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We present a Monte Carlo approach for performing titration simulations in the canonical ensemble. The
standard constant pH (cpH) simulation methods are intrinsically grand canonical, allowing us to study the
protonation state of molecules only as a function of pH in the reservoir. Due to the Donnan potential
between a system and an (implicit) reservoir of a semi-grand canonical simulation, the pH of the reservoir can
be significantly different from that of an isolated system, for an identical protonation state. The new titration
method avoids this difficulty by using canonical reactive Monte Carlo algorithm to calculate the protonation
state of macromolecules as a function of the total number of protons present inside the simulation cell. The pH
of an equilibrated system is then calculated using a new surface insertion Widom algorithm, which bypasses
the difficulties associated with the bulk Widom particle insertion for intermediate and high pH values. To
properly treat the long range Coulomb force, we use Ewald summation method, showing the importance of
the Bethe potential for calculating pH of canonical systems.

I. INTRODUCTION

The stability of colloidal particles in aqueous suspen-
sions is intrinsically connected with their surface charge
density, which is controlled by the pH of solution. Sim-
ilarly the activity of many biologically relevant proteins
and polyelectrolytes is controlled by solution’s pH and
ionic strength1–18. Quantitative understanding of charge
regulation in such complex systems is, therefore, of a
paramount importance in a wide range of industrial and
medical applications. For some simple colloidal systems
with a regular distribution of surface active groups, one
can use the Poisson-Boltzmann theory with the charge
regulation boundary condition to study the particle pro-
tonation state19–32. However, this approach breaks down
for suspensions containing multivalent counterions or
when dealing with flexible molecules, such as proteins
or polyelectrolytes, whose three dimensional conforma-
tion is intimately coupled with the protonation state of
the molecule. For such systems one is forced to rely on
computer simulations33–37.

pH is defined as the negative decadic logarithm
of activity, aH = cHe

βµex
H , of hydronium ions,

pH=− log10(aH/c
⊖), where c⊖ = 1 M is the standard ref-

erence concentration, β = 1/kBT , and µex
H is the excess

electrochemical potential. The constant pH (cpH) Monte
Carlo simulation method is a widely used approach for
generating titration curves in systems undergoing pro-
tonation/deprotonation reactions38. However, an indis-
criminate application of this method poses a fundamental
problem. In cpH simulations, entities such as proteins,
colloidal particles, or polyelectrolytes are confined within
a simulation box, while protons and ions have the free-
dom to exchange with an acid and salt in an implicit
external reservoir34,35. Consequently, the cpH simula-
tion method is inherently semi-grand canonical. Dur-
ing the course of a cpH simulation, a proton is intro-
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duced into the system from an external reservoir held
at a predetermined pH. To maintain charge neutrality
within the simulation cell, one of the cations or pro-
tons within the bulk of the cell is arbitrarily removed.
However, this arbitrary removal lacks adherence to the
principle of detailed balance, potentially yielding inac-
curate outcomes39,40, except in cases where the system
contains a substantial amount of salt and is highly diluted
in polyelectrolyte/protein. Fortunately, it is easy to rec-
tify the standard cpH algorithm34,35 by incorporating a
protonation step alongside a simultaneous grand canon-
ical insertion of an anion. Conversely, a deprotonation
step can be paired with a simultaneous grand canonical
removal of an anion. This adjustment restores the de-
tailed balance of the cpH algorithm, ensuring its internal
consistency. We notice, however, that the simulation cell
of such semi-grand canonical system will have a differ-
ent mean electrostatic potential from that of the external
reservoir. This is know as the Donnan potential. There-
fore, the cpH simulation methods will allow us to predict
the charge of polyelectrolyte only as a function of pH in
the reservoir. Due to the presence of the Donnan poten-
tial, however, the pH of the reservoir, can be significantly
different from that of an isolated system, for an identical
protonation state40,41. Thus, if one compares the titra-
tion curves, in which, say, the charge of colloidal parti-
cles is plotted as a function of the pH of the reservoir,
with the titration curves of an isolated (canonical) sys-
tem, there can be very large difference between the two –
in particular for large volume fraction suspensions of low
ionic strength40. The difference between the two ensem-
bles disappears in the limit or large ionic strength. This,
perhaps, is the reason why this problem was not noticed
previously – since most cpH simulations of proteins are
performed at physiological concentrations and low pro-
tein volume fractions, when the difference between the
two ensembles disappears. In fact, one can easily relate
the pHc of a canonical system, in which the number of
ions and protons is the same as the averages obtained
using a semi-grand canonical simulation with a reservoir
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of pHgc, using equation40,41

pHc = pHgc +
βφD

ln(10)
, (1)

where φD is the Donnan potential between the semi-
grand canonical system and its external reservoir. We
note, however, that the standard implementations of
cpH simulations do not provide us with the value of
the Donnan potential since it cancels out in the pair
insertion/deletion moves used to preserve the charge
neutrality during the simulation34,35. Recently, how-
ever, we have developed a new reactive grand canon-
ical MC-Donnan (rGCMCD) method, which allows us
to determine the Donnan potential directly within the
simulation40, allowing us to calculate both the titration
isotherms of canonical and semi-grand canonical systems
simultaneously – showing that for systems of low colloidal
volume fraction and low ionic strength, the number of
deprotonated groups can be 100% larger in an isolated
system40,41 compared to a system connected to a reser-
voir of exactly the same pH.

To perform rGCMCD simulations requires knowledge
of the chemical potential of all ions present in the reser-
voir. This can be obtained using Widom’s particle inser-
tion method or by performing a separate grand canoni-
cal MC simulation just for the reservoir. There is also
an additional complication that the Donnan potential
must be calculated self-consistently during the simula-
tion. Clearly, it is desirable to be able to obtain the
titration curves directly for an isolated (canonical) sys-
tem – without going through a semi-grand canonical al-
gorithm. The difficulty is that in a canonical reactive
MC simulation, one does not control the pH of the sys-
tem, instead the total number of ions and protons present
inside the simulation cell is specified. The simulation
then determines how many of the protons will remain
free and how many will be associated with the polyelec-
trolyte monomers. After the equilibrium is established,
one can use Widom’s particle insertion method42,43 to
calculate the excess chemical potential of protons:

µex = −kBT ln (⟨exp(−β∆E)⟩0) , (2)

where ∆E is the energy difference between a system
with a virtual proton and without. The subscript 0 on
the brackets indicates that the sampling for calculating
the average is performed using the unperturbed system,
without the virtual proton. To obtain pH, however, one
also needs the average concentration of free hydronium
ions inside the cell. For intermediate and large pH, how-
ever, there might not be any free hydroniums present
inside the simulation cell at all, preventing us from ac-
curately calculating the pH of the system. To overcome
this difficulty, in this paper we will introduce a new sur-
face Widom insertion algorithm to easily and accurately
calculate the pH of a canonical system undergoing pro-
tonation/deprotonation reactions.

The paper is organized as follows: In section II
we briefly review the canonical reactive MC algo-

rithm36,37,39, in section III we preset a new surface
Widom insertion method and discuss the modification
of the usual Ewald summation necessary to properly ac-
count for the electrostatics of an infinite charge non-
neutral system. We will also compare the titration
isotherms calculated using the canonical simulation algo-
rithms with the ones obtained using rGCMCD method.
Finally, the discussion and conclusions will be presented
in the section IV.

II. REACTIVE CANONICAL METHOD

Consider a polyelectrolyte or a colloidal particle with
monomers that can undergo a protonation deprotonation
reaction:

HA ⇄ H+ +A− (3)

with acid dissociation constant constant Ka.

b)

a)

FIG. 1: The canonical reactive MC moves. Left pan-
els show “old” and right panel “new” configuration: a)
shows a protonation move – a proton from bulk adsorbs
to the site. b) shows a deprotonation move, proton des-
orbs from the surface and forms a hydronium in the bulk.
The red spheres are hydronium ions and blue spheres are
coins. Salt ions are not shown.

In a canonical reactive MC simulation there are two
types of movements: the bulk movements in which posi-
tions of ions are randomly changed with the acceptance
probabilities given by the usual Metropolis algorithm;
and reaction protonation/deprotonation moves, see Fig.
1. To construct a MC algorithm for the reaction moves,
we first observe that the acid dissociation constant is the
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inverse of the two body partition function for the forma-
tions of a HA molecule. Thus, when a proton is trans-
ferred from the bulk to the surface, where it will react
with a surface group A−, there are two changes that oc-
cur in the system: change of electrostatic energy ∆E
and change in the chemical energy kBT ln(Ka/c

⊖). The
probabilities for the old (o) and new (n) configurations
during a protonation move are proportional to:

Πo ∼ V NH

NH!
e−βENH ,

Πn ∼ V NH−1

(NH − 1)!
e−βENH−1−ln Ka

c⊖ , (4)

where NH is the number of free hydronium ions inside
the simulation cell, and V is the volume of the cell. For
a deprotonation move, we have

Πo ∼ V NH

NH!
e−βENH ,

Πn ∼ V NH+1

(NH + 1)!
e−βENH+1+ln Ka

c⊖ . (5)

Using the usual detailed balance argument, the accep-
tance probabilities for the deprotonation and protonation
moves can now be written as:

Pd = min

[
1,

VKa

NH + 1
e−β∆E

]
,

Pp = min

[
1,

NH

VKa
e−β∆E

]
. (6)

If during the deprotonation move the new coordinate falls
into the interior of a colloidal particle, the ∆E is counted
as infinite, and the move is rejected. The change in
electrostatic energy during each move is calculated us-
ing Ewald summation with tin foil boundary condition.
The Coulomb energy of a periodically replicated charged
system is:

E =
1

2

∑′

ij

∑
nnn

qiqjerfc(κe|rrri − rrrj − Lnnn|)
ϵw|rrri − rrrj − Lnnn|

+
∑
k ̸=0

2πexp(−kkk2/4κe)

ϵwV kkk2
(A(kkk)2 +B(kkk)2)

−
∑
i

q2i κe

ϵw
√
π
, (7)

where

A(kkk) =
∑
i

qi cos (kkk · rrri) , (8)

B(kkk) =
∑
i

qi sin (kkk · rrri) ,

nnn = (n1, n2, n3) are integers, and kkk = ( 2πL n1,
2π
L n2,

2π
L n3)

are the reciprocal lattice vectors for the cubic simulation

box of side length L and volume V = L3. The prime
on the sum indicates that i = j term is excluded from
the summation when n = 0. The electrostatic energy
is invariant with respect to the damping parameter κe,
which we set to κe = 5/L, where L is the side length of
the cubic simulation cell. With this choice of κe, the sum
over n can be replaced by the simple periodic boundary
condition for the short range (erfc term) contribution to
the electrostatic energy.

FIG. 2: A colloidal particle inside the simulation cell.
The blue sites are protonated. The gray spheres are
the hydronium ions. The arrows indicate protona-
tion/deprotonation moves.

III. SURFACE WIDOM METHOD

To perform the simulations we use a cubic simulation
box of side length L that contains either colloidal parti-
cles, polyelectrolyte, or protein molecules in a completely
deprotonated state. In the present discussion we will use
a primitive model, which treats water as a uniform di-
electric continuum of Bjerrum length λB = q2/kBTϵw =
7.2 Å, where q is the proton charge and ϵw is the dielec-
tric constant of water. There is, however, no difficulty
to modify the algorithm to account for the explicit water
or to combine it with a molecular dynamics simulation.
The simulation cell also contains fully dissociated salt
and acid ions — H3O

+, Cl–, and Na+. We start the
simulation with the number of H3O

+ equal to the num-
ber of negatively charged polyelectrolyte monomers. We
then run the reactive canonical MC algorithm described
above to obtain the equilibrium number of protonated
groups and the number of free hydronium ions, see Fig.
2 . Note that in a canonical simulation we do not have
a direct access to the pH, which will be determined by
the activity of hydronium ions in equilibrium. This can
only be obtained using a separate Widom like particle
insertion simulation that will allow us to probe the elec-
trochemical potential of hydronium ions after the equi-
librium has been established. To change pH inside the
system, we can add a base such as NaOH. Since the
spontaneous hydrolysis of water is so weak, addition of
1 base molecule will result in the formation of one water
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molecule, and an appearance of a Na+ ion inside the sim-
ulation box. The net effect is, therefore, a replacement
1H+ → 1Na+. We can then rerun the simulation to ob-
tain the new protonation state. Repeating this process
until all hydroniums are replaced by Na+, we can cover
the full pH range.

The crucial part of a canonical titration MC is the cal-
culation of pH after the system has equilibrated. The
standard Widom particle insertion method is usually not
very practical, since to calculate the pH we need the
whole electrochemical potential inside the simulation cell,
and not just its excess part. At moderate to high pH,
the interior of the simulation cell might not have any
free hydronium ions at all, preventing us from accurately
calculating the electrochemical potential and the activ-
ity of hydronium ions. On the other hand, since the
condensed protons are in equilibrium with the hydro-
nium ions in the bulk and, therefore, have exactly the
same electrochemical potential, we can use them to ac-
curate calculate the pH inside the system. There is, how-
ever, an additional complication when working with in-
finitely replicated Coulomb systems. The Ewald summa-
tion, effectively leads to a macroscopic crystal composed
of replicated microscopic simulation cells. In general, a
simulation cell will have a net electric dipole moment
MMM =

∑
i qirrri and a finite second moment of the charge

density tensor. From the electrostatics it is well known
that such uniform polarization is analogous to the surface
charge densityMMM ·nnn/V , where nnn represents the unit nor-
mal to the boundary of the macroscopic spherical crystal,
see Fig. 3. This effective surface charge, will lead to elec-
tric field in the interior of the crystal. Similarly the fact
that in general the simulation cell has a non-zero moment
of the charge density tensor, results in a dipolar layer at
the surface of the macroscopic crystal44 – so that interior
of the crystal has different mean electrostatic potential
compared to the exterior40. This potential difference is
known as the Bethe potential and for a charge neutral
systems is given by:

ϕB = − 2π

3ϵwV

∑
i

qirrri
2. (9)

The derivation of this results within Ewald formalism is
provided in the Appendix A. When the macroscopic crys-
tal is “wrapped” in a tin foil, the induced image charge
will kill off the surface contribution to the electrostatic
potential. In general, it is known that for liquid state sys-
tems, calculations based on Ewald summation with tin
foil boundary condition tend to be more accurate than
the ones based on “vacuum” boundary conditions. How-
ever, in order to implement the Widom particle insertion
method the system must be “unwrapped” from the tin
foil, so that a proton can be brought from outside into the
simulation cell. As the proton enters the crystal it will
experience a jump in the electrostatic potential given by
qϕB . Note, that the Bethe potential is not constant – it
depends on the instantaneous positions of all the charges
inside the simulation cells.

To make the discussion more concrete, consider a col-
loidal particle with Z active surface groups placed at the
center of a cubic simulation cell, see Fig. 2. The cell also
contains some number of H3O

+, Cl–, and Na+ ions and
is overall charge neutral. We now run the reactive MC
simulation to calculate how many of Z surface groups
will become protonated. After the system has relaxed
to equilibrium, we find that on average N of the surface
sites are protonated. The canonical partition function of
a colloidal particle with N protonated sites can be writ-
ten as:

Q(N) =
1

N !
Tr

[
e−β(EN+NkbT ln(Ka

c⊖
)
]
, (10)

where the Tr refers to the trace over all the microstates
of both ions and protons inside the system. The elec-
trochemical potential of a proton is the difference in free
energy of two systems: one in which the colloidal particle
has N protonated sites and the other N + 1 protonated
sites,

βµH = − ln
Q(N + 1)

Q(N)
. (11)

We can rewrite this as

e−βµH =
c⊖Z

Ka (N + 1)

〈
e−β(∆E+qϕB)

〉
0
, (12)

where ∆E is the difference in electrostatic energy be-
tween systems with N and N+1 protonated groups, and
ϕB is the Bethe potential that the virtual proton gains af-
ter entering into the Ewald “crystal”. Since Ewald sum
periodically replicates the whole simulation cell, it will
also replicate the virtual proton. A periodic charge non-
neutral system will have an infinite energy. To avoid this,
together with the virtual proton, in the calculation of
E, we also introduce a uniform neutralizing background,
which regularizes the electrostatic energy calculation, see
Appendix A. The average in Eqn. (12) is calculated us-
ing the ensemble average of the unperturbed (without
virtual proton) system. We notice that the left hand side
of Eqn. (12) is c⊖/aH+. Taking the decadic logarithm of
the two sides of this equation, we finally obtain

pH = − log10

(
N + 1

Z

)
+ pKa +

log10

(〈
e−β(∆E+qϕB)

〉
0

)
, (13)

where the subscript 0 on ⟨...⟩0 indicates that the sampling
for the averages and the system evolution between the
virtual proton insertion events are performed using the
energy of the unperturbed system.
The surface Widom insertion method brings a virtual

proton from infinity into contact with a randomly se-
lected colloidal active site; if the site is empty (has charge
−q), it “reacts” with the virtual proton and its charge
changes to 0 and the difference in electrostatic energy
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between the protonated state and the original deproto-
nated state, ∆E, is calculated using Eqn. (A9). The
average in Eqn. (13) is obtained using 5,000 uncorre-
lated insertion events. If the site is already protonated,
the virtual proton will overlap with the real proton, re-
sulting in infinite ∆E. The virtual protonation process
does not affect the actual state of the site and is used
just to probe the chemical potential.

FIG. 3: Spherically replicated simulation cell, forming a
macroscopic crystal. Each cell has a net electric dipole
moment and a non-zero second moment of the charge
density tensor. This results in a dipole layer and sur-
face charge at the crystal boundary, producing an elec-
trostatic potential in the crystal’s interior.

To validate the new approach, we used it to calculate
the titration isotherms of 11% volume fraction suspen-
sion of nanoparticles of radius 60 Å with Z = 600 surface
sites. For simplicity, we placed only one nanoparticle into
the simulation cell, however, there is no conceptual diffi-
culty in putting as many particles as is desired into the
simulation cell. The simulation was performed inside a
cubic cell, which in addition to the nanoparticle also con-
tained 600 hydronium ions and four Na+ and Cl– ions,
corresponding to the concentration of 1mM of salt. To
calculate the titration isotherm, we ran the reactive MC
simulation with the acceptance probabilities for protona-
tion/deprotonation moves given by Eq. (6). After equili-
bration, the number of protonated sites was determined.
To make sure the system was well equilibrated, we used
1 million particle moves. To check equilibrium we also
monitored the energy of the system. After equilibration,
we performed insertions of a virtual proton to calculate
the pH using the surface Widom insertion method, Eq.
(13). Virtual insertions were performed at interval of
10,000 particle moves, to make sure the events were un-
correlated. We then replaced one of the initial 600 hydro-
niums by Na+ and repeated the calculation – resulting
in a slightly more negatively charged nanoparticle and
a slightly higher pH. We repeated this procedure until

almost all the hydronium ions were replaced by Na+,
resulting in a nanoparticle with no protonated surface
groups. We can summarize the sequence of calculations
as follows:

1. Randomly distribute fully deprotonated colloidal
particles, protons, and other ions inside the sim-
ulation cell.

2. Perform canonical moves and protona-
tion/deprotonation moves using Eq. (6) to
reach the equilibrium.

3. Attempt a surface protonation by a virtual proton.

4. Calculate the energy difference between protonated
and deprotonated states and record the value of
e−β(∆E+qϕB).

5. Perform 104 canonical and protona-
tion/deprotonation particle moves to fully
discorrelate the system.

6. Repeat step 2

7. After 5000 virtual proton insertion attempts, cal-
culate

〈
e−β(∆E+qϕB)

〉
0
and pH using Eq. (13).

8. Randomly replace one of the protons by Na+ and
go to step 5. It is possible to replace more than one
protons by sodium ions, depending on how smooth
the titration curve is desired.

9. When there are no protons left in the system, the
simulation stops.

The titration isotherm calculated using this procedure
is presented in Fig. 4. As a benchmark to check the accu-
racy of the new canonical titration method, we compared
our results with the ones calculated using rGCMCD sim-
ulation40. We see a perfect agreement between the two
methods. We have then repeated the calculation for a
system with 50mM of salt. Again the agreement between
the two simulation methods is excellent, see Fig. 5

0 5 10
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-200

-150

-100

-50

0

σ
 [

m
C

m
-2

]

rGCMCD
Canonical

FIG. 4: Canonical titration of a suspension of 11% vol-
ume fraction (circles), containing nanoparticles of radius
60 Å with Z = 600 surface groups and 1 mM salt.
The solid green curve is the benchmark calculated us-
ing rGCMCD simulation method of ref.40.
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FIG. 5: Canonical titration of a suspension of 11% vol-
ume fraction (circles) containing nanoparticles of radius
60 Å with Z = 600 surface groups and 50 mM salt.
The solid green curve is the benchmark calculated us-
ing rGCMCD simulation method of ref.40.

IV. CONCLUSIONS

We have introduced a new Monte Carlo approach to
calculate the titration isotherms in a canonical ensem-
ble. Unlike conventional constant pH (cpH) simulation
methods, which inherently operate in the grand canonical
ensemble and assess the protonation state of molecules
solely with respect to the pH within the reservoir, our
canonical titration method works directly with the iso-
lated system. The simulation method employs a reac-
tive Monte Carlo algorithm to determine the protonation
state of macromolecules in relation to the total num-
ber of protons present within the canonical simulation
cell. To compute the pH of a fully equilibrated system,
we have developed a new surface insertion Widom algo-
rithm, which effectively circumvents the challenges asso-
ciated with the bulk Widom particle insertion, particu-
larly for extremely low hydronium ion concentrations. To
accurately account for the long-range Coulomb forces, we
have adopted the Ewald summation method, highlight-
ing the significance of the Bethe potential in the pre-
cise calculations of pH of canonical systems. Although
the present simulation method was developed within the
framework of the primitive model, in which water is
treated as a dielectric continuum, there is no conceptual
difficulty of extending it to more realistic atomistic sim-
ulations. In this respect, the canonical approach is much
easier to implement than the alternative grand canonical
methods, which require a simultaneous insertion of an
anion together with a protonation move, in order to pre-
serve the overall charge neutrality40. Clearly in a dense
system with atomistic water, most of insertion attempts
will be rejected. On the other hand, one can easily com-
bine the present canonical approach with a molecular dy-
namics (MD) simulation – so that the evolution of the
system is performed using standard MD algorithms with
a suitable thermostat – combined with titration moves
in which one of the hydronium ions is transformed into a
water molecule, with a proton transferred to one of the

polyelectrolyte sites. The acceptance probability for such
a protonation move will be given by Eq. (6), and simi-
larly for a deprotonation move. The pH calculation intro-
duced in this paper can also be combined with standard
MD algorithms, so that the sampling needed to perform
the average in Eq. (13) can be performed using a MD
simulation. The implementation of the present approach
to atomistic system will be the subject of the future work.
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Appendix A: Electrostatic potential

Here, we briefly review the derivation of the elec-
trostatic potential and energy in a periodically repli-
cated system of cubic cells, with an excess charge Qt =∑

i qi, requiring presence of a uniform neutralizing back-
ground40. The electrostatic potential within the simula-
tion cell is:

ϕ(rrr) =

∞∑
kkk=000

N∑
j=1

4πqj
ϵwV |kkk|2

exp [−|kkk|2

4κ2
e

+ ikkk · (rrr − rrrj)] +

N∑
j=1

∑
nnn

qj
erfc(κe|rrr − rrrj − Lnnn|)

ϵw|rrr − rrrj − Lnnn|

+
1

V

∞∑
kkk=000

ϕ̃b(kkk) exp[ikkk · rrr] , (A1)

where

ϕ̃b(kkk) = −4πQt

ϵwV

∫
V
e−ikkk.rrrd3r

k2
, (A2)

is the Fourier transform of the background potential.
The singular part of the background potential is ϕb,s as

ϕ̃b(kkk) ≡ ϕ̃b,sδkkk000, where we have defined the Kronecker
delta for the zero mode, δkkk000. Performing the limit kkk → 0,
we obtain40

ϕ̃b,s = −4πQt

ϵwk2
+

πQtL
2

6ϵw
. (A3)

If one expands the first term of Eq. A1 around kkk = 0.
The singular terms are:

4π

V ϵwk2

∑
j=1

qj −
π

ϵwV κ2
e

∑
j=1

qj +

4π

V ϵw

∑
j=1

qj
ikkk · (rrr − rrrj)

|kkk|2
−

2π

V ϵw

∑
j=1

qj
[kkk · (rrr − rrrj)]

2

|kkk|2
, (A4)
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which can be shown40 to lead to electrostatic potential
within the simulation cell:

φ(rrr) =

∞∑
kkk ̸=0

N∑
j=1

4πqj
ϵwV |kkk|2

exp [−|kkk|2

4κ2
e

+ ikkk · (rrr − rrrj)]

+

N∑
j=1

∑
nnn

qj
erfc(κe|rrr − rrrj − Lnnn|)

ϵw|rrr − rrrj − Lnnn|
(A5)

− πQt

ϵwV κ2
e

+
4π

3ϵwV
rrr ·MMM + ϕB ,

(A6)

where the Bethe potential is

ϕB = − 2π

3ϵwV

∑
i

qirrr
2
i +

πQt

6ϵwL
. (A7)

The electrostatic energy can be calculate from

E =
1

2

∫
ρq(rrr)φ(rrr)d

3rrr

=
1

2

∑
i

qi lim
rrr→rrri

[
φ(rrr)− qi

ϵw|rrr − rrri|

]
−

Qt

2V
lim
kkk→000

φ̃(kkk), (A8)

which leads to 40

E =
1

2

∑′

ij

∑
nnn

qiqjerfc(κe|rrri − rrrj − Lnnn|)
ϵw|rrri − rrrj − Lnnn|

+
∑
k ̸=0

2πexp(−kkk2/4κe)

ϵwV kkk2
(A(kkk)2 +B(kkk)2)

−
∑
i

q2i κe

ϵw
√
π
− πQ2

t

2ϵwV κ2
e

+
2π

3ϵwV
MMM2. (A9)

In our simulations, the periodically replicated system has
tin-foil boundary condition, so that the MMM dependent
contribution to the total energy vanishes. For neutral
systems Qt = 0.
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