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ABSTRACT: Nogalamycin (NOG) is a member of the anthracycline glycoside natural products; no total syntheses have yet 
been reported and there is minimal understanding of how the aglycone substitution pattern and the identities of the A- and 
D-ring sugar impact anticancer activity and toxicity. This paper reports progress towards a modular approach to NOG that 
could enable systematic structure-activity relationship studies. Key steps include a regioselective benzyne cycloaddition and 
a reductive ring-opening to assemble a versatile AB core for analogue synthesis.

   The anthracycline glycoside natural products are a class of 
molecules with potent antineoplastic activities that have 
attracted attention over the years for treatment of cancer. 
FDA-approved drugs in this class include doxorubicin 
(DOX), daunorubicin, epirubicin, and idarubicin (Scheme 
1A), but cardiotoxicity and multidrug resistance limit their 
use as chemotherapeutics.1-4 While DOX5 surpassed a 
market value of $1.08 billion in 2020,6 its toxicity and 
unclear mechanism of action7,8 make the search for less 
toxic compounds with comparable activity attractive.  
   Nogalamycin (NOG), isolated from Streptomyces 
nogalator, contains a unique D-ring bicyclic amino sugar 
and an A-ring nogalose sugar, with the overall structure 
resembling a dumbbell. The tetracyclic core is proposed to 
intercalate DNA, with the D-ring sugar binding in the major 
groove and the A-ring sugar in the minor groove.9 A 
cocrystal structure of NOG and a DNA hexamer suggest 
unfolding of the hexamer to bind to NOG, followed by 
adoption of a distorted helix post-binding. While the exact 
details of the mechanism-of-action are unclear, it is known 
that binding of NOG to an up-stream site can induce highly 
specific topoisomerase I-mediated DNA cleavage. NOG also 
inhibits Gram-positive bacteria and shows promising 
cytotoxicity against L1210 and KB cell lines in vitro; 
however, it shows only weak activity against solid tumors 
in vivo and high toxicity in mammalian subjects. Menogaril 
(MEN, Scheme 1A) is a semisynthetic derivative of NOG10 
that lacks the A-ring ester and sugar; the weaker binding of 
MEN to DNA may be due to the latter circumstance. While 
NOG and other anthracyclines are type II topoisomerase 
inhibitors, MEN selectively inhibits type I topoisomerase. 
MEN successfully entered Phase II clinical trials against 
non-Hodgkin lymphomas,11 but no other NOG analogs have 
been reported in the clinic. We were interested in 
developing a modular approach to NOG that would enable 

systematic study of the impact of the identity of A- and D-
ring sugars on the anti-cancer activity and toxicity of new 
analogues. 
   A number of synthetic approaches towards NOG and MEN 
have been reported,12-26 culminating in an enantioselective 
synthesis of MEN by Terashima in 198819,20 and a racemic 
synthesis by Hauser in 1991.26 However, while there is no 
reported total synthesis of NOG, there are approaches to the 
simpler analogue MEN.19-20,25  Terashima used a Diels-Alder 
cycloaddition between a CDEF-ring quinone fragment and 
an AB-ring diene to furnish MEN with 28 steps in the longest 
linear sequence. Hauser26 employed a key Hauser 
annulation to give racemic MEN with a longest linear 
sequence of 30 steps and published an enantioselective 
synthesis of the DEF-ring system in 2000.27 Related model 
studies towards the preparation of the CDEF fragment 
include work by the groups of Krohn12-14 and Franck,15 while 
strategies to forge the anthracycline core were reported by 
Wulff.28,29 The VanNieuwenhze group achieved the most 
advanced partial synthesis of NOG30 using a late-stage 
convergent synthesis involving a key Hauser annulation. 
Despite this success, approaches to the shared CDEF ring of 
MEN and NOG are lengthy and scaffold diversification must 
be done early in the synthesis. From a practical standpoint, 
late-stage installation of the A and D-ring sugars would 
allow easier access to diverse analogs. Similarly, common 
approaches to the aglycone core lack versatility, as Hauser 
annulation is limited to chemistries tolerant of the pre-
installed phthalide and Michael acceptor, while Diels-Alder 
approaches require electronic matching for high selectivity. 
A more efficient route to install as much functionality as 
possible in a few steps would be enabling. 

Our goal is to develop a modular, convergent approach to 
NOG to provide opportunities to probe structure-activity  
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Scheme 1. A) Representative anthracycline glycosides. B) 
Retrosynthetic analysis of nogalamycin. 
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relationships in a straight-forward manner. This would 
enable systematic study of how the A- and D-ring sugars, as 
well as substitution on the aglycone core,17-21 impacts both 
the desirable and off-target activities. Our proposed 
retrosynthesis of NOG (Scheme 1) involves a three-
fragment convergent approach that couples the 
anthracycline core 2, the A-ring sugar (nogalose 3 in NOG) 
and a nogalamine aminosugar 4. The final step is inspired 
by the biosynthetic pathway, where native SnoK or an 
enzyme modified by directed evolution forges the 
challenging Caryl–Cglycoside bond in 1.32 While a bold strategy, 
postponing glycosylation until the penultimate steps allows 
greater flexibility for efficient analog preparation, where 
appending any accessible sugar or aminosugar to the 
aglycone can be explored.  
   A Ni-catalyzed cross-electrophile coupling (XEC) between 
5 and 633 followed by cyclization via EAS forms 2. The aryl 
aldehyde AB-ring fragment 6 is traced back to the oxa-
benzonorbornadiene (OBD) 9, obtained from a 
regioselective boron-directed benzyne cycloaddition 
between benzyne precursor 10 and furan 11.34 The 
iodotriflate 10 is accessed from commercially available 
diiodobenzoic acid 12.  

   The benzyne cycloaddition strategy to construct the AB 
ring (Scheme 2) commenced with esterification of 12 and 
MOM protection of the phenol to afford 13 in 90% yield 
over the 2 steps. Magnesium-halogen exchange and 
trapping with trimethyl borate gave boronic acid 14, which 
was carried forward without purification due to its 
insolubility. MOM deprotection and formation of the 
boronic ester delivered 15, which was characterized and 
isolated in a 65% yield over the three-step sequence. 
Formation of the benzyne triflate precursor 10 proceeded 
smoothly in 82% yield. In situ formation of the benzyne 
utilized the Turbo Grignard iPrMgCl•LiCl; trapping with 
furan 11 gave 16 as the major regioisomer in 60% yield 
(10.1:1 rr), plus a small amount of a minor regioisomer 16a 
(not shown). The inseparable OBD regioisomers were 
carried forward into the next step.  
 
Scheme 2. Synthesis of OBD intermediate 9. 
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   Oxidation of the boronic ester of 16 with urea hydrogen 
peroxide (UHP) and separation of the desired OBD 
regioisomer 17 was followed by methylation of the phenol 
to furnish 9 in 77% yield over the two steps. This oxidation-
methylation strategy proved advantageous, as removal of 
the boronic ester rendered purification of the later 
intermediates much easier and a free phenol could later be 
easily accessed for the B ring.  
   Despite the wealth of literature on the ring-opening of 
OBDs, there are few reported methods capable of accessing 
the substitution required for NOG. Most reported OBD ring-
openings introduce substitution on the cyclohexane ring 
located β to the newly generated alcohol;35-37 anthracyclines 
typically do not have substitution at this position. Thus, we 
opted to first synthesize a model OBD 18 (Scheme 3) to 
evaluate the likelihood of success in the application of 
known literature conditions to the advanced OBD scaffold 
that is needed for NOG. 
   Initial attempts to open the OBD 18 using Lauten's Ni-
catalyzed conditions35 gave a variety of undesired products, 
while Pd-catalyzed conditions reported by Cheng gave a 
99% yield of the exo-alkene 19 (Scheme 3A).36 Variations on 
the Cheng conditions (see the Supporting Information for 
details) still favored isomerization. Thus, we shifted our  
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Scheme 3. A) Pd-catalyzed OBD ring-opening using a model 
compound. B) Efforts using Sm-mediated OBD ring-
opening. C) Successful OBD ring-opening with advanced 
NOG AB ring scaffolds. 
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approach and took inspiration from Molander’s reductions 
of vinyloxiranes to allylic alcohols.38 We hypothesized that 
an anionic ring-opening to eliminate the C–O bond of the 
OBD would circumvent formation of the undesired 
regioisomer. Applying a modified version of Molander’s 
conditions (Scheme 3B) to 18 gave recovered 18 and the 
naphthalene 21 in a 6:1 ratio. While the production of 21 
was mitigated using H2O as a cosolvent, ligation of H2O to 
SmI2 generated a mixture of reducing SmI2 species, which 
gave epoxide 22 and overreduction to 23. Use of unligated 
SmI2 in THF/MeOH gave no reaction. The Baran group used 
tris(pyrrolidino)phosphoramide (TPPA) as an alternative 
to HMPA as a ligand in a SmI2 electroreduction of arenes.39 
Treatment of the actual substrate 16 with TPPA/SmI2 in 
THF/MeOH still gave competing overreduction and 
recovered starting material.  
   Given the challenges with opening 18 or 16 in the desired 
manner, attention was turned to employing the exo-alkene 

19 obtained in Scheme 3A as the starting OBD. Gratifyingly, 
treatment of 19 with TPPA/SmI2 in THF/MeOH (Scheme 
3C) gave remaining 19 and the desired 20 in a 1.6:1.0 ratio 
with no observed overreduction or aromatization. The 
more functionalized 26 gave no product, likely due to the 
empty p orbital on B. However, anisole 27 gave a 27% yield 
of the desired 28, along with 13% of the isomer 29 and 19% 
remaining 27. Further optimization was not carried out at 
this point, but will be pursued in the application of this 
strategy to the synthesis of other anthracycline glycosides 
and their analogues. 
   With a viable approach in hand to access intermediates 
that could be used to elaborate the AB-ring in a flexible 
manner, we next prepared the D-ring fragment and the A-  
 
Scheme 4. A) Synthesis of the D ring aryl bromide fragment. 
B) Synthesis of nogalose 3. C) Synthesis of nogalamine 4. 
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and D-ring sugars of NOG (Scheme 4). The D-ring fragment 
involved Boc protection and methylation of gentisic acid 30 
to afford 31. Directed ortho-lithiation40 was unsuccessful 
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for arene bromination, perhaps due to tight chelation of the 
aryllithium to the -OBoc and ester groups. While arylmag- 
nesium bases are not as well-studied for ortho- lithiation, 
directed magnesiation of 31 with a TMPMgCl·LiCl complex 
successfully delivered 32 in 52% yield (Scheme 4A).41 
   Finally, the nogalose 3 and nogalamine 4 sugars were 
prepared from modifications to commercially available L-
rhamnose and precedented sugar chemistry, respectively 
(Scheme 4B-C). L-Rhamnose42 was first converted to the O-
benzyl glycoside and protected as the acetonide 33. 
Oxidation at the C4 position gave ketone 34, enabling the 
introduction of the C3-methyl substituent by kinetic 
deprotonation and trapping with MeI to give 35. Acetonide 
removal and hydride reduction directed by the C3-OH 
furnished triol 36. Global methylation and benzyl 
deprotection by catalytic transfer hydrogenation gave 3.  
   Synthesis of the nogalamine fragment 4 began with Noyori 
asymmetric reduction of achiral 37 to give 38, followed by 
oxidative ring expansion via an Achmatowicz reaction to 
yield dihydropyranone 39 (Scheme 4C).43 Tang’s chiral 
catalyst-directed acylation and Pd-catalyzed glycosidation 
strategies afforded intermediate 41 as an 8:1 mixture of α:β 
anomers.44 Luche reduction, epoxidation and ring-opening 
with HNMe2 afforded 43 in 16% yield over the three-step 
sequence. A final debenzylation is all that is required for the 
nogalamine sugar 4, but at this stage, the alcohol was left 
protected as the benzyl ether. 
   In conclusion, we have successfully accessed a 
functionalized OBD as an AB-ring precursor for NOG and 
analogues through a highly regioselective benzyne 
cycloaddition strategy to give an oxa-benzonorbornadiene 
(OBD) A-ring fused to a functionalized aromatic B-ring. A 
new variation on a SmI2-mediated ring-opening gave 
regioselective ring-opening of the OBD to furnish a 
precursor for the A ring of NOG. More importantly, our 
studies on reductive ring-opening of the OBD led to several 
other platforms that could be readily elaborated to novel 
NOG analogues for SAR studies. Ongoing studies are 
implementing our proposed convergent three-fragment 
strategy to couple the AB-ring to the D-ring via XEC and a 
carbonylative intramolecular Friedel-Crafts reaction. Late-
stage glycosylations of both the A- and D-ring sugars will be 
followed by biocatalysis with SnoK to close the E-ring and 
afford NOG. More excitingly, demonstration of this modular 
synthetic strategy will afford a great degree of flexibility to 
probe the interplay of the appended sugars or aminosugars 
on analog activity.  
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