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Abstract 

Molecular similarity pervades much of our understanding and rationalization of chemistry. This has become 

particularly evident in the current data-intensive era of chemical research, with similarity measures serving as 

the backbone of many Machine Learning (ML) supervised and unsupervised procedures. Here, we present a 

discussion on the role of molecular similarity in drug design, chemical space exploration, chemical “art” 

generation, molecular representations, and many more. We also discuss more recent topics in molecular 

similarity, like the ability to efficiently compare large molecular libraries. 

 

Introduction 

Similarity is essential to human cognition because it enables us to generalize characteristics along a category 

or to classify items in the universe according to an ordered array of sets whenever they share a particular 

feature ref.1–4 The possibility of inferring some knowledge about a presumptive shared property between two 

similar items depends on the mentioned attribute and the preexistent relationship between it and the shared 

properties that make the two objects similar.5 Depending on the particular character studied, similarity is a 

subjective reflection of studied objects.6 These postulates are highly related to the similarity-property principle 

widely applied in medicinal chemistry, as much as in other scientific areas which enunciates that “similar 

structural features give rise to similar properties/biological activity”. However, generalizing shared properties 

has been employed in chemical sciences centuries before a consensus on atomic structure.7 For instance, to 

approximate chemical reactivity and physical properties as criteria that permit categorizing elements or 

understanding the matter structure. Whether in Lavoisier's attempts to complete the rules for nomenclature 

in chemistry, or classify bodies by their elements and compounds they decompose to, and the categorization 

of those elementary components between metals and nonmetals8; or the reach for associative relationships 
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of triads, by Döbereiner in a sort of a systematic classification of “analogous” elements, deducting 

relationships on atomic masses preserved in the current periodic table.9 Eforces would derive in the current 

robust but dynamic table of elements, with twice as many elements as at the time of its postulation one 

hundred fifty years ago by Mendeleev. A remarkable fact from this background is the precise prediction of the 

chemical and physical properties of unknown elements for his time, which would be discovered in the next 

three decades, confirming his suppositions.10 

Similarity is a concept applied systematically in the exercise and mission of science to explain and 

categorize phenomena and bodies by identifying relations among a population. This definition is applicable in 

fields as diverse as biology taxonomy, which is the methodology and principles of systematic arrangements 

for living and extinct organisms11; etymology, which studies the origin and relationships among languages 

through the similarity and root of written and spoken words, or software sciences, where classification of 

structures and architectures allows a better relationship between academic and industrial applications of 

software development.12  

In Chemistry, similarity refers to the common functionalities, structures, composition, spatial disposition, 

biological activity, and physicochemical properties among different chemical compounds, biological systems, 

and macromolecular complexes, among others. Similarity has become a cornerstone of chemoinformatics6, 

which makes it of great interest to chemists and pharmaceutics, as well as appearing in other diverse domains 

(see the following sections). Based on the similarity-property principle, similarity becomes one of the main 

approaches to assessing problems related to molecular screening in different fields with chemical 

applications, giving rise to molecular similarity analysis. It has been largely demonstrated through the practice 

that results in similarity, and so on the similarity concept per se is subjective in the sense that different 

representations used in the chemical description and different approximations to similarity quantitation bring 

different criteria of similarity.6,13 

 

1. Molecular Similarity 

1.1 Quantification of molecular or system similarity 

How to describe a molecule? How to describe a chemical-biology system, e.g., a small molecule bound to a 

protein? These are interesting and philosophical questions with multiple correct answers and have significant 
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implications for molecular design. To address these questions, firstly, it is essential to answer “What are the 

molecular properties that we want to explore, study, or decode?” Namely, many descriptors and chemical 

representations exist that illustrate specific parts of a molecular dataset's most complex property, e.g., 

bioactivity, that depends on structural, physicochemical, and metabolic features, etc. Molecular representation 

and description are at the cornerstone of basically any computational method. The representation and 

descriptors choice will depend on a number of major factors including, but not limited to, the study’s goals; 

type of compounds under study e.g., small organic molecules, peptides, flexible macrocycles, inorganic and 

metal-containing molecules, etc.), and number of compounds.14 

Classic and non-classic representations have been extensively used to decode different molecular 

features like fingerprints-, scaffolds-, and graph-based representations that have key differences, and each 

one is useful to represent different features of a molecular dataset. For example, MACCS Keys is one of the 

most used dictionary-based molecular fingerprints that represent the presence and absence of key functional 

groups; Extended Connectivity Fingerprints (ECFPs) allow for representing the spatial distribution and 

connectivity of each atom in each molecule in a dataset (see Table 1.1_1); Graph-based fingerprints that 

allow condense different kind of molecular information in a unique matrix for each molecule in a dataset like 

structural, stereochemical, atomistic, and three-dimensional data. 

 

Table 1.1_1. Classical molecular representations and descriptors: standard and non-standard. Adapted from 

(Martinez-Mayorga Karina, et al. The pursuit of accurate predictive models, 2023). 

Endpoint described Classic descriptors Non-classic descriptors 

General structure-
property 
relationships 

● Classical molecular fingerprints e.g., 
MACC keys, PubChem, ECFP. 

● Chemical diversity descriptors e.g. 
functional groups and Bemis-Murko 
scaffolds. 

● Non-classical (and recently developed)  
molecular fingerprints (e.g. MAP4, and atom 
pairs). 

● Graph-based representations. 
● Sequence-based representations. 
● Spectra-based representations. 

Specific industrial 
applicabilities 

● Druglike properties e.g. LogP, 
molecular weight. 

● Organoleptic properties (e.g. odor or flavor). 
● Material properties (e.g. conductivity). 

ADMET predictions ● Qualitative ADMET descriptors e.g., 
Inhibitor of cytochromes. 

● Quantitative ADMET descriptors (e.g. 
clearance, bioavailability, half-life time). 

Reactivity ● Polarizability. ● Quantum descriptors 

Biological and 
bioactive 

● Bioactivity e.g., enzymatic or cell-grown 
inhibition. 

● Phenotypic effects. 

● Post-marketing data (e.g. drug safety in 
different populations) 

● -OMICS data (e.g. pharmacogenomic or 
proteomic data). 
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In parallel, there are classical and non-classical descriptors like drug-likeness, ADMET (Absorption, 

Distribution, Metabolism, Excretion, and Toxic) properties, reactivity, and biological features (Table X1). That 

has impacted in important molecular design areas, for example, to decode structure-property relationships 

(SPRs), reactivity, and biological issues. For example, drug-likeness and ADMET descriptors have been 

broadly used to improve the potency, selectivity, and safety of drugs; Reactivity descriptors have been used 

to describe, compare, and predict molecular mechanisms, chemical reactions, and most stable 

conformational states; Biological and bioactive descriptors, e.g., phenotypic, post-marketing, or -omical data, 

that allows decoding physiological effects of molecules against complex biological systems. 

Peptides are interesting molecules or “compound systems” that, mostly depending on their size (few to 

several and large sequences) are at the interface between representations typically used in chemoinformatics 

(if short amino acids with few amino acids are regarded as small molecules) or bioinformatics (like sequence-

based representations). However, there is not a unique opinion about the number of amino acids (molecular 

weight, or the number of atoms) that must be considered to use chemoinformatics or bioinformatics 

representations. Recently, different authors suggested that peptides lower than 40 amino acids must be 

represented using chemoinformatics approaches, and the higher than must be represented using 

bioinformatics approaches.15,16 However, the authors remark on the importance of establishing a clear main 

objective prior to selecting the descriptors used to represent any molecule. 

 

1.2 The relative and subjective nature of similarity 

Representation of a small molecule or molecular system, plus a similarity metric, is essential to quantify 

similarity between a pair of systems. Since the “best” or more appropriate representation depends on the 

goals of the comparison itself, for example, the goal of the project, similarity is strongly subjective. It follows 

that the real similarity between any pair of objects/systems is not absolute and it is context-dependent (where 

the “context” not only is associated with the representation or descriptors but also with the “environment” or 

neighbors”.17 Perhaps one of the most straightforward manners to exemplify the neighborhood dependence 

of similarity is a two-dimensional (2D) vs. three-dimensional (3D) similarity assessment. The latter 3D-
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similarity also known as 3D superposition has been recently reviewed.18  The concept of context-dependent 

similarity is outlined in Figure 1_2A. 

 

 

[Figure 1_2]. A) Context-dependent system/molecule similarity. Exemplary comparisons of three small molecules 

highlighting their similarity in substructures and scaffolds (marked in pink); and their similarity in three dimensions. 

Adapted from.19 B) Time-dependent similarity: two objects (systems, molecules) can change similarity over time, 

depending on the modifications or changes in the molecular descriptors (lower vs. higher dimensionality). The 

figure illustrates the hypothetical similarity and distance between the compounds being compared. The thickness 

of the pink lines represents the hypothetical structural similarity values. 

 

It also follows that the similarity between two systems is not necessarily “absolute” in terms of time but it 

can vary with time (Figure 1_2B). In other words, similarity can be time-dependent. Of course, the time 

dependence will be significant if the descriptors change with time. Similar to the goals of any comparison, 
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quantifying the evolution with time of the similarity will depend on the project's goals. The next section 

describes the most common molecule and system representations. 

 

1.3 Representation 

Molecular representation has been of common interest for research in chemistry for at least two centuries. 

Generally, this is achieved by using diagrams of element symbols (or vertex of a graph) and sticks (edges) 

that represent bonds. This way of representation has also been an attempt to explain reality, and how atoms 

join through electronic interactions to form molecules, as planted by Lewis even before a consensus in the 

structure of the atoms.20 Also, a condensed form to denote the composition of chemical substances, both 

organic and inorganic, has been accomplished by omitting certain characteristics in connectivity and 

geometry.21 

The same procedure has been used in the representation of biomolecules such as peptides or proteins, 

and nucleic acids, by representing their whole building blocks with a system of well-established symbols of 

three letters for amino acids, and one letter for amino acids and nitrogen bases. In biochemical systems with 

the participation of covalent, and moreover non-covalent interactions, the sequence of building blocks does 

not explain these interactions. Then, as complexity increases, representation has to be more complex to 

achieve a suitable coverage of structural, electronic, and physicochemical features, which is a key question 

in bioinformatics.21 

For organometallic structures, electronic singularities difficult the issue of representation. Whereas in the 

case of augmented valances, chirality around metallic centers, or the limited handling of molecular geometry, 

that is why there are specific representations for this kind of system.22 

However, the computational approach requires the implementation of a systematic method of input, 

processing, and storage of chemical structures, that cover a different degree of chemical properties, e.g. 

connectivity, shape, charges, and physicochemical properties, among others. This approach is accomplished 

by the representation of molecules through molecular graphs and their posterior transformation by the 

implementation of different formats into strings and matrices readable by computers. In accomplishing the 

goal of an adequate chemical representation, adjusted to a specific research objective, many useful tools 

have been developed, some of them more specific or, on the contrary, versatile, but with a plethora of different 
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application areas. The issue of representation has been widely discussed, and recently reviewed in its 

application to different fields.21,23,24 

Over the last decades, with the technological advances in computation, and the development of new 

methodologies and tools, there has been a rapid emergence of different and innovative ways to represent 

chemical compounds, from small organic molecules to macromolecules, and chemical reactions.21 Some of 

them are revisited in the next subsections. 

 

1.3.1 Linear notations 

Linear notations are one of the most used representations. Those are cheap in computational resources and 

space, and with time have been standardized and widely used, which is the case for Simplified Molecular 

Input Line Entry Systems (SMILES) or International Chemistry Identifiers (InChI). They store information in 

the form of a 1D letter string, where most of the characteristics of the molecule are implicit by facility, such as 

geometry, hydrogen atoms linked to the main chain, and aromaticity. However, this information can be 

extracted by following the precise rules associated with the notation.25 SMILES have been the most accepted 

notation because of its human readability, despite not being singular for a molecule, it can be easily converted 

into a canonical version by implementing consensual rules available in different toolkits such as RDKit, 

implemented in the Python programming language.26 

InChI notation has emerged as a solution to the problem of unicity in 1D representation, open source 

accessibility, and a big data management solution.27 As SMILES strings, they encode chemical structures as 

1D strings, specifying in their first block the molecular skeleton and isomerism in the second. InChI notation 

is not as interpretable by intuition as SMILES but is also required to SMILES canonicalization.28 SMILES 

Arbitrary Target Specification (SMARTS) has been developed for partial terms of searching, for which it is 

possible to use generic parts of the string to specify a changeable fragment of the molecules.29 

 

1.3.2 Molecular fingerprints 

Molecular fingerprints consist of the description of properties or substructures present in the molecules, either 

by the focused search of specific and predefined features (dictionary-based fingerprints) or by an independent 

and mathematical description of the molecular characteristics (circular, topological, pharmacophore, protein-
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ligand interaction, shape-based, reinforced, and multi fingerprints). This respect has been recently reviewed 

and robustly classified.30 Chemical fingerprints were developed to relate molecular structural features and 

physicochemical properties, by their inclusion into QSAR equations31, and have evolved into one of the most 

systematic and broadly used methodologies for molecular representation in different computational 

applications.32 Molecular features and chemical descriptors are included in chemical fingerprints as 

components of a vector or tuple which can be handled by computers, and permit the realization of 

mathematical transformations.33 Below are some of the most important and widely used chemical fingerprint 

categories and examples of their specific architectures. 

Dictionary-based structural fingerprints, keys fingerprints, or molecular independent fingerprints, are specified 

sets of features examined for in molecules, and their presence (1) or absence (0) is recorded as a bit vector 

position. These features can be functional groups, characteristic substructures, or fragments ref. The most 

representative dictionary-based structural fingerprints are PubChem (PC)34, Molecular ACCess System 

(MACCS)35, Mini FingerPrint (MFP)36, Barnard Chemistry Information (BCI) fingerprints37, and SMIles 

FingerPrint (SMIFP).38 

All the other types of fingerprints consist of dependent architectures. Those descriptors have a variable 

number of components, and their design depends on particular connectivity features of studied molecules, 

which makes them more specific and appropriate for complex chemical structures. 

Circular fingerprints are those in which information capturing is made from a central heavy atom and 

explores the surrounding neighbors iteratively, until a complete description of the structural features.39 

Examples of circular fingerprints are Extended Connectivity FingerPrints (ECFPs)40, Functional-Class 

FingerPrints (FCFPs)41, Molprint2D42, and Molprint3D43. 

Topological fingerprints are those that represent the connectivity of the molecules in terms of nodes (atoms) 

and edges (bonds).44 This kind of description gives rise to a connection table such as SDF and MOL format, 

that specifies the nature of the atom, connectivity, bond distances, atomic eccentricity, and/or weight. 

Examples of topological fingerprints are atom pairs fingerprints (APs)45, topological torsion (TT)46, and 

Daylight fingerprints47. 

There are other types of fingerprints aimed at studying molecular systems that involve the interaction 

between two molecules, for instance, a protein-ligand complex. Examples are pharmacophore fingerprints 
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and protein-ligand interaction fingerprints. Pharmacophore fingerprints describe the necessary characteristics 

of the ligand according to their possible interactions, and three-dimensional characteristics such as hydrogen 

bonding, charge transfer, electrostatic, and hydrophobic interaction sites. Protein-ligand interaction 

fingerprints (PLIF) collect information on explicit interactions between protein and ligands, by describing the 

bonding amino acid residues present in the protein site, and geometric disposition.48 Such 3D information is 

provided by molecular docking or experimental results, which are transformed into 1D bitstrings. Broadly used 

examples are structural interaction fingerprints (SPLIFs)49, and protein-ligand extended connectivity (PLEC) 

fingerprints.50 

Shape-based fingerprints are more recently developed and consist of a description in terms of the 

probable 3D interacting surface of the molecule, through the collection of coordinates, and potential interacting 

types. Some shape-based fingerprints of broad use are rapid overlay of chemical structures (ROCS) and 

ultrafast shape recognition (USR).51 

 

1.3.3 Molecular properties 

As structural features, physicochemical and constitutional properties can be used to describe and represent 

molecules and sets of molecules, using continuous and/or discrete features, due to their intrinsic relationship 

with structural characteristics. These features are known as classical molecular descriptors.52 Their utility in 

computational chemistry and chemoinformatics has been widely reviewed recently.53,54 Among most classical 

and relevant descriptors there are tendencies calculated and studied principally in drug discovery, that 

empirically showed a range of acceptability. Those properties are part of empirical rules to quantify drug-

likeness such as the rule of five by Lipinski55, and its extension by Veber.56 Typical properties to quantify drug-

likeness include molecular weight, number of carbon atoms, number of oxygen atoms, ring systems, count of 

single or multiple bonds, number of hydrogen bond donor/acceptors, and the logarithm of the octanol-water 

partition coefficient, logP. 

 

1.3.4 Chemical reactions 

Transformation of a chemical compound into another following logical and chemistry-sensed rules of 

transformation is of central interest in chemoinformatics and computational chemistry, due to their high 
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prevalence (more than 150 million records at the moment of writing)57 and common study, in predictive 

models, searching, storing, and categorizing chemical information58,59. Common elements of a reaction such 

as reactants, conditions, and products, must be included in a computer-readable format. Some of the most 

widely employed representations of chemical reactions are Reaction SMILES, SMIRKS, and RInChI, among 

others. 

Reaction SMILES are composed of the representation of reactants, agents, and products, as SMILES 

notation, and the reaction arrow symbolized by >. Atoms in molecular representations can be ticked to follow 

a specific pattern of displacement along a chemical reaction. This is achieved by the implementation of 

numerical indices.60 SMIRKS notation is the SMARTS analogous to Reaction SMILES, which can represent 

generic reaction patterns. Just exchangeable groups or substructures have to be explicitly represented by 

SMIRKS, and the rest of the molecule can be codified by generic symbols. SMARTS are used to represent 

unchangeable generic substructures.29,61 

RInChI uses InChIs to represent molecules implicated in the reaction, and its layered structure includes 

information about reaction conditions, catalyst, and solvent. As the InChI and InChI key, RInChI provides a 

standardized and non-ambiguous way to represent chemical reactions and is very powerful for data 

management.62 Additional representations of chemical reactions are condensed graphs of reaction (CGR)63 

and bond electron matrices (BE-matrix).64,65 

 

1.3.5 System representations 

The most explored chemical representations have been applied to small molecules, however, there has been 

a necessity to develop suitable depictions for the expression and operation with macromolecules and more 

complex systems. Chemoinformatics and bioinformatics have contributed to this endeavor. 

The one-letter abbreviation has been the most common and abbreviated linear notation for 

macromolecules such as peptides, proteins, and nucleic acids. However, as mentioned before, there are 

some limitations such as the limited characters of the Latin alphabet, or the lack of structural information using 

them, in particular, 3D information. 

CHUCKLES and CHORTLES are classical examples of the representation of macromolecules at 

sequential and atomic levels. CHUCKLES consist of an interpreter that translates the peptidic sequence into 
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the molecular complex SMILES, including covalent interactions along the chain.66 Equivalently, CHORTLES 

is capable of handling oligomeric mixtures.67 In both cases, cyclization, branching, or mixtures are expressed 

with special characters. In turn, the self-contained sequence representation (SCSR), uses the V3000 molfile 

format to record biopolymer structures in a compressed format, keeping structural details, and remaining 

efficient for information management .68 A more recent development in the chemical representation of proteins 

and biomolecules is the Hierarchical Editing Language for Macromolecules, or HELM notation language, 

which is a code at the polymeric level (SMILES does this at the atomic level), giving rise to a standardized 

and unified representation of biomolecules for both bioinformaticians and chemoinformaticians.69 

Specific examples of macromolecular representations are the web3 unique representation of 

carbohydrate structures (WURCS), for oligosaccharides and polysaccharides with three to twenty 

monosaccharides of interest because of their role in biochemical interactions and molecular recognition. 

WURCS can encode for the main carbon backbone, and also for modifications and branches in glycans.70,71 

BigSMILES is an emergent canonical representation for macromolecules such as biopolymers, based on 

SMILES linear notation. BigSMILES has started to be widely implemented in applications such as big data 

management in the study of biopolymers. 

 

2. Applications, practical implications, and implementations 

Figure [2_1] summarizes schematically various practical applications of the similarity concept. Although the 

applications can be organized in various different but valid classifications, the applications can be divided 

depending on the research area, namely, chemistry, biology, and clinical applications. The approaches can 

also be organized into the following categories in general: similarity searching, database mining, and 

compound datasets (chemical libraries) profiling that could include the profiling or analysis of structure-

property relationships that, as shown in this Section, have strong implications in medicinal chemistry.17 
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Figure [2_1]. Overview of different applications and implications of similarity. The solid lines represent the 

relationships between the widely documented areas/approaches, while the dashed lines symbolize emergent 

relationships. 

 

In many practical applications, molecule (chemical) or system similarity is extensively used in similarity 

searching that is founded on the “similarity principle”72  if two molecules have similar structures it is anticipated 

that they will have similar properties. In drug discovery, the property is biological activity so the principle can 

be formulated as “similar compounds have similar (biological) activity”. However, well-known exceptions of 

such principle are the property cliffs: defined as pairs of compounds with high structure similarity but very 

large (and unexpectedly) different properties.73 The equivalent in drug discovery, “activity cliffs” proposed in 

2006 by Maggiora74 has been the subject of extensive research in terms of elucidation, implications in drug 

discovery, and influence while trying to develop predictive models. Property and activity cliffs, which arguably 

can be artifacts of the experimental assessment to measure the relevant property75, have been the subject of 

several review papers, and the reader is referred to such publications.76,77 Similarity searching is extensively 

applied in ligand-based virtual screening (comparison of one or more reference or query compounds vs., a 

set of molecules in a chemical library; in target fishing.  

One of the implementations of similarity searching is in websites to perform database mining. Many web-

based compound databases in the public domain have implemented a “similarity search” function where the 

user has the option to select or fix a given query chemical structure and the server/website will provide a set 

of “similar compounds” based on a threshold defined by the user (many websites have a filer so the user can 
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set up a threshold value of similarity). One of the downsides of such databases is that not always is clear the 

internal representation used by the server (a crucial point during the quantification of similarity (Section 1). 

Table [2_1] summarizes examples of websites that have an implementation of similarity searching. The table 

presents just representative applications to conduct similarity searches on small molecules and peptides, and 

spectra. 

 

Table [2_1]. Exemplary websites with the implementation of similarity searches. 

Website name Main application similarity function Ref. / URL 

ChemSpider 

Small molecule and 
peptide similarity 

searches. 

Structure, substructure, and 
scaffolds similarity searches 

http://www.chemspider.co
m/ 

DrugBank https://go.drugbank.com/ 

ZINC https://zinc.docking.org/ 

Sci-Finder 
Structure, substructure, scaffold, 

and connectivity similarity 
searches 

https://scifinder.cas.org 

ChEMBL 
https://www.ebi.ac.uk/che

mbl/ 

COCONUT Identity, structure, substructure, 
scaffold, and connectivity 

similarity searches. Searches by 
a range of continuous properties. 

https://coconut.naturalpro
ducts.net/ 

NuBBE 
https://nubbe.iq.unesp.br/
portal/nubbe-search.html 

UnitProt 

Peptide and protein 
similarity searches 

Sequence and domain similarity 
searches 

https://www.uniprot.org/ 

BLAST - NCBI 
https://blast.ncbi.nlm.nih.

gov/Blast.cgi 

FASTA 
https://www.ebi.ac.uk/Too

ls/sss/fasta/ 

Protein Data Bank 
Sequence, structure, and 

chemical similarity searches 
https://www.rcsb.org/ 

CSEARCH 
Searches based on 

13C RMN spectra 
Signals, elements, and weight 

similarity searches 
https://c13nmr.at/similar/e

val.php 

CFM-ID 

Compounds 
identification based 

on MS spectra 
similarity 

Signal similarity searches 
https://cfmid.wishartlab.co

m/ 

 

Another major implication of molecular similarity is profiling or characterization of similarity of compound 

data sets and diversity analysis. Similarity or diversity profiling of compound data sets is very useful in different 
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areas such as library selection and design including de novo design of chemical libraries; comparison of 

similarity profiles with implications, for instance, in natural product research (with implications in ecology: 

assessment of the biodiversity of ecosystems). 

In general, since there are many alternatives to measure similarity (or distance) (vide supra), Miranda-

Quintana et al. have proposed the Differential Consistency Analysis. It was found that the consensus between 

Tanimoto and the Cosine coefficients improved by choosing a query whose similarity to the rest of the 

molecules varies less, or by describing the molecules in a manner that does not depend strongly on their 

size.3 

 

2.1 In drug design and discovery 

Similarity has an important role in the realm of drug discovery design, where the quest for novel therapeutic 

compounds often depends on identifying molecules that exhibit structural and functional similarities to known 

drugs or bioactive compounds. Levering similarities metrics, such as molecular fingerprinting or ligand-based 

approaches, by recognizing similarities in chemical structures or biological activities the process of drug 

development could be significantly shortened.78 This approach highlights the crucial role of similarity-based 

strategies as essential tools in the pursuit of identifying new compound candidates to be novel drugs. 

Table [2.1_1] provides a comprehensive overview of the diverse applications of similarity in the field of 

drug design. These applications harness the power of chemical and structural similarity to expedite the 

discovery, design, and optimization of drug compounds. From virtual screening to quantitative structure-

activity relationship (QSAR) modeling and scaffold hopping, each application is important in different stages 

of drug development. The table shows representative examples and recent advances, showcasing how 

computational techniques and chemoinformatics continue to play a significant role in revolutionizing the drug 

discovery process, ultimately leading to novel therapeutic compounds and more efficient drug development 

pipelines. 

 

Table [2.1_1]. Selected applications of similarity in drug design. 

Application Description Methods and tools 
used 

Key advantages Representative 
examples 

Ref. 
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Virtual screening 

Identifying potential 
drug candidates by 

comparing the 
chemical similarity 

of molecules to 
known active 
compounds. 

Molecular docking. 

Efficient 
screening of 

large chemical 
libraries. 

Screening a 
chemical library 
against a target 

protein using 
Tanimoto 

coefficient. 

79,80 

Ligand-based 
methods.  Reduces 

experimental 
work. Chemoinformatics 

tools like RDKit. 

Drug repurposing 

Discovering new 
therapeutic uses 
for existing drugs 

by identifying 
similarities between 

the target and 
known drug-protein 

interactions.  

Data mining of 
chemical genomic 

databases. 

Accelerates drug 
discovery 
process. 

Repurposing 
antiviral drugs for 
cancer treatment 
based on shared 

molecular 
pathways. 

81,82 
Computational 

network analysis. 

Lower risk and 
cost compared to 

de novo drug 
development. 

Machine learning. 
Potential for 
quick clinical 
translation. 

Quantitative-
Structure Activity 

Relationship 
(QSAR) 

Predicting the 
biological activity or 

toxicity of 
compounds based 
on their chemical 

structures and 
similarity known 

data. 

Molecular 
modeling. 

Enables rational 
drug design. 

Building QSAR 
models using 

chemical 
descriptors and 

similarity measures 
to predict drug 
interactions or 
toxicity profile. 

31,83 
Machine learning 

algorithms. 

Reduces the 
need for 
extensive 

experimental 
testing. 

Descriptor 
calculation tools. 

Enhances 
compound 

optimization. 

Scaffold hopping 

Designing new 
drug molecules by 

replacing or 
modifying specific 

structural 
components of 

existing 
compounds while 

maintaining desired 
properties. 

Scaffold similarity 
metrics 

Facilitates the 
discovery of 

novel chemical 
compounds with 

known 
pharmacological 

profiles. 

Designing new 
molecules with 

improved properties 
based on existing 

scaffolds. 

84,85 

Scaffold analysis. 

Enhances 
compound 
diversity in 
libraries. 

Chemogenomics 

Integrating 
chemical and 

genomic data to 
identify 

relationships 
between 

compounds and 

Chemical genomic 
data integration. 

Enables the 
discovery of new 

drug-target 
interactions. 

Analyzing chemical 
genomic datasets 

to find links 
between 

compounds and 
biological targets. 

86,87 

Network analysis. 
Provides insights 
into compound 
mechanisms of 
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target proteins or 
pathways. 

action. 

Machine learning. 
Facilitates 

polypharmacolog
y studies. 

3D Structural 
similarity 

Comparing the 
three dimensional 

structures of 
molecules to 

identify potential 
binding sites and 
interactions with 
target proteins. 

Molecular docking 
simulations. 

Offers insights 
into binding 
models and 
interactions. 

Molecular docking 
to assess structural 
similarity between 

ligands and binding 
sites. 

88,89 
Structural 

alignment tools. 

Enables rational 
drug design 

based on 
structural data. 

Designing ligands 
with optimal binding 

conformations. 
Protein-ligand 

interaction analysis. 

Predicts binding 
affinity more 
accurately. 

Homology 
modeling:  

protein and 
peptide design 

The concept that 
proteins and 

peptides sharing 
amino acids 

sequence similarity 
typically exhibit 

similar structural 
characteristics 

enabling the design 
of proteins and 
peptides with 

specific interaction 
or functions. 

Sequence 
alignment. 

Cost-effective 
alternative to 
experimental 

structure 
determination 

methods like X-
ray 

crystallography. 

Designing drugs 
that target specific 

proteins. 

90,91 

Homology 
modeling. 

Yield highly 
accurate three-

dimensional 
structures. Modifying enzymes 

to perform specific 
functions. 

Model refinement. 

Rapid design of 
protein and 

peptide 
structures. 

De novo-design 

Creation of new 
drug-like 

compounds that 
resemble existing 
molecules to have 

specific 
pharmacological 

properties, 
leverages the 
concept that 

chemical structures 
shared with known 
compounds could 

have similar 
activities.  

Database mining. 
Novel drug 
discovery. 

AlvaBuilder is 
capable of 

generating novel 
protein structures 
with a focus on 

structural similarity 
to existing proteins. 

92–94 
Pharmacophore 

model. 
Targeted Drug 
Optimization. 

The Schrödinger 
suite includes 

various software 
tools to explore 
chemical space, 

design novel 
compounds, and 

predict their binding 
affinities to target 

proteins. 

Compound 
generation. 

Reduced cost 
and time. 
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Virtual screening focused on similarity is a computational approach used in drug discovery and chemical 

research to identify potential hit compounds with chemical structural similarities. This method aims to find 

compounds within a chemical database likely to have similar biological activities or chemical properties to the 

reference compound. Figure [2.1_1] shows a general flow diagram of a similarity-based virtual screening 

methodology. 

 

Figure [2.1_1]. Flow diagram of the general methodology for a similarity-based virtual screening approach. 

 

Overall, a similarity-based virtual screening method commences by selecting a target molecule (generally, 

an established active compound) and the compounds contained in a chemical database. Those elements are 

commonly represented using molecular descriptors or fingerprints, which capture important chemical and 

structural characteristics of these molecules. Next, a similarity metric is employed to quantitatively evaluate 

how similar each compound in the database is to the target molecule. Many similar metrics like the Tanimoto 
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coefficient, cosine similarity, Euclidean distance, or other relevant measures can be used to assess the 

similarity based on their molecular representations. Consequently, establishing a similarity value threshold or 

cutoff value is the further action which sets the minimum acceptable similarity score required for a compound 

to be considered a potential hit. Compounds in the database that surpass the threshold are ranked based on 

the similarity scores, with those having the highest likeness to the target molecule are given top priority, and 

are commonly known as potential hits. To confirm their biological activity, the compounds identified as 

potential hits through similarity-based virtual screening undergo experimental testing. Experimental validation 

is a crucial step to verify whether these compounds indeed exhibit the expected biological activity.95 

Virtual screening can be an iterative process. If the initial set of these hits does not have satisfactory 

results or further refinement is needed, the similarity threshold can be adjusted and rerun the virtual screening 

or introduce additional criteria to improve hit selection. Confirmed hits from the experimental validation can 

be included as new reference compounds in follow-up iterations. 

 

2.2 Extension to other research areas 

The underlying principles of molecular and system similarity have been extended to several research areas 

beyond drug discovery. Some of such extensions are the combination of molecular representations and 

indices to profile compound data sets, and toxicology prediction with similarity approaches, among others, 

that will be discussed in the following sections. 

 

2.2.1 Composite indexes 

Summarizing the previously described representations, some machine-learning approaches, and indexes 

have been developed to classify, punctuate, and group molecules according to different categories. Examples 

are natural product likeness, drug-likeness, and synthetic accessibility or feasibility.  

The first approach to compute the likeness of a compound to a natural product set was the Natural 

Product-likeness Score, developed by Ertl et al. in 2008, which allows for the comparison of the studied 

compounds with natural products according to their representation of the chemical environment described by 

molecular fragments, and their frequency of appearance in molecules, compared to natural products and 

synthetic molecules ref.96 Some improvements have been made to this approach, to make it more intuitive, 

portable, and web-based97. However, its architecture remains almost unchangeable. 
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Machine learning has been broadly included in this respect, for example, to classify natural products by 

their predicted biosynthetic pathway. The first attempt to solve this problem was ClassyFire, which consists 

of a computational approach to classify molecules according to their taxonomies, in base to > 4800 categories, 

on a set of unambiguous structural rules, according to the largest structural feature that describes the 

compound.98 A most recent example of this kind of application is the NPClassifier neural network, which 

classifies molecules according to their biosynthetic pathway, superclasses, and classes, recognized by the 

natural products research community. This goal is achieved by the training of the dataset with labeled 

information about natural products, described with the counted Morgan fingerprint method for inputting the 

structural information, which includes the number of atomic substructures, and not only their presence.99  

Concerning the estimation of a drug-likeness score, many different approaches have been widely used to 

compute the similarity of molecules to the known compounds used in the clinic, regarding their applicability 

to virtual screening, associated with the necessity of accomplishing certain parameters or empiric rules, that 

can dote them with good pharmacokinetic properties.56,100–102 Those indexes have been developed with 

different approaches, such as property-based criteria and machine-learning-based approaches. Property-

based criteria typically follow the Lipinski and Veber rules, developed more than ten years ago, and there are 

a variety of different indicators developed with this strategy.103,104 However, this approach would disregard 

16% of currently approved oral drugs, for violating one of those empirical rules.105 Consequently, these kinds 

of filters should have been improved with the development of quantitative estimations of drug-likeness (QED), 

however, evidence suggested that this approach was unsuccessful.105,106 

Among quantitative approaches to drug-likeness, arises the concept of “molecular beauty” (albeit beauty 

is, as similarity, a subjective concept), as an estimation of the druggability of a biomolecular target by a 

chemical compound. The concept tries to integrate the quantitative approach of composite indicators, with 

the experience and empirical attractiveness of molecules, from the point of view of medicinal chemists.107 The 

method consists of ranking compounds on a scale from 0 to 1, weighting the most relevant physicochemical 

and structural properties, to build the index. Each weighting factor is shown to reflect the importance of that 

descriptor. 

Deep learning approaches have improved the performance of continuous-scaled methods to estimate 

drug-likeness. Some of them are two class classification training methods106, and unsupervised learning.108 
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Both of them work by the extraction of structural features, either with graph convolutional networks, or 

recurrent neural networks, respectively. 

 

2.2.2 Toxicology 

Toxicology prediction of chemical compounds in different fields can be initially achieved by the comparison 

and grouping of chemical structures to those of known toxicological or metabolic reactivity, in function of their 

physical or chemical properties (recalling the similarity-property principle). Toxicity is a property that can 

trigger different adverse reactions in the subject and is related to the interaction of the molecules with the 

organism, e.g. cell receptors, and its relation is mediated by specific interactions between molecules, as well 

as properties in the chemical entity in the study, categorized in toxicology among the xenobiotic agents. This 

approach has been implemented in many regulatory agencies worldwide to save resources and time in 

achieving a first approximation of the chemical safety of a product.109,110 

Grouping can be achieved by using generic substructural parameters, common functional groups, and 

probable breakdown products, among other characteristics, and criteria depending on the purpose of the 

property required to be predicted (i.e., a specific toxical interaction or adverse reaction). Also, the classification 

can be assessed by a range of doses-response, as the criteria to determine either toxicity or safety.111 There 

is a plethora of classic examples of toxicology-related descriptors generalized by similarity approaches, and 

they need to be harmonized among different legislations to achieve a unified interpretation of similarity criteria 

and the regulatory validity of results and their interpretation. Discussion on this subject is specifically referred 

to as the degree of similarity required to consider a compound with probably the same biological properties 

as those in the evaluated group.112 

In-silico approaches to assess toxicological information include structure-based and ligand-based 

methods. Structure-based methods are mainly molecular modeling to identify molecular interactions between 

compounds and macromolecular targets. Ligand-based methods or read-across focus on large databases of 

active molecules known to produce an effect or interact with a specific target, and can be used to compute 

physicochemical properties, toxicity, environmental fate, and ecotoxicity.113 There are diverse software and 

web-established tools that have been developed based on those rules and criteria, with databases of control 

well integrated. 
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2.2.3 Other areas of application 

Other areas of common interest have emerged to include the chemical similarity concept among the criteria 

to preselect chemical compounds to achieve different goals in optimizing biological processes immersed in 

human activities. 

In environmental chemistry, there has been a recent report in which they developed a QSAR model and 

read-across to predict the toxicity of freshwater binary and multicomponent mixtures containing 

pharmaceutical compounds and pesticides. Their method uses partial least squares to relate toxicity with 

composed 2D descriptors including atom pairs, fragments, and molecular properties. Through cross-

validation, they confirmed the robustness of the model by comparing it with previous reports.114 

In the dereplication of natural products by using omics techniques, chemical similarity measures have 

been largely applied. Athayde et al. reported the measure of similarity among ten Brazilian species belonging 

to the genre of Arnica, according to their metabolomic profiles. The dereplication was carried out using LC-

MS/MS, and the representation used for each species was the m/z signals of each mixture. Similarity was 

computed employing different algorithms including squared Euclidian distance, and k-means clustering. Their 

study reported the natural product composition profile of the Arnica species, and their comparison according 

to the most significant composites found in them. They also identified previously unreported chemical 

compounds that belong to species in this category.115 Skinnider et al. developed an open-source algorithm 

for the specific computation of similarity among hypothetic natural products. The model is parametrized in the 

region of the chemical space occupied by natural products. Their method, called Library for the Enumeration 

of MOdular Natural Structures (LEMONS), employs a representation of circular fingerprints, as well as a 

retrobiosynthetic approach, that showed a better performance than topological and substructure-based 

fingerprints. By the use of their method, higher similarity values are assigned to those molecules that can be 

subproducts of tailored reactions of other natural products, making an efficient assignation of 

biotransformations among natural products which can be used to taxonomical assignments and research on 

biosynthetic relationships.116 

Also, the biosynthetic unexplored chemical space of secondary metabolites from marine prokaryotes has 

been recently predicted by using molecular similarity according to their biosynthetic gene clusters, diversity, 
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and novelty, predicting the probable metabolites of such pathways. Tanimoto similarity was computed with a 

1D representation of the Morgan fingerprint with a radius of 2. By this approach, they clustered and built 

taxonomic networks, relating molecules to common substructures, such as scaffolds. Their results showed 

that 96.8% of the secondary metabolome of marine prokaryotes remains unexplored.117 

In food science, Sánchez-Ruíz and Colmenarejo reported the potential druggable uses of food chemicals 

by assessing the similarity coefficients of compounds in FooDB, the largest public database of food chemicals, 

against compounds in ChEMBL with reported bioactivity against therapeutic targets.118 Food-drug 

interactions, such as increasing drug metabolism, decreasing availability, or creating adverse effects, have 

also been studied by similarity networks. Rahman et al. reported the creation of a machine learning 

architecture named FDMine, which predicts interactions among food and drug compounds, by computing the 

closeness of compounds by different approaches of structural ranking and classification by similarity. Their 

results showed more than 80% of the area under the receiver operating characteristic curve (AUROC). The 

FDMine approach was tested in the discovery of unknown food and drug interactions.119 

Besides drug design, there are many other pharmaceutical and clinical applications in which the similarity 

concept plays a key role. Recently, Ellin et al. reported an algorithm for data mining in biochemical applications 

of imaging mass spectrometry employing extended similarity indices.  Results on hyperspectral data across 

the studied biological surface (tissue) are processed by principal component analysis (PCA) to compute 

scoring and loading values for each m/z peak. Adopting extended similarity indices, which compare multiple 

objects simultaneously120, they proposed a protocol for comparing multiple mass spectra with results of 

imaging mass spectrometry, with better correlated spectral results, for morphological tissular regions. This 

approach permits the difference of biological versus non-biological tissue regions, by determining greater 

values of similarity among them. It also represents biological regions with real lipid m/z peak intensities, that 

can be rationally interpreted in PCA results.121 

 

3. Visualization of similarity 

Similarity is a cornerstone concept in molecular design that allows the study of SPRs, as well as the generation 

and exploration of chemical space. These applications have demonstrated a significant impact in different 

areas (vide supra), and their development has accelerated in recent years.122 But, similarity is a subjective 

and “intangible” concept that ideally can be represented with different visualization methods, allowing an 

https://doi.org/10.26434/chemrxiv-2023-cs3wb ORCID: https://orcid.org/0000-0003-2121-4449 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-cs3wb
https://orcid.org/0000-0003-2121-4449
https://creativecommons.org/licenses/by-nc-nd/4.0/


23 

intuitive representation of the concept. For example, Table [3.1_1] summarizes representative strategies that 

allow their visualization and study resolving different kinds of queries. 

 

Table [3.1_1]. Representative similarity strategies and their applicability domain on molecular design. 

General  
similarity 

applicability 

Specific similarity 
applicability 

Similarity 
visualization 

strategy 
Query Ref. 

 
Decoding 

SPRs 

Organization and 
annotation of 
substructures 

SAR maps 
Allows the use of similarity R-groups to identify important 

chemical motifs to rationalize the studied property. 
123 

Scaffold tree 
Allows the use of scaffold similarity to identify important 

chemical motifs to rationalize the studied property. 
124 

SAR matrix 
Allows the use of molecular pairs similarity to identify 
important chemical motifs to rationalize the studied 

property. 

125 

Chemical 
space 

networks* 

Allows the use of molecular networks similarity to identify 
important chemical motifs to rationalize the studied 

property. 

126 

Constellation 
plots* 

Allows the use of sub-structure similarity to identify 
analog leads series.  

127 

Data mining: 
Identification of 

important 
molecules in a 

dataset 

SAS maps 
Allows the identification of “property cliffs” and “scaffold 

hops” of a specific endpoint.   
128 

DAD maps 
Allows the identification of “dual property cliffs” and “dual 
scaffold hops”, and selective compounds against one or 

two different endpoints.   

129 

ChemMaps 
Allows the identification of “satellite” molecules that per 

se could represent the totality of a dataset. 
130 

Quantification of 
SPRs 

Decodification 
of supervised 

learning 
methods 

Allows the identification and interpretation of descriptor 
features that determine compound activity predictions 

obtained by machine learning methods. 

131 

Quantification 
of descriptors 

influence 

Allows the quantification of the fingerprint and descriptor's 
influence to represent SPRs. 

132 

Constructio
n and 

decoding 
chemical 

space 

Dimensional 
reduction 

PCA 

Allow reducing the dimensionality and the study of the 
different representations and descriptors. 

14 

SOM 133 

t-SNE 134 

Data 
integration 

Shinyheatmap 
Allows visualization and analysis of ultra large -omical 

data. 
135 

Consensus 
similarity 

Consensus 
Diversity Plot 

Allows quantifying the consensus similarity of different 
datasets using different chemical representations and 

136 
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quantification and 
visualization 

descriptors at the same time. 

* They could also be classified within the category "Data mining: Identification of important molecules in a dataset" 

 

As shown in Table [3.1_1], the similarity principle could be graphically represented using the “chemical 

space” concept, defined that "An M-dimensional cartesian space in which compounds are located by a set of 

M physicochemical and/or chemoinformatic descriptors''.14,137 Namely, is a graphical form to condense and 

represent high dimensional molecular data, e.g., from molecular representations and descriptors, that are 

interrelated by their similarity. Multiple reviews exist that remark on their utility and impact on different areas. 

However, there is not a unique chemical space representation because this depends on their molecular 

representation (or descriptors) and similarity metric used to construct it. In other words, it is possible to 

generate numerous representations of the chemical space for the same chemical data set.138 However, a 

recent data fusion concept named “consensus chemical space”139 has shown that it is possible to combine or 

“fuse” chemical spaces, improving their power chemical description.140 

Similarity networks are an emerging approach to generate complex data fusions and similarities 

comparisons141, useful to reduce the data gaps on large and ultra-large datasets from small (i.e., ligands) to 

large molecules, i.e., peptides and protein142,143, and to decode the three-dimensionality features associated 

with a specific property.144 

Figure [3.1_1] shows different visualization methods that use the similarity concept to decode properties, 

substructures, or global similarities between compounds or chemical datasets. For example, panel (A) shows 

an example of a classical visual representation of the chemical space that facilitates the comparison of two 

compound data sets (each one represented with blue and red data points). In this example, the compounds 

are represented by multiple dimensions and t-SNE is used to project the multidimensional space into a 2D 

plot. The visualization in Figure [3.1_1]B is an example of a consensus diversity plot136 that enables the 

comparison of the relative similarity of five data sets based on multiple diversity criteria: fingerprint-based 

similarity (X-axis), scaffold diversity (Y-axis), property similarity (mapped with a continuous color scale; and 

dataset size (mapped with the relative size of the data points). Figures [3.1_1]C and D are examples of 

structure-activity similarity (SAS)128 ref and dual-activity difference (DAD) maps129, respectively, which are 

graphical and quantitative methods to explore the activity landscapes of compound data sets using pairwise 
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comparisons. SAS and DAD maps enable the rapid identification of activity, property and selectivity cliffs, as 

well as selectivity switches. Figure [3.1_1]C is an example of a Constellation Plot127 which is characterized by 

the visual comparison of the diversity of analog series (represented by each point in the constellation plot), 

the fingerprint-based similarity of the analog series, plus the amount of compounds populating each series 

(indicated with the data point size). The continuous color scale facilitates mapping an additional property e.g., 

biological activity value. Figure [3.1_1]F is an example of a molecular similarity by network to explore the SAR 

of compound data sets and, like SAS and DAD maps, rapidly identifying activity cliffs.145 
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Figure [3.1_1]. Examples of visualization methods that use the similarity principle. (A) Dimensional reduction 

visualization (t-SNE plot); (B) Consensus similarity quantification and visualization (Consensus diversity plot); 

(C and D)  Data mining visualization of paired compounds (SAS and DAD maps); (E  and F) Organization 

and annotations of substructures visualizations (constellation plot and chemical space networks). Figures 

adapted from published studies refs.134,140,145,146 

 

3.1 Representation of chemical space as works of art 
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Beyond providing chemical information, visual representations of the chemical space and chemical 

multiverses can also convey an artistic meaning or expression, that, in turn, might help in the efforts of 

education in chemoinformatics and scientific dissemination. The authors recently proposed a natural 

extension of cheminformatics in art through artistic representations of chemical spaces147 and generated an 

exemplary Chemical Space Art Gallery publicly available (https://www.difacquim.com/chemical-art-

gallery/)147. Figure [3.1_1] shows a representative visualization of the chemical space. Figure [3.1_1]A 

illustrates a typical scientific representation of the chemical space of a database of 120 dietary chemical 

compounds with reported epigenetic activity in a t-distributed Stochastic Neighbor Embedding (t-SNE) 

visualization. The dietary compounds are divided in two groups: 1) the compounds with reported activity vs 

DNA methyltransferase 1 (DNMT1) and 2) not reported activity vs DNMT1. As with many visual 

representations of the chemical space, the interpretation is driven by the similarity relationships between the 

chemical properties, in this example, the properties employed for the two dimension reduction analysis were: 

octanol-water partition coefficient (SlogP), topological polar surface area (TPSA), molecular weight (MW), 

hydrogen bond donor (HBD), hydrogen bond acceptor (HBA) and rotatable bonds (RB). Figure [3.1_1]B 

illustrates the “transformation/translation” of the same visualization into a digital painting or artwork. As 

discussed elsewhere, despite the fact AI is increasingly used in digital artworks, visualizations of chemical 

spaces are ultimately driven by the concept of molecular similarity. 
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A 

 

B 

 

Figure  [3.1_1]. A) t-SNE visualization of a dietary database comparing epigenetic activity against DNMT1, 

using drug-like descriptors. B) Art work of chemical compounds generated from panel A information. 
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4. Extended similarity 

Until this point of the review we have discussed the similarity measurements in a pairwise manner. 

While obviously important, this paradigm can be less-than-ideal when we want to analyze very large libraries. 

Recently, the extended similarity framework was introduced to the field with the goal of alleviating this 

problem.120,148 Extended similarity allows the comparison of multiple molecules at the same time, yielding a 

similarity value for the whole dataset.  For a set of N molecules represented by binary fingerprints of size M, 

we will have a matrix N × M. The first step to get to the extended similarity value is to sum the matrix column 

wise to get a vector ∑ = [𝜎1, 𝜎2, … , 𝜎𝑀]. With the purpose to identify how each column sum, 𝜎𝑘, contributes to 

the similarity or dissimilarity of the set, we will define the quantity ∆𝜎𝑘
= |2𝜎𝑘 − 𝑁|. We then define a 

coincidence threshold, 𝛾, that will help to classify each column according to how uniformly distributed the 

elements of a bit position are. The classification rules are: i) if 2𝜎𝑘 − 𝑁 > 𝛾 it will be a 1-similarity column, ii) 

if 𝑁 − 2𝜎𝑘 > 𝛾 it will be a 0-similarity column, iii) otherwise it will count as dissimilarity. The final step is to 

weigh the cases in which we have a partial coincidence (not all the elements are 0 or 1).  Conveniently defined 

weighting functions can be defined to take this non-perfect coincidence into account for partial similarity, 𝑓𝑠, 

and for partial dissimilarity, 𝑓𝑑. Examples of used weighing functions are:  

𝑓𝑠(∆𝜎𝑘
) =

∆𝜎𝑘

𝑁
 

𝑓𝑑(∆𝜎𝑘
) = 1 −

∆𝜎𝑘
−  𝑁 mod 2

𝑁
 

The mentioned steps can lead to a generalization of pairwise indices. For example, the commonly used 

Jaccard-Tanimoto index is transformed in the following way: 

𝑠𝐽𝑇 =
𝑎

𝑎 + 𝑏 + 𝑐
→ 𝑠𝐽𝑇 =

∑ 𝑓𝑠(∆𝜎𝑘
)1−𝑠

∑ 11−𝑠 + ∑ 1𝑑
 

Note how the a counter transforms in a summation over the 1-similar counters and the dissimilar 

counters, b and c, into the respective summation over the dissimilarity columns. This same transformation 

can be done for any similarity index. The major advantage of extended similarity indices is that it can calculate 

the overall similarity of a set much more efficiently than by using the traditional pairwise comparisons. With 

the later methodology, one would need to perform N(N-1)/2 comparisons, which scales as O(N2). With the 

extended similarity framework, the scaling is linear, O(N), and as such, dramatically more efficient. This fact 

opens the door for a plethora of applications for extended similarity measurements. 120,148 

One of the most popular ways of picking a diverse set of molecules from a bigger set is the MaxMin149 

algorithm. In this method starting from a random first molecule, the pairwise comparison of the picked 

compounds and the not picked compounds is computed; the selected compound will be the one with the 

smallest value for the biggest similarity between itself and the selected compounds. This procedure iterates 

until the desired number of molecules is picked. The whole method is computationally costly for large number 

of molecules. A method inspired by the MaxMin algorithm but using extended similarity was developed, 
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named Max_nDis. Starting from a random molecule, the next compound to pick will be the one that minimizes 

the extended similarity when it is added to the set of already picked molecules; it continues until the desired 

number of molecules is reached. The Max_nDis method was proved to be faster and superior method for 

diversity selection in various datasets; overall the similarity of the picked molecules was always lower than 

the ones picked with the traditional methos.148 Extended similarity was used as a performance metric of novel 

sorting genetic algorithms, NSGA-II and NSGA-III, for small-molecule optimization; an example on how it can 

be used as a metric for chemical diversity.150 

The extended similarity framework can also be used to gain information about particular objects in a set. If 

we calculate the extended similarity on a set excluding one molecule, we get the complementary similarity for 

that object. The object with the lowest complementary similarity will be the one most similar to the rest of the 

set, meaning that it will be medoid of the set. Hence, the object with the highest complementary similarity will 

be the outlier (least similar to the rest) of the set. Ranks based on complementary similarity can help to sample 

regions of interest of the set. To retain the linear scaling, one can simply subtract the binary vector 

corresponding to the object, 𝑣𝑖 = [0, 1, … , 0], from the column wise sum vector ∑ = [𝜎1, 𝜎2, … , 𝜎𝑀], resulting in 

a new vector 𝑣𝑖 − Σ. If we apply the same extended similarity algorithm on this vector we get the 

complementary similarity value, and retaining O(N) scaling even if we do it for all the set.151 

Another application of extended similarity indexes to diversity is to find relations between large chemical 

libraries. The extended similarity indices can be used to compare the diversity of two libraries by taking their 

absolute and relative differences, to then use a sigmoid function to compare if a set is less or more diverse in 

reference to other.143 Inspired on Chemical Space Networks (CSNs)126,152 and with the help of extended 

similarity, Chemical Library Networks (CLNs) were developed to explore the inter use extended similarity 

indexes to find the interconnections between libraries’ diversities. To generate the CLNs the extended 

similarity of the union of two sets (𝑠𝑒(𝐴⋃𝐵)) was calculated with a constant coincidence threshold (𝛾). Then 

taking each library as node, all the possible edges are generated; then edges are pruned based on if the 

extended similarity of the union of those two sets is below an edge-threshold. By increasing the edge-

threshold one can find the most important diversity connections and find a central library in a set of libraries. 

The same process can be repeated without edge pruning and changing the coincidence threshold when 

calculating the extended similarity of the set’s union; and using the extended similarity as measurement of 

the magnitude of the connections.143 CLNs have been used in a chemoinformatic analysis of libraries focused 

on epigenic targets. In this study two libraries of 11 were identified as the centers of the network, these two 

libraries were also the least diverse ones;153 also for study of DNA-encoded libraries.154  
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Figure 1: CLNs using RDKit fingerprints with a constant coincidence threshold with (A) all edges and pruning 

edges at thresholds (B) 0.1, (C) 0.2, and (D) 0.3 for 19 chemical libraries.143 
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Figure 2: CLNs using RDKit fingerprints with all edges calculated with (A) minimum coincidence threshold, 

and coincidence thresholds of (B) 30%, (C) 70%, and 90% of the number of elements in the set’s union for 

19 chemical libraries. 143 

 

One of the major advances on the extended similarity was advancing beyond binary vectors and generalizing 

it for categorical155 and continuous156 numerical variables. For the latter case, three variants were proposed 

for the processing of numerical continuous data, for all scaling of the data between 0 and 1 needs to be done 

a priori. The first variant based on the sum of the absolute difference of values and the mean value of its 

column |𝑥𝑖𝑗 − 𝑥�̅�|, the second one is similar to the first one but now doing 1 − |𝑥𝑖𝑗 − 𝑥�̅�|, and the third variant 

only calculates the sum over the scaled data. In all three cases coincidences measurements are calculated 

to classify the columns as high-content similarity, low-content similarity or dissimilar.156 The selection of 

descriptors is key for Quantitative Structure-Activity/Property Relationship (QSAR/QSPR) models.157 

Extended similarity provides a flexible similarity calculation that can help find the normalization method, 

coincidence threshold, descriptors and coincidence variant that can separate the similarity of the two groups 

of compounds the best, for example active and inactive compounds. Applied on a cytochrome P450 2C9 data 

set, the just explained framework was used select the continuous descriptors that separate the similarity of 

the inactive and active ligands; by comparison the inactive compounds have a smaller similarity than the 

active.156 Extended similarity was also used to evaluate created molecular fingerprints from physicochemical 

data, this was done as a proof of concept for a set of 13 physiologically active compounds.158 

Activity cliffs correspond to molecules that are highly similar but have a big difference in a given property. An 

approach to quantify the activity cliffs in a set is the SALI (Structure-Activity-Landscape-Index) index: 

𝑆𝐴𝐿𝐼(𝑖, 𝑗) =
|𝑃𝑖 − 𝑃𝑗|

1 − 𝑠(𝑖, 𝑗)
 

As it can be appreciated is a pairwise comparison, hence, to quantify the activity landscape of a whole set 

would require N(N-1)/2 comparisons. To diminish the computational cost, eSALI was introduced, as given on 

equation 5. It can be appreciated that the operations required to get the eSALI index scale O(N). This new 

metric serves to quantify the landscape’s roughness and modelability of the set with the given 

representation.13  

𝑒𝑆𝐴𝐿𝐼(𝑀) =
1

𝑁

∑|𝑃𝑖 − �̅�|

1 − 𝑠𝑒(𝑀)
 

Another field that extended similarity can be used as tool is chemical space exploration. With the pairwise 

similarity matrix of the compounds in a library one can do a PCA to visualize the chemical space, however, is 

a computationally costly task. ChemMaps is an alternative that uses only a certain portion of the compounds, 

satellites, that yields a visualization where the distances and form resemble the one with the complete 

matrix.130 With complementary similarity calculations it is possible to select the satellites from the medoid 

and/or periphery region or uniformly. In this way we can identify regions of the library’s chemical space that 

are key to sample to have a good ChemMap. Figure 3 shows one example of a ChemMap.159 
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Figure 3: ChemMap of NuBBE [cite] library ECFP4 fingerprint using 25% as satellites sample with medoid-

periphery alternations.159 

 

Imaging mass spectroscopy has also benefited from extended similarity. Mass spectra can be converted to 

binary fingerprints, using PCA to identify high, mid and low correlation pixels extended similarity is used to 

decide if the pixel corresponds to a biological structure or not. With extended similarity medoid spectra can 

also be extracted to represent groups picked by PCA and help aid the imaging interpretation. It also shows 

potential applications to the grouping of correlated regions in the tissue by picking important pixel groups from 

the beginning, complementing PCA calculations.121 

 

5. Molecular similarity in Molecular Dynamics simulations 

The importance of molecular comparisons, and the ever-present need to develop more efficient algorithms to 

perform them is particularly evident in the field of Molecular Dynamics (MD), a computer simulation method 

for studying systems' dynamics by integrating Newton’s 2nd Law. Although the advent of graphical processing 

units has made microsecond timescale MD simulations a routine, simulation post-processing analysis failed 

to keep pace with the increasing size of simulation datasets.160 Here, comparisons are important mainly for 

their role in unsupervised learning techniques. This has been crucial in this area, enabling dimensionality 

reduction for faster analysis and the grouping of similar samples through clustering. Unlike supervised 

learning, unsupervised learning relies solely on input information to extract patterns and structures, making it 
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useful for uncovering insights in complex datasets. Unsupervised learning has a versatile of applications to 

discover patterns, anomalies, and relationship within data. In Molecular Dynamics, defining collective 

variables (CV), which are a set of pre-defined features that guides enhanced sampling, is a challenge because 

they are highly sensitive to user choices and require dimension reduction techniques for accurate 

representation.161 CV that represents the metastable states of the systems’ dynamics is more likely to find the 

path of the slow modes in protein or protein-ligand dynamics.  

In the following section, we will talk about how to select features for representing the protein or protein ligand 

systems, dimension reduction techniques for representing high-dimensional data, different clustering 

methods, and lastly, examine the role of extended similarity in Molecular Dynamics analysis.  

 

5.1 Featurization  

Featurization is the selection of the most represented features of a data. The most intuitive features would be 

the spatial coordinates of atoms in the trajectory. However, this can be challenging because configurations 

need to be aligned to some reference(s) to minimize the effect of local rotations and translations during a 

simulation and the decision of what reference(s) to align to can impact your data analysis significantly.162,163 

To circumvent this limitation, distances, dihedrals, or angles of atoms in every frame, is another way to 

represent biomolecules.164 Alternatively, there have been many methods of representing protein-ligand 

interactions in fingerprints. Structural based protein-ligand interaction fingerprints encode interaction in binary 

vector. Each residue is encoded in a vector, which consists of information such as hydrogen bonds, 

hydrophobic interactions, aromatic stacking, ionic bond, the distance/angle of the interaction, and the atoms 

and residues involved.49,165 PROLIF is software for generating fingerprints for representing molecular 

interaction between combination of protein, ligand, RNA, and DNA molecules, which is compatible with MD 

trajectories, docking, and experimental structures.166 Energy-based interaction fingerprints can be useful to 

understand the intermolecular interaction during the dissociation mechanism when a ligand is dissociated 

from a protein.167 The interaction fingerprint would be useful if you need cluster binding different modes of the 

protein-ligand complex, starting ensemble for docking, and dissociation mechanism studies. 

 

5.2 Dimension reduction techniques 

With an increasing surge of data, strategies to project high-dimension data into low-dimension data for data 

analysis are needed to process the data using the least amount of information. Dimension reduction (DR) is 

critical in clustering, or the classification of similar data into its own group. It can not only reduce the 

computational cost of clustering but can also trim the noise of data, which can improve the accuracy of 

clustering results. DR is not limited to applications of clustering; it also has applications in Molecular Dynamics 

in areas such as enhanced sampling and building Markov State Models (MSM). For applications to enhanced 

sampling, a good low-dimension projection of the data is needed to characterize collective variables (CV), 

which can better guide the enhanced sampling to bias potential to the Hamiltonian of the system or be used 

to build an MSM.168 Dimension reduction is divided into linear and nonlinear.  
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Linear dimension reduction methods are helpful to define collective variables as they create a linear 

combination of the most important principal components. Principal component analysis (PCA)169 is the most 

widely used dimensional reduction technique that reduces to 2-dimensional space by projecting the multi-

dimension data while preserving the variation of the data. The eigenvector with the highest eigenvalue will be 

your first PC. It will identify the principal components, which are orthogonal linear combination of the variables. 

Similar to PCA, time-independent component analysis (tICA)170 projections involves a linear transformation 

of the input data, aiming to maximize the autocorrelations in the output data. Because of this, it is widely used 

in applications to MD because it identifies the slow motions in an MD simulation, while preserving kinetic 

information.168,171 Both PCA and tICA has been to build MSM and in a study conducted to compare the 

performance of both techniques, both were able to enhance the performance of MSM.171 However, it is noted 

that both methods suffer significantly with an increase in dimensions. Nonlinear DR technique includes t-

Distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold Approximation and Projection 

(UMAP) map distances or similarities between data point in high-dimensional space to a low-dimensional 

space. Therefore, it preserves the relationships and structures based on how close or similar points are.  

In one study comparing 2D and transcriptomics datasets, t-SNE and UMAP are better at preserving local 

structures (preservation of neighbors), while PCA is better at preserving global structure (relative position of 

different clusters) and less sensitive to parameter choices.172 A similar sentiment is shared in a MD simulation, 

in which PCA and tICA perform the best to capture the slow modes of protein dynamics and the free energy 

surface of small peptide and protein.173–175 While t-SNE preserves similarity between high- and low-

dimensional space, at the same time, it performs poorly in extraction of global structures. Alternatively, it was 

found that UMAP overall not only performs better in retaining kinetic information and Cartesian coordinates 

than t-SNE, PCA, and tICA168, but also performs better in MSM and able to resolve more metastable states.176 

All methods have their advantages and limitations, and the choice of how many dimensions is needed, choice 

of parameters, preprocessing steps, and DR technique choice is system dependent and requires careful 

decisions. 

 

5.3 Clustering 

Clustering is the grouping of similar samples together, which is essential for unraveling protein folding 

dynamics, constructing Markov State Models, enhancing Replica Exchange simulations, and discerning drug 

binding modes. Root-mean square deviation (RMSD) is a widely used pairwise metric for calculating similarity 

between configurations in Molecular Dynamics simulations and popular among clustering metrics. Below we 

will investigate several widely used algorithms, which differ vastly in their approaches, time complexity, 

sensitivity to outliers, parameters, and effectiveness. It is dependent on the preprocessing decisions, 

parameter chosen, metric for comparison, and algorithm chosen.  

K-means is known to be the most popular partitioning clustering algorithm and its input requires two 

parameters, the number of centroids, and initial estimate of centroids. From these starting initial centroid 

estimates, it assigns each point to the closest centroid, and recomputing the centroid of the newest formed 

clustering. This process is iterated until convergence, when the computed centroid remains the same and the 
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points remain in the same clusters. When applied to Molecular Dynamics, it proves to be efficient as it has a 

time complexity of O(k * N * i), k for number of cluster, n for number of point, and i for number of iteration. 

However, it fails to identify key metastable states and fails short for non-convex cluster shapes.177 In addition, 

k-means clustering is dependent on the initial centroid estimation. In the standard method of initiating centroid, 

k-means++, it picks a random point and picks the maximally distant points for the k number of clusters. 

Another major pitfall is the decision how many clusters to pick. This is not a trivial task due to the complex 

nature of MD simulation. Users would require prior knowledge about the system to make a reasonable 

conjecture. Due to its partitioning nature of assigning points to its closest centroid, its cluster shapes are 

mainly uniform and highly sensitive to outliers. K-means is more useful for data that is well-separated. K-

medoid follows the same algorithm as K-mean with the main difference being that pairwise comparison has 

to been to calculate the similarity between every point to determine the least dissimilar object, marking the 

time complexity to be O(k * N2 * i).  

Hierarchical agglomerative clustering (HAC) creates a cluster for every individual and begins merging similar 

clusters together. There are several common merging techniques. Single linkage merges clusters based on 

the distance between the two closest points of two clusters. Complete linkage merge clusters based on the 

maximum distance between two clusters. Centroid linkage merges clusters based on the distance between 

the two closest centroids of two clusters. Average linkage merges clusters based on the average distance 

between all combination of points of two clusters. Average linkage and centroid perform the best as it not only 

produces compact and different clusters, but also identify different shapes and sizes; this come with the pitfall 

of being most time intensive.178 Although computationally efficient, single linkage tends to add long tails of 

data to one cluster179 and complete linkage tends to have smaller clusters. Some advantages of HAC include: 

no prior knowledge needed on number of clusters; parameter independent. Some limitations of hierarchical 

include: a time complexity of O(N2) due to the pairwise similarity computed at every iteration173,180, sensitivity 

to outlier, and variant to permutation in the data.178 

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)181 alleviates some of the pitfalls in K-

means, which is the inability to partition noisy data, limited to globular clusters and similar shaped clusters, 

and the need to specify number of clusters. DBSCAN is a density-based clustering method that can identify 

highly dense regions and clusters of arbitrary shapes and can identify metastable state.177 DBSCAN takes in 

two parameters to define density, radius for forming epsilon neighborhoods and minimum number of samples. 

DBSCAN is a density-based algorithm. First every point will form their epsilon neighborhoods for all the 

samples within a radial threshold. Epsilon neighborhood that meets the minimum number of samples will be 

considered a core sample of high density. Then a random core point is chosen to begin the first cluster. 

Samples in its epsilon neighborhoods will be included in the first cluster and the samples on the cluster 

periphery will look for overlapping epsilon neighborhoods until there are no more epsilon neighborhoods. 

Lastly, points close by to the first clusters will also be included in the cluster. This process will continue for 

other clusters. This process will be able to distinguish high- and low-density regions. How does it affect MD 

trajectories? Using only these two criteria for clustering, it can lead to small clusters and be susceptible to 

noises. There DBSCAN requires a careful selection of parameters as it is very sensitive to epsilon and the 
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minimum number of points. In addition, density-based clustering suffers from a large performance cost with 

the best time complexity to be O(nlogn)182 and the worst time complexity of O(N2), every point needs to be 

compared to every other point to find its neighbors.183 This can come as a cost when data is high dimensional.  

Although DBSCAN is susceptible to noise. It can fail in a dataset with varying densities, or the data is highly 

complex. Therefore, HDBSCAN181 is an extension to DBSCAN as hierarchical method that can combine 

clusters to determine the optimal number of clusters based on the stability of the clusters. DBSCAN requires 

a static threshold as the input. However, HDBSCAN uses a range of different thresholds at every iteration 

and can form or merge clusters depending on the hierarchical structure.184 This improves DBSCAN by the 

dissolution of the epsilon parameter. The pitfall of DBSCAN lies in its sensitivity to parameters, which requires 

tests. HDBSCAN overcame this limitation by involving methods that try out all possible thresholds and 

produce high-density clusters.  

 

5.4 Extended Similarity in MD simulations 

Extended similarity indices were able to distinguish conformations for a protein folding mechanism. It 

successfully identified two distinct protein folding pathways with hierarchical agglomerative methods.151 

However, because extended similarity indices were computed for a binary vector input in the form of a contact 

map, this is effectively scaling O(N2), which means more computation in the preprocessing step to featurize 

the data to be compatible with extended similarity indices. The feature selection, as discussed previously, is 

highly dependent on the system and requires prior knowledge.  

Extended continuous similarity is an extension to extended similarity. It takes the Cartesian coordinates, 

matrix of number of samples or frames times number of features, as the input for comparisons.156,160 The 

samples will be condensed into a single vector containing the column-wise sum of features for all the samples. 

For matrix of Cartesian coordinates to be compatible with extended similarity indices, it needs to be 

normalized between [0,1] to accommodate the range of most cheminformatics metrics. To do this, we 

normalize between the minimum and maximum of the coordinates, which is to be compatible with the ranking 

of RMSD calculations.  

Build efficient and general clustering algorithms. Root-mean-square-deviation (RMSD) is the main tool for 

calculating the similarity of MD frames due to its straightforward implementation. However, it has limitations 

as a gauge in cluster conformation; it compares in pairs, effectively making it an O(N2) algorithm; and this 

similarity metric is influenced by other parts, especially ligands or flexible regions. fraction of candidates from 

high-density regions in the data, then use our diversity algorithms (Max_nDis, ECS_MeDiv) to select 

representative centroids at a linear scale.148 Diversity selection builds upon ideas from extended similarity. 

First it selects a seed or the starting point for diversity selection. Then it iterates through the data and picks 

the next point that gives the maximum extended similarity. This method not only provides a method of 

identifying a diverse set of distinct conformations, but it is also deterministic and linear scaling.160 From this 

study, frames in a MD simulation are more diverse when selected with the diversity algorithms than using 

RMSD.  
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