000-0001-9342-0191
https://creativecommons.org/licenses/by/4.0/


11 

 

of ca. 40 K and show comparable correlation to experimentally reported T1/2 values, i.e., Pearson’s 

r of 0.36 and 0.34, and Spearman’s r of 0.28 and 0.23, respectively, indicating that feature 

selection does not improve over the standard RF model (Figure 2 and Supporting Information 

Table S1). Nevertheless, starting RF-RFA feature selection for the RF model with fewer initial 

features did not improve the imbalance in train-test performance. The MAE of the RF-RFA KRR 

model is three times as large, and predictions from this model exhibit a poor correlation to 

experimental T1/2 values as quantified by a Pearson’s r of -0.10 and a Spearman’s r of -0.29 (Figure 

2 and Supporting Information Table S1). Further examination reveals the presence of an outlier 

only for the KRR model, i.e., an SCO complex with refcode WIHQIQ,128 for which RF-RFA KRR 

severely overpredicts T1/2, predicting a T1/2 value of 723 K compared to the experimental T1/2 value 

of 220 K (Figure 2). This complex is distinct from the majority of the complexes in the data set, 

which predominantly contain six Fe–N bonds, since it contains six longer Fe–S bonds (Figure 2). 

The removal of this complex from the test set improves the performance of the RF-RFA KRR 

model, reducing the MAE to 46 K and improving correlation to experimental values with a 

Pearson’s r of 0.24 (Supporting Information Table S1 and Figure S2). The large effect of the outlier 

on RF-RFA KRR performance shows that when the ligand coordinating atoms of a complex differ 

from the nitrogen atoms present in the majority of the data set, RF-RFA KRR struggles to make 

reasonable predictions of T1/2 values.  
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Figure 2. Plots of transition temperatures (T1/2 values in K) predicted by (a) RF, (b) RF-RFA RF, 
and (c) RF-RFA KRR vs experimental (expt) T1/2 values of the 15 SCO complexes in the test set. 
These models were trained over a data set of 59 SCO complexes, with a total of 74 SCO complexes 
in the training and test sets. Representative structures corresponding to SCO complexes (refcodes: 
BAXJUI,129 PEJQIF,130 and WIHQIQ128) highlighted in orange, green, and red squares, 
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respectively, are shown as insets. Hydrogen, carbon, nitrogen, sulfur, chlorine, and iron are shown 
in white, gray, blue, yellow, green, and brown, respectively. The parity line is shown in solid gray 
in the plots. 
 

 

If we include the two high transition temperature compounds that were initially excluded 

from the data, one each in training and test sets, we see comparable training set performance but 

worsened test set performance (Supporting Information Table S1 and Figures S3–S5). In 

particular, inclusion in the test set of one of the outliers with T1/2 of 445 K leads to larger MAE 

values of ca. 85 K for RF or RF-RFA and 130 K for RF-RFA KRR (Supporting Information Table 

S1 and Figure S5).  

Next, we compare DFA-predicted T1/2 values and ML-predicted T1/2 values on the 15 SCO 

molecules in the ML test set relative to experimentally reported T1/2 values. We find that the ML 

model predictions of T1/2 values have much lower errors in comparison to experimentally reported 

T1/2 values than DFA-predicted T1/2 values do (Figures 2 and 3). The DFT MAE on the test set 

with outliers removed is highest at 512 K for TPSSh and lowest for M06-L at 162 K (Figure 3 and 

Supporting Information Table S2). Despite this better overall performance of M06-L, the larger 

spread in values from the modB3LYP (aHF = 0.10) and TPSSh functionals leads to them exhibiting 

a better Pearson’s r and Spearman’s r relative to M06-L, i.e., ca. 0.50 for TPSSh or B3LYP vs 

0.25 for M06-L (Figure 3 and Supporting Information Table S2). Further examination reveals that 

modB3LYP (aHF = 0.10) and TPSSh predictions have extreme outliers (refcodes: OSABOB131 and 

UXOHEW127) resulting in very large MAE values (Figure 3). While the DFA-predicted T1/2 values 

show MAE of up to ca. 500 K vs an MAE of 40 K observed for best-performing ML models, their 

Pearson's r and Spearman’s r are modestly better than the ML models (Figures 2 and 3 and 
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Supporting Information Tables S1–S2).  The DFA predictions on the larger training sets of ca. 60 

complexes are comparable to their predictions on the smaller test sets of 15 complexes, meaning 

that the choice of the test set complexes did not strongly affect DFA assessment (Figure 3 and 

Supporting Information Table S2 and Figure S6). Overall, the RF and RF-RFA RF ML models 

have mixed performance compared to DFAs (i.e., lower MAE, comparable Pearson’s r values, and 

slightly worse Spearman’s r values), but the clear advantage is in the dramatically lower cost for 

applying our ML models in comparison to the full DFT evaluation.  
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Figure 3. Plots of transition temperatures (T1/2 values in K) predicted by (a) modB3LYP (aHF = 
0.10), (b) TPSSh, and (c) M06-L vs experimental (expt) T1/2 values of the 15 SCO complexes in 
the test set. Representative structures corresponding to SCO complexes (refcodes: UXOHEW,127 
OSABOB,131 and WIHQIQ128) highlighted in orange, green, and red squares, respectively, are 
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shown as insets. Hydrogen, carbon, nitrogen, sulfur, and iron are shown in white, gray, blue, 
yellow, and brown, respectively. The parity line is shown in solid gray in the plots. 

 

3b. T1/2 predictions of ML models on a blind set of SCO complexes. 

We now aimed to test our trained ML models on SCO complexes from the SCO-95 data 

set where experimental T1/2 values were not available. To validate our method of estimation, we 

compared40 estimated T1/2 values as an average of low- and high-temperatures (low-T and high-T) 

of crystallization and found excellent agreement for this set of 74 SCO complexes, with a high 

Pearson’s r of 0.93 and Spearman’s r of 0.89 (Supporting Information Figure S7). Thus, over the 

remaining set of 19 SCO complexes from the SCO-95 data set where experimental T1/2 values are 

not reported, we were able to obtain estimated T1/2 values for 18 complexes. We could not obtain 

estimated T1/2 for one complex (refcode: JOTQAN132) because the high-temperature of 

crystallization for this complex was not reported. These 18 SCO complexes all have Fe–N bonds 

and ligands that contain hydrogen, carbon, and nitrogen, with some complexes additionally 

containing boron, oxygen, sulfur, and bromine (Supporting Information Figures S8–S9). Of these 

18 complexes, 8 of them exhibit two-step SCO behavior while the rest show gradual single-step 

SCO behavior (Supporting Information Figures S8–S9). 

We compare estimated experimental T1/2 values to the T1/2 predictions of the trained RF, 

RF-RFA RF, and RF-RFA KRR models on this blind test set of 18 SCO complexes for which 

experimental T1/2 values are not reported. T1/2 values predicted by the RF-RFA RF model trained 

on 59 SCO complexes (total of 74 complexes in training and test sets) show moderate correlation 

to estimated T1/2 values for the blind set, with a Pearson’s r of 0.25, Spearman’s r of 0.28, and 

MAE of 44 K (Figure 4 and Supporting Information Table S3). This performance is roughly 
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comparable to that on the original test set (i.e., test: MAE 40.5 K, Pearson's r = 0.34 and 

Spearman's r = 0.23, see Supporting Information Table S1). We observe that the RF-RFA RF 

model performs only slightly better than the RF model, and both these models outperform the RF-

RFA KRR model (Figure 4 and Supporting Information Table S3). The predictions from the KRR 

model show no correlation with estimated T1/2 values and have a large MAE of 104 K (Figure 4 

and Supporting Information Table S3). Consistent with prior observations, all ML models trained 

on the set of 61 SCO complexes, which includes an outlier with a large T1/2 value of 445 K, perform 

worse on the blind set of 18 SCO complexes (Supporting Information Table S3 and Figure S10).  
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Figure 4. Plots of transition temperatures (T1/2 values in K) predicted by the trained ML models: 
(a) RF, (b) RF-RFA RF, and (c) RF-RFA KRR T1/2 predictions vs estimated experimental (expt) 
T1/2 values of the 18 SCO complexes in the blind set. These models were trained on the 59 SCO 
complexes in the training set with a total of 74 SCO complexes across both training and test sets. 
Data points of SCO complexes that exhibit single-step and two-step SCO behavior are represented 
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with circles and squares, respectively. Representative structures corresponding to SCO complexes 
(refcodes: DUBFOY,133 NERDIA,134 and IZADUK31) are shown as insets, and their data points 
are highlighted with orange circle, green circle, and red square, respectively. Hydrogen, boron, 
carbon, nitrogen, oxygen, and iron are shown in white, pink, gray, blue, red, and brown, 
respectively. The parity line is shown in solid gray in the plots. 

 

One of the reasons that these 18 complexes lack reported T1/2 values is that they undergo 

two-step SCO. We expect ML-predicted T1/2 values to be in agreement with estimated T1/2 values 

only for complexes that show single-step SCO behavior because the models were trained on such 

complexes. Indeed, in the blind set of 18 complexes, we observe that for some of the complexes 

that exhibit two-step SCO behavior, ML-predicted T1/2 values are significantly different from the 

estimated T1/2 values (Figure 4 and Supporting Information Figure S8 and Table S4). For example, 

ML models considerably underestimate the T1/2 of an SCO complex (refcode: IZADUK31) that 

exhibits two-step SCO behavior, i.e., ML-predicted T1/2 of ca. 190 K vs estimated T1/2 of 300 K 

(Figure 4 and Supporting Information Table S4). However, for a smaller test set of 10 SCO 

complexes obtained after removing the complexes with two-step SCO behavior, RF-RFA RF and 

RF models show improved correlation to estimated T1/2 values with a Pearson’s r of 0.40 and 0.32, 

respectively (Supporting Information Table S5). We also observe that ML models strongly 

overestimate the T1/2 of a blind set complex (refcode: DUBFOY133) that contains boron atoms, i.e., 

ML-predicted T1/2 of ca. 250 K vs estimated T1/2 of 102 K (Figure 4). Further examination reveals 

that all the complexes in the training set that contain boron atoms show large T1/2 values (>180 K) 

which likely causes the larger ML-predicted T1/2 of DUBFOY. Excluding this complex leads to 

very strong correlation of RF and RF-RFA RF-predicted T1/2 values to estimated T1/2 values over 

the resultant 9 SCO complex set, with a Pearson’s r of 0.74 and 0.82, and Spearman’s r of 0.55 

and 0.67, respectively (Supporting Information Table S6 and Figure S11). 
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Finally, we compare ML T1/2 predictions on the blind set to DFA T1/2 predictions from the 

three best-performing functionals, i.e., modB3LYP (aHF = 0.10), TPSSh, and M06-L (Figures 4 

and 5). DFA T1/2 predictions show little correlation with estimated T1/2 values for the set of 18 

SCO complexes as quantified by a poor Pearson’s r of 0.03-0.08 and very large MAEs of up to 

400 K (Figure 5 and Supporting Information Table S3). Consistent with prior observations on the 

test set performance, M06-L performs slightly better than the other two DFAs, with a relatively 

small MAE of 179 K (Figure 5 and Supporting Information Table S3). However, we find that all 

three DFAs consistently fail at predicting the T1/2 of a complex (refcode: ECODIM135) which 

shows two-step SCO behavior, i.e., strongly negative DFA-predicted T1/2 values vs estimated T1/2 

of 174 K (Figure 5). While ML models show improved performance on a smaller set of 9 SCO 

complexes after removing those with two-step SCO behavior and with boron atoms, the DFA T1/2 

predictions show no correlation to estimated T1/2 values even over the smaller set (Supporting 

Information Tables S5–S6 and Figure S12). Overall, RF and RF-RFA RF models outperform the 

DFA approach in SCO complex transition temperature prediction across the SCO-95 data set, as 

confirmed through predictions on the set of SCO complexes for which experimental T1/2 values 

are not reported.  

https://doi.org/10.26434/chemrxiv-2023-mhb4c ORCID: https://orcid.org/0000-0001-9342-0191 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-mhb4c
https://orcid.org/0000-0001-9342-0191
https://creativecommons.org/licenses/by/4.0/


21 

 

 

Figure 5. Plots of transition temperatures (T1/2 values in K) predicted by the DFAs: (a) modB3LYP 
(aHF = 0.10), (b) TPSSh, and (c) M06-L T1/2 predictions vs estimated experimental (expt) T1/2 
values of the 18 SCO complexes in the blind set. Data points of SCO complexes that exhibit single-
step and two-step SCO behavior are represented with circles and squares, respectively. 
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Representative structures corresponding to SCO complexes (refcodes: GETSAC,136 REVCUS,137 
and ECODIM135) are shown as insets, and their data points are highlighted with orange circle, 
green circle, and red square, respectively. Hydrogen, boron, carbon, nitrogen, sulfur, and iron are 
shown in white, pink, gray, blue, yellow, and brown, respectively. The parity line is shown in solid 
gray in the plots. 

3c. Important features in making T1/2 predictions. 

The large number of RACs, i.e., 150 features (see Sec 2), relative to the number of 

complexes in our dataset makes it essential to identify the most important features to train 

transferable models. Identification of these features also provides insight in terms of their graph-

based proximity to the metal center as well as their electronic and geometric nature. The 

identification of these important features can be used to reveal design principles for the discovery 

of new SCO materials.  

We perform feature selection using RF-RFA with RF and KRR models and observe a better 

performance of the RF-RFA RF model than the KRR model  (see Sec 3b). We identify the 14 most 

important RAC features using an RF-RFA RF model by training it on T1/2 values of 74 SCO 

complexes obtained after removing two outliers (refcodes: ESOSOW124 and EXARAY123) from 

the set of 76 SCO complexes with experimentally reported T1/2 values (Figure 6 and Supporting 

Information Table S7). As in prior work94, we group features as metal-local and metal-distal, where 

metal-local features correspond to those within two bond paths of the metal, i.e., the metal, its first 

and second coordination spheres, while metal-distal features correspond to the third coordination 

sphere and the more distant global features (Figure 6). Analysis of model feature importance 

reveals that all selected features are metal-distal in nature and identifies global features to be more 

important than the more metal-proximal second and third coordination sphere features for 

predicting T1/2 values, despite an expectation that the variation of the second and third coordination 

sphere could drive significant changes in spin state energetics (Figure 6). We also find that 
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electronic features, i.e., nuclear charge (Z) and Pauling electronegativity (c), play a slightly more 

important role (i.e., over 55% of selected features are electronic in nature) than geometric features, 

i.e., topology (T), covalent radius (S), and identity (I), although the prediction of this property has 

a greater contribution of geometric effects than observed for the prediction of DFT-calculated spin 

states of a larger set of molecules94  (Figure 6). To ensure robustness in our observations to the 

method of feature selection, we compare to RF-RFA KRR models trained to obtain the most 

important features in the prediction of T1/2 values where 25 features are identified (Figure 6 and 

Supporting Information Table S7). Analysis of the selected RF-RFA KRR features reveals that ca. 

65% of RF-RFA RF-selected features are present in the KRR-selected feature set (Supporting 

Information Table S7). While RF-RFA KRR-selected features also identify global features to be 

most important, a small fraction of metal-proximal second coordination sphere features are also 

selected (Figure 6). Additionally, we observe comparable numbers of electronic and geometric 

features (52% vs 48%) in this feature set, confirming the robustness of our selected features to the 

ML model (Figure 6).  

 

Figure 6. (Left) Plot showing the fraction of metal-distal features and the fraction of electronic 
features selected by RF-RFA RF (red) and RF-RFA KRR (blue) models for the prediction of 
transition temperatures of 74 complexes in the SCO-95 data set. (Right) Pie charts of (top) the RF-
RFA RF and (bottom) RF-RFA KRR-selected features from the initial set of 150 features. Features 
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are grouped by the most metal-distal atoms: more distant, global features in gray, third 
coordination sphere features in orange, and second coordination sphere features in green. Within 
each connectivity distance category, the property (i.e., c, S, T, Z, or I) is indicated. Following our 
previous work,108,116 we have categorized c and Z as electronic features, with all remaining 
features categorized as geometric. 

 

To analyze how the models would perform if we included the outliers with higher transition 

temperatures, we also carried out RF-RFA with RF and KRR on all 76 complexes from the SCO-

95 data set. We observe that around 20 important features are selected by both models (Supporting 

Information Table S7 and Figure S13). While both models identify global features to be most 

important which is consistent with our observations from the set of 74 complexes, electronic 

features play a much more important role than geometric features, i.e., 64% vs 36% (Supporting 

Information Table S7 and Figure S13). Although all the results discussed correspond to a particular 

random split of the data, the results averaged from up to 1000 random splits are also found to 

largely be in agreement (Supporting Information Figure S14). These findings about feature 

importance can guide future SCO material design, since tuning the metal-distal global properties 

for a variety of Fe(II) complexes is expected to tune T1/2.  

4. Conclusions. 

 In summary, we trained three ML models to predict transition temperatures of SCO 

complexes in the previously40 curated SCO-95 data set. We performed feature selection using RF-

RFA to identify the most important features to train transferable models. Of the three ML models 

we studied, the RF and RF-RFA RF models performed comparably with moderate correlation to 

experimental T1/2 values.  From feature selection, we identified a strong emphasis on global 

features rather than the more metal-proximal second and third coordination sphere features for 
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predicting T1/2 values. We also found that electronic and geometric features contributed nearly 

equally to predicting SCO behavior. These observations emphasized exploring metal-distal 

contributions to molecules to fine-tune Fe(II) SCO design.  

 We compared the ML predictions to T1/2 predictions of DFAs for three previously 

identified40 best-performing DFAs, i.e., modB3LYP (aHF = 0.10), TPSSh, and M06-L. These 

functionals predicted SCO behavior of most complexes by correctly predicting their free energies 

of spin transition but with poor predictions of T1/2 values. We observed that the DFA T1/2 

predictions had much higher MAEs than the ML models albeit with relatively comparable 

Pearson’s r correlation between DFT and experimental T1/2 values as compared to that between 

ML T1/2 predictions and experimental T1/2 values. To further validate the ML model approach, we 

studied ML model predictions on the set of 18 SCO complexes for which experimental T1/2 values 

are not reported by estimating their T1/2 values from the average of low-T and high-T of 

crystallization. Upon excluding the SCO complexes that showed two-step SCO behavior and one 

containing boron, the RF-RFA RF model showed stronger correlation to estimated T1/2 values over 

the resulting set of 9 complexes with a Pearson’s r of 0.82. However, DFA-predicted T1/2 values 

had large errors and showed no correlation to estimated T1/2 values over the set of 18 SCO 

complexes nor over the smaller set of 9 SCO complexes which solely exhibit single-step SCO 

behavior. Overall, our study of ML and DFA T1/2 predictions of Fe(II) SCO complexes in the SCO-

95 data set highlights that random forest models show reasonable performance comparable to some 

of the best performing density functionals at much lower computational cost. We expect this 

performance to improve as larger datasets of experimental SCOs are curated. Alternatively, 

inclusion of DFT-predicted quantities from best-performing functionals could also be used to 

increase model performance, albeit at higher computational cost.  
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