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Abstract 

Deep learning is accelerating drug discovery. However, current approaches are often affected by limitations in the 
available data, e.g., in terms of size or molecular diversity. Active learning is poised to be a solution for drug discovery 
in low-data regimes. In active learning, a model is updated iteratively by taking multiple smaller screening steps, instead 
of suggesting many molecules at once with a single model for traditional ‘one-shot’ screening. This iterative approach 
aims to improve models during the screening process and can adjust course along the way. However, active learning 
remains still relatively underexplored in the molecular sciences. It is currently unclear how active learning holds up to 
traditional approaches and what the best strategies are for prospective drug discovery applications. In this study, we lay 
the first foundations for the prospective use of active deep learning in low-data scenarios where only dozens of training 
molecules are available to screen hundreds of thousands of molecules. Our systematic study combines six active 
learning strategies, two deep learning architectures, and three large-scale molecular libraries. We highlight that active 
learning can achieve up to a six-fold improvement in hit discovery compared to traditional methods. How molecules 
are chosen for the next iteration proved to be the primary driver of performance – it is more important than the chosen 
network architecture in determining the ‘molecular journey’ in the chemical space. Remarkably, active learning showed 
to quickly compensate for a lack of molecular diversity in the starting set, allowing to efficiently chart unexplored 
structural motifs. These results set the basis for the adoption of active deep learning to accelerate drug discovery in low-
data regimes. 
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Introduction 

Deep learning is showing increasing promise for drug 
discovery1,2. One of its main applications is virtual 
screening3, whereby large commercial libraries (usually 
consisting of 103-109 molecular candidates) are prioritized 
for prospective wet-lab experiments3–6. A key bottleneck 
of deep learning, however, is the need for sufficient data 
to train a machine learning model (preferably 103 
molecules and above7,8). Unfortunately, available ligand-
target interaction data are often limited in size and 
structural diversity – factors that might hamper the 
usefulness of deep learning models in practice8–10. 
Furthermore, much of the chemical composition of 
commercial screening libraries is often highly distinct from 
the training data11, resulting in unreliable predictions. 
 One potential solution to escape the size and 
diversity limits of the training data is active learning12–14. 
Active learning is based on the principle that a model can 
achieve greater accuracy with fewer training data if it is 
“allowed to choose the data from which it learns”15. In 
drug discovery, active learning can be cast into an iterative 
screening approach (Fig. 1), where instead of performing 

a single virtual screening experiment, one can test (fewer) 
molecules across multiple cycles12–14,16–20. At each 
iteration, a selection of molecules is acquired based on 
model predictions and tested in the wet-lab. The newly 
obtained experimental data, together with data previously 
collected, are then used to update the model, aiming to 
inform the next iteration. By improving models over 
subsequent iterations, active learning bears promise to 
identify more bioactive molecules using less resources 
than standard ‘one-shot’ virtual screening approaches12.  

The hypothesised advantage in screening 
efficiency that active learning offers over traditional 
methods in virtual screening has, however, not been 
quantified. Current active learning studies on 
experimentally obtained data12,18,21–23 have mainly 
focussed on model performance in predicting 
bioactivity12,18,21,22 or physicochemical properties22,23, 
rather than hit discovery. Besides, these studies are based 
on small screening libraries in respect to the train data 
(Supp. Table 1), which does not reflect a realistic screening 
scenario. Furthermore, it is known that screening 
performance depends on the chemical diversity of the 
training data22,24,25. However, the extent in which hit 
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discovery is affected by molecular diversity in an active 
learning setting has not yet been explored. This might be 
why the adoption of active deep learning remains slow in 
practice. Nonetheless, active learning is expected to gain 
increasing relevance in the future, e.g., in the context of 
automated molecule discovery and self-driving labs26,27. 

Although there have been several pioneering 
active learning studies in the molecular domain12,21,28–37, 
numerous technical and practical problems remain 
unaddressed. In this systematic study, we aim to illuminate 
the dark matter of active deep learning in drug discovery 
and lay the foundations for its application in realistic, low-
data, scenarios. We focus on how different components of 
the active learning pipeline can be tuned to navigate vast 
screening libraries in search for novel bioactive hits. 
Furthermore, we examine how chemical diversity in the 
training data affects hit discovery and monitor how models 
wander across the molecular landscape. To the best of our 
knowledge, this is the first comparison of active deep 
learning to traditional ‘one-shot’ drug screening 
approaches and similarity-based screening, showing its 
advantages for drug discovery.  
 

Results and Discussion 
 
Active learning setup 
 
In this study, all experiments followed the same setup 
(Fig. 1), whereby active learning models are used to 
iteratively query a screening library of 100,000 
molecules. Each active learning experiment started with a 

set of 64 molecules (step 0) sampled from the screening 
library so that it contained at least one bioactive 
molecule (see Materials and Methods). Notably, this 
procedure led to 80% of the starting sets containing less 
than three hits, which reflects a realistic drug discovery 
scenario. The active learning screening procedure then 
consisted of four iterative steps: 
1. Training. A machine learning model is trained on all 

available training data. The trained model is then used 
to perform bioactivity predictions on all unlabelled 
molecules in the screening library. 

2. Acquisition. From these predictions, 64 molecules are 
selected for follow-up using a pre-determined strategy 
(‘acquisition function’). 

3. Testing. The acquired molecules are labelled with 
their corresponding experimental bioactivity (known 
in advance but not used for model training), to 
simulate a wet-lab testing procedure. 

4. Update. All tested molecules are added to the training 
set, for the next cycle (step 1). 

This four-step cycle was repeated until 1,000 molecules 
were screened. All experiments were performed ten times 
with different random starting sets. The acquisition size 
(step 2) was determined through preliminary experiments 
where we compared acquiring 16, 32, or 64 molecules per 
cycle and found no significant performance differences 
(see Supplementary Information). Using this setup, we 
investigated the impact of the following factors on the 
effectiveness of active learning: (a) the structural diversity 
of the starting set (three levels of diversity), (b) the chosen 
deep learning approach (two approaches), and (c) the 

 
Figure 1: Overview of the experimental setup for low-data active learning. a. A starting set of molecules (64) is selected from the 
screening library (step 0). This starting set can be sampled from the full library (innate structural diversity) or can be sampled from 
hierarchical subclusters of molecules with moderate or low structural diversity. b. The active deep learning cycle. From the training 
set, a model is trained and used to predict bioactivity on all unlabelled molecules in the screening library (step 1). Using an 
acquisition function, molecules are selected for follow-up (step 2), and subsequent labelling (step 3). Finally, the labelled molecules 
are added to the training set for the next cycle (step 4). 
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acquisition function used to decide what molecules to 
select (six acquisition functions). These systematic 
analyses were carried out on three macromolecular 
targets, to ensure the robustness and generalizability of the 
obtained conclusions. These factors are explained below. 
 
Chosen macromolecular targets 
To mimic real drug-screening experiments that rely on 
large screening libraries, we used three high-throughput 
screening datasets from LIT-PCBA38, each for a different 
biological target. Not only are LIT-PCBA datasets designed 
to mimic the hit/potency distribution of typical 
experimental drug screens38, but they are also large 
enough to be used as a ‘screening library’ to simulate 
prospective active learning campaigns. We selected the 
three LIT-PCBA datasets containing the most 
experimentally-validated molecules, which refer to targets 
of clinical and therapeutic interest39–42, namely: (a) 
Pyruvate kinase M2 (PKM2, agonism), (b) Aldehyde 
dehydrogenase 1 (ALDH1, inhibition), and (c) Vitamin D 
receptor (VDR, antagonism). For each dataset, 100,000 
molecules were randomly extracted, preserving the 
proportion between active and inactive molecules. These 
molecules served to construct a screening library, from 
which the starting training set and the successive molecule 
picks are drawn (Table 1 and Supp. Fig. 2). An additional 
set of 20,000 molecules was randomly selected to serve as 
an external test set for performance monitoring. 
 
Levels of structural diversity 
To examine the effect of structural heterogeneity in the 
starting set, we artificially created subsets of molecules 
with different degrees of structural diversity. Diversity was 
defined through molecular similarity by computing the 
Tanimoto coefficient on Extended Connectivity 
Fingerprints43 (ECFPs), which captures the presence of 
shared substructures. Using hierarchical clustering, we 
selected ten clusters in each dataset with moderate 
structural diversity (average Tanimoto similarity ranging 
from 0.26 ± 0.03 to 0.28 ± 0.03, Table 2). Within each of 
these clusters, another subcluster of molecules with low 
diversity was identified (average similarity higher than 
0.36 ± 0.01, Table 2). This gave us a hierarchy of three 
levels of structural diversity (Fig. 1a): (1) ‘innate’ diversity, 
representing the inherent diversity of the full screening 
library, (2) moderate diversity, and (3) low diversity. When 
constructing the starting set, molecules could, thus, be 

sampled from areas of each level accordingly. Since our 
approach is hierarchical, this allowed us to vary molecular 
diversity in the starting set while staying in the same 
population of molecules for each of the ten experimental 
replicates. 
 
Deep learning models 
Two deep learning strategies were used to perform 
bioactivity predictions. Models were trained using either 
traditional engineered molecular descriptors or learnable 
molecular representations22: 
1. Neural networks (multi-layer perceptron) that learn 

from molecular fingerprints in the form of Extended 
Connectivity Fingerprints43 (ECFPs). These molecular 
fingerprints encode the presence of radial, atom-
centred substructures.  

2. Graph neural networks, which learn directly from the 
molecular graph4,44. Molecular graphs are a direct 
numeric representation of molecular topology, with 
nodes and edges representing atoms and chemical 
bonds respectively.  

To enable uncertainty estimation, both methods were 
implemented as approximate Bayesian models through 
anchored ensembling45 (see Materials and Methods).  

 
Acquisition functions 
An important contributor to hit discovery is the so-called 
acquisition function. The acquisition function determines 
which molecules are selected for screening and how the 
training set is expanded; governing hit retrieval and 
influencing future iterations. Six acquisition functions 
were investigated as a strategy to select molecules for the 
next cycle, and for their effect on the active learning 
performance: 

Table 1: Summary of the data. Subsets of three datasets from LIT-PCBA32 were used: Pyruvate kinase M2 (PKM2, agonism), Aldehyde 
dehydrogenase 1 (ALDH1, inhibition), and Vitamin D receptor (VDR, antagonism). Mean and standard deviations of the number of 
hit molecules in the 10 starting sets are reported. 

Dataset Screening library size Test set size Hits in starting sets 
PKM2 100,000 (223 hits, 0.2%) 20,000 (44 hits, 0.2%) 1.2 ± 0.4 
ALDH1 100,000 (4986 hits, 5.0%) 20,000 (997 hits, 5.0%) 4.1 ± 3.1 
VDR 100,000 (239 hits, 0.2%) 20,000 (48 hits, 0.2%) 1.2 ± 0.4 

 

Table 2: Hierarchy of molecular diversity in starting sets. 
Molecular diversity is reported as the mean Tanimoto similarity 
on Extended Connectivity Fingerprints between all molecules 
in the starting set. For three datasets, the mean mean similarity 
of all ten starting sets (n=64) is reported with standard 
deviations. The higher the mean similarity, the lower the 
diversity. These values were the best achievable for ten 
hierarchical subsets large enough to sample the starting set 
from. 
 
Diversity ↓ 

 
PKM2 

Similarity ↑ 
ALDH1 

 
VDR  

Innate 0.14 ± 0.00 0.13 ± 0.00 0.14 ± 0.00 

Moderate 0.27 ± 0.03 0.28 ± 0.04 0.26 ± 0.03 

Low 0.46 ± 0.03 0.46 ± 0.02 0.36 ± 0.01 
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1. Molecular similarity. Molecules in the screening 
library with the highest structural similarity (Tanimoto 
similarity on ECFPs) to any previously found hit are 
selected. 

2. Exploitation. Molecules with the best model 
predictions are selected (Eq. 6). 

3. Exploration. Molecules with the most uncertain 
predictions are selected (Eq. 7), with the goal of 
‘patching knowledge gaps’ in the model. 

4. Mutual Information46. Based on Bayesian Active 
Learning by Disagreement (BALD)46, molecules with 
the lowest mutual information (Eq. 8) are selected 
from the screening library. Mutual information is low 
when there are many possible ways of predicting the 
data with high certainty, given the same model. 

5. Exploitation without retraining. Molecules are selected 
with exploitation using a model trained on just the 
start dataset (Eq. 6). This method resembles traditional 
‘one-shot’ virtual screening where a single model 
prioritizes the molecules for the whole screening 
experiment. 

6. Random acquisition. Molecules are randomly selected 
from the screening library. This method serves as a 
control. 

 
Evaluation of active deep learning 
The factors investigated in this study were evaluated for 
their effect on hit enrichment across active learning cycles. 
This was quantified using the enrichment factor (EF)47, 
which captures the ratio between the number of hits found 
among all acquired molecules and the number of hits 
expected in selecting the same number of molecules at 
random from the screening library. EF values larger than 1 
indicate methods that can enrich a selection of hits more 
than a random pick (the higher, the better), while EF values 
lower than 1 perform worse than random at hit retrieval. 
 

A diverse start 

The active learning process is ‘seeded’ by the starting data 
that are available on a given target of interest. One has 
often no control on what molecules are available for 
training. Here we tested the effect of structural diversity 
(innate, moderate, and low) in the starting set on the 
effectiveness of the subsequent active learning cycles. We 
found that, in general, the molecular diversity of the 
starting set has little effect on later screening cycles, in 
terms of diversity of the acquired molecules (Fig. 2) and hit 
retrieval (Supp. Fig. 3). In fact, the initial structural bias is 
quickly compensated for in the first 1-5 cycles for most 
methods (Fig. 2) and converges to the levels of innate 
similarity of the screening library (Table 2). Only for 
similarity-based acquisition, by definition, the structural 
bias of the starting set lingers. In a few cases (mainly for 

exploitative and mutual information-based acquisition 
functions) fewer hits seem to be found when starting with 
highly similar molecules, although this proved to not be 
statistically significant in most cases (Supp. Fig. 3). This 
behaviour is observed regardless of the chosen deep 
learning approach and datasets. These results indicate that 
the structural diversity of the starting set does not play a 
big role in hit identification when screening for several 
cycles, hence showing the usefulness of iterative train-test-
update cycles in navigating chemical libraries effectively.   
 

 
Figure 2: The effect of structural diversity in the starting data. 
Using the ALDH1 dataset, 64 molecules are acquired each cycle. 
Shaded areas represent the standard error of 10 experiments with 
different random starting molecules. Structural diversity is 
defined as mean Tanimoto similarity within the starting set (Table 
2). a. Molecule acquisition based on best predictions 
(exploitation). b. Molecule acquisition based on mutual 
information. c. Molecule acquisition based on best predictions 
(exploitation) without updating models. d. Similarity-based 
molecule acquisition. Since molecules are not acquired based 
on model predictions, but through molecular similarity, results 
for ECFP- and graph-based models are identical.  
 

Choosing an acquisition function 

Choosing how to acquire the next iteration of molecules is 
arguably one of the most crucial factors in determining the 
hit enrichment. Here, we found that exploitation (selection 
of the best predicted molecules) and acquisition based on 
mutual information outperform all other acquisition 
functions, regardless of the dataset and the deep learning 
approach (Fig. 3). Active learning achieves a remarkable 
increase in the number of hits compared to screening the 
same number of molecules in just one go (‘one-shot’). For 
instance, active learning with exploitation leads to a 2- to 
4-fold enrichment compared the corresponding ‘one-shot’ 
approach.  
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Strikingly, iterative similarity-based acquisition 
(not requiring any machine learning in principle) also 
yields higher enrichment than ‘one-shot’ virtual screening 
across the board, although lower than deep learning. 
Especially in early iterations, similarity-based acquisition 
seems to be highly effective, even when compared to the 
best performing deep learning methods. Finally, 
exploration (selecting the most uncertain molecules), 
yields the fewest hits, in line with previous work12.  

Across all datasets and most molecule acquisition 
functions, ECFP-based models outperform graph-based 
models in hit enrichment. Graph neural networks, 
however, achieve a slightly higher prediction accuracy on 
the PKM2 and ALDH1 datasets (Supp. Table 2 and Supp. 
Fig. 4). Although graph-based methods tend to find less 
hits, they exhibit very similar behaviour to the ECFP-based 

methods in the relative performance of acquisition 
functions. Therefore, from here on, we will focus solely on 
ECFP-based models. The results of graph neural networks 
can be found as Supplementary Information. 

  

Chemical space exploration 

Finding structurally novel hits is often one of the objectives 
of virtual screening since it might increase the chances of 
success of hit-to-lead optimisation. Hence, we tested the 
acquisition functions for their ability to find novel hits with 
(a) different physicochemical properties, and (b) different 
substructures than the starting training set. We found that 
active learning is particularly suited to explore novel 
regions of the chemical space under both perspectives 
(Fig. 4).  

First, different acquisition functions can steer a 
screening experiment towards populations of molecules 
with different physicochemical properties than the starting 
set. An example experiment is shown (Fig. 4a, b), where, 
starting from the same set of molecules, the 
physicochemical properties of the acquired hits (e.g., total 
polar surface area and molecular weight) will 
progressively move towards different distributions over 
screening cycles based on the chosen acquisition 
function. This indicates that different acquisition functions 
can discover distinct chemistry in the form of their 
physicochemical properties.  
 Furthermore, to get more insights into the capacity 
of different acquisition functions to find structurally novel 
molecules, we curated a predefined list of 50 chemically 
relevant molecular substructures, including functional 
groups and structural features (Supp. Table 3). This list was 
used to monitor the discovery of new substructures across 
active learning cycles. We found that exploration 
(selection of most uncertain molecules) and random 
acquisition are the best functions in terms of (global) early 
enrichment of new substructures (Fig. 4c). Similarity-based 
acquisition, by definition, is the slowest at finding novel 
chemistry. When looking at hit molecules only, 
exploitation and mutual information-based acquisition 
yield the highest number of new (unique) substructures 
(Supp. Fig. 5). However, since these acquisition methods 
find more hits in general, we normalized for the number 
of hits found with each method to compare the discovery 
of ‘novel substructures per hit’ (Fig. 4d). When corrected 
for their hit discovery efficiency, no single method finds 
novel substructures faster. 
 Furthermore, active learning shows an adaptive 
behaviour in the molecular substructures that are acquired 
during screening. For example, aldehydes – 
overrepresented in ALDH1 hits (1.06%) compared to all 
molecules (0.18%) – will, at some point, get prioritized by 
exploitative and mutual information-based acquisition 
functions (Fig. 4e). In turn, the enrichment of aldehydes 

 
Figure 3: Effect of acquisition functions on hit discovery. 
Enrichment factor of all acquired molecules with models trained 
using ECFPs and molecular graphs, reported across three 
different datasets. Lines represent the average values and shaded 
areas represent the standard error, computed over 10 
experiments with different starting molecules. Molecular 
fingerprints (ECFPs) are reported on the left-hand column (solid 
line), and graph neural networks on the right-hand column 
(dashed line). Every row represents one dataset: a, b. PKM2, c, 
d. ALDH1, e, f. VDR. 
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found among hits rises accordingly (Fig. 4f). This indicates 
that relevant structure-activity relationships can be picked 
up along the way based on newly discovered information. 
This is not true for methods not based on active learning. 
In fact, irrelevant substructures might get prioritized purely 
by their presence in the starting set. For example, in the 
ALDH1 dataset, similarity-based acquisition starts to 
prioritize sulphonamides (Fig. 4g), which are common in 
this dataset, but not overrepresented in hit molecules 
(occurring in 14.32% of hits and 12.71% of non-hits). The 
adaptive nature of active learning allows it to change 
course during screening and might prevent models to get 
stuck in specific areas of the chemical space.  
 

Conclusions 

This systematic study showed that active deep learning 
achieves a considerable leap in hit-enrichment (up to six-
folds) compared to traditional virtual screening in low-
data regimes, across different real-world scenarios. The 
biggest factor in hit retrieval is the chosen acquisition 

function, that controls what molecules are selected for 
follow-up at each cycle. While graph- and fingerprint-
based neural networks show comparable classification 
performance, the latter show a better capacity to identify 
novel hits.  
 The chosen acquisition function also drives the 
journey through the chemical space of the screening 
library, in terms of physicochemical properties and 
substructures. Starting from the same set of molecules, in 
fact, different acquisition functions will lead to different 
populations of molecules being sampled. Moreover, the 
iterative nature of active learning allows it to ‘change 
course’ along the way and adapt to newly obtained 
information when prioritizing molecules based on 
previous discoveries. This is a clear advantage compared 
to traditional ‘one-shot’ approaches. 
 Finally, we show that the molecular diversity of 
the initial training set does not seem to affect hit discovery 
in later active learning cycles. The screening methods we 
explored in the context of our experimental setup appear 
to rapidly ‘correct’ for the lack of structural diversity in the 

Figure 4: The acquisition function determines the voyage through chemical space. Using the ALDH1 dataset, 64 molecules are 
acquired each cycle with models trained on ECFPs. a. The distribution of total polar surface area (TPSA) of hit molecules throughout 
active learning cycles. b. Molecular weight of hit molecules. c. The number of unique chemically relevant molecular substructures 
found across all acquired molecules. Shaded areas represent the standard error of 10 experiments with different random starting 
molecules. d. The share of unique molecular substructures found in hit molecules per acquisition method. e. The enrichment of 
aldehydes in acquired molecules. f. Enrichment of aldehydes among found hits. g. The enrichment of sulphonamides in acquired 
molecules. h. Enrichment of sulphonamides among found hits.   
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starting set within the next 1-5 screening cycles. This 
implies that a limited molecular diversity in the training 
data – which is frequently considered as one of the main 
obstacles in molecular machine learning – can be 
overcome by resorting to active deep learning. 
 Our results corroborate active learning as an 
effective tool for drug discovery, especially in low-data 
scenarios, both in terms of dataset size, structural bias, and 
class imbalance. Since the method of acquiring molecules 
proved to be the main performance driver, there is ample 
room for improved acquisition functions. Acquisition 
functions that consider a more chemistry-centred 
approach, on top of model predictions, bear particular 
promise to improve molecular novelty among found hits. 
In this study, we use an approximate Bayesian approach 
for uncertainty prediction. Different methods of 
uncertainty quantification might also play a big role in 
molecule acquisition and could be object of future 
research48. 

We hope that this research will encourage the 
adoption of active deep learning in prospective studies. 
We envision that such adoption will accelerate the shift 
towards fully automated, deep learning-guided, molecule 
screening. Ultimately, leading to the discovery of better 
drugs with less resources. 

 

Materials and Methods 
 
Data pre-processing and analysis 
Data pre-processing. ALDH1, PKM2 and VDR were 
downloaded from LIT-PCBA38 (accessed on August 2023 
at https://drugdesign.unistra.fr/LIT-PCBA). SMILES strings 
were canonicalized using RDkit49 v. 2022.09.5, after 
which non-unique SMILES strings and molecules that 
could not be “kekulized” or featurized (see Molecule 
featurization) were omitted. All molecules were randomly 
shuffled. Data was randomly split into a screening library 
(training set) containing 100,000 molecules and test set, 
containing 20,000 molecules (Table 1).  
 
Molecule featurization. ECFPs were computed with the 
following settings: length = 1024 bis, radius = 2. For the 
featurization of molecular graphs, the following atom 
features were one-hot-encoded: atom type (C, N, O, S, F, 
Cl, Br, I, P, Si, B, and Se), implicit atom degree, total atom 
degree (including hydrogens), explicit valence, implicit 
valence, total valence, implicit hydrogens, total 
hydrogens, formal charge, and hybridization. 
Additionally, atom membership of a set of molecular 
substructures was binary encoded (Supplementary Table 
3). ECFPs and all atom features were computed from 
canonicalized SMILES strings using RDkit49 v. 2022.09.5. 
 

Clustering. Structurally diverse groups of molecules in the 
training set were identified using average distance 
agglomerative clustering, implemented with scikit-learn v. 
1.2.1. A distance matrix of all molecules was used based 
on the ‘Tanimoto distance’ (computed as 1 – Tanimoto 
similarity) on ECFPs. The hierarchical clustering 
dendrogram was cut at a Tanimoto distance (Td) of Td = 
0.8 to find moderately diverse subclusters and at Td = 0.61, 
Td = 0.70, and Td = 0.70 for PKM2, VDR, and ALDH1 
respectively to find smaller, low diversity, sub-subclusters. 
These specific cut-off values were chosen so that each 
dataset contained 10 clusters. All subclusters had a 
minimal size of 128 molecules and contained a single sub-
subcluster of 64 molecules. Additionally, clusters should 
contain a minimal number of hits, comparable to the 
proportion of hits in the full dataset, as determined by: 
 

𝑛!"#$ >	𝑛%"&𝔼[𝑌$'())&], (1) 
 

where nhits is the number of hits in the subcluster, nmin is 

the minimum size of the subcluster, and 𝑌$'())&  is the 
binary class vector of the full screening library.  
 
Molecular substructure assignation. A set of 50 unique 
SMILES Arbitrary Target Specification (SMARTS) patterns 
were used to identify substructures (Supplementary Table 
3) using RDkit49 v. 2022.09.5. 
 
Active learning  
For each active learning experiment, 64 molecules were 
selected from the screening library. These molecules are 
then removed from the library. Every set starts with a 
random hit molecule, after which the remaining molecules 
are randomly sampled using a uniform distribution. Until 
the budget of 1000 molecules was depleted, a model 𝑀 
was trained on the training set, after which bioactivity 
predictions were made on the screening library. Using one 

of five acquisition methods (see Acquisition methods), 𝑛 
molecules are labelled and moved to the training set. 
 
Deep learning 
Neural network implementation and architectures. All 
models were implemented using PyTorch50 v. 1.12.1 and 
PyTorch Geometric51 v. 2.2.0. Graph Convolutional 
Networks (GCN) consisted of an atom embedding layer, 
followed by three layers of graph convolutions52 with 
batch normalization53. Global pooling by summing was 
then used to get molecular embeddings from atom 
embeddings. Finally, a multi-layer perceptron (MLP) was 
used with three fully connected layers with batch 
normalization53. The same MLP architecture was used for 
models trained on ECFPs. All models used a hidden size 
of 1024 neurons and were optimized for 50 epochs using 
the Adam algorithm, with a learning rate of 3 x 10-4 with 
mixed precision and a minibatch size of 64. During 
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training, minibatches were resampled based on their class 
with: 
 

                                  𝑃' = 1 − &!
*
,                                 (2) 

 

where 𝑃' is the sampling probability for a class 𝑐, 𝑛' is the 
number of samples of class 𝑐, and 𝑁 is the total number of 
samples. 
 
Uncertainty estimation. For uncertainty estimation, 
anchored ensembling was used45. This ensembling 
method produces predictive posterior distributions that 
closely approximate exact Bayesian methods. We used an 
ensemble of 𝑀 = 10  models. For each model, 𝑚 ∈
{1…𝑀}, its parameters 𝜃%  are regularized with a set of 
anchored parameters 𝜃+&'!,(,% . Each model is initiated 

with distinct 𝜃+&'!,(, controlled by random seeding. The 
classification loss in our implementation is defined as: 
 

ℒ𝑜𝑠𝑠 = − .
*
∑ log>𝑝%(𝑦"|𝑥")E +

/
*
G𝜃% − 𝜃+&'!,(,%G

0,*
"1.   (3) 

 

where 𝜆 is a regularization coefficient (set to 3 × 1023 ). 
For estimating the expected value 𝔼 of a molecule 𝑥", we 
take the mean prediction across all models in the 
ensemble, as follows: 
 

                       𝔼(𝑦"|𝑥") =
.
4
∑ 𝑝%(𝑦"|𝑥")4
%1. .         (4) 

 
Similarly, the prediction uncertainty for a molecule 𝑥" is 
defined as the mean entropy ℍ over the ensemble:  
 

          ℍ(𝑦"|𝑥") = − .
4
∑ 𝑝%(𝑦"|𝑥") log>𝑝%(𝑦"|𝑥")E4
%1. .	   (5) 

 
Acquisition functions 
Five acquisition functions were used to select follow-up 

molecules at each iteration. Each acquisition function (𝑎) 
greedily selects 𝑛 molecules based on model prediction 
on the screening library.  
 
1. Similarity-based: samples are selected based on their 

highest Tanimoto similarity (computed with ECFPs; 
with 1024 bits and a radius of 2) to any previously 
acquired hit compound).  
 

2. Exploitative: the best predicted samples are selected 
with:  

 

             𝑎)567,"# = 	argmax
&
>𝔼(𝑦|𝑥)E.               (6) 

 
3. Explorative: most uncertain samples are selected with: 
 
                          𝑎)567,() = argmax&>ℍ(𝑦|𝑥)E.               (7) 

4. Mutual Information: selects samples with low mutual 

information (𝕀) with: 
 
          𝑎𝕀 = argmin&(ℍ(𝑦|𝑥) − 𝔼4[ℍ(𝑦|𝑥, 𝜃)]).         (8) 

 
Based on Bayesian Active Learning by Disagreement 
(BALD)46, the left term represents the entropy of the 
model predictions (uncertainty) and the right term 
represents the expected value of the entropy of the 
model predictions for each draw of the model 
parameters (i.e., ‘disagreement’ between the different 
models in the ensemble)54. To have low mutual 
information, the model must have many ways of 
explaining the data with high certainty, i.e., low 
uncertainty and high disagreement.  
 

5. Random: samples are selected from a uniform 
probability distribution.  
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