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Abstract 

Rising antimicrobial resistance (AMR) and lack of innovation in the antibiotic pipeline 

necessitate novel approaches to discovering new drugs. Metal complexes have 

proven to be promising antimicrobial compounds, but the number of studied 

compounds is still low compared to the millions of organic molecules investigated so 

far. Lately, machine learning (ML) has emerged as a valuable tool for guiding the 

design of small organic molecules, potentially even in low-data scenarios. For the first 

time, we extend the application of ML to the discovery of metal-based medicines. 

Utilising 288 modularly synthesized ruthenium arene Schiff-base complexes and their 

antibacterial properties, a series of ML models were trained. The models perform well 

and are used to predict the activity of 54 new compounds. These displayed a 5.7x 

higher hit-rate (53.7%) against methicillin-resistant Staphylococcus aureus (MRSA) 

compared to the original library (9.4%), demonstrating that ML can be applied to 

improve the success-rates in the search of new metalloantibiotics. This work paves 

the way for more ambitious applications of ML in the field of metal-based drug 

discovery. 
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Introduction 

Drug-resistant bacterial infections are already causing 1.3 million deaths per year 

world-wide.[1] At the same time antibiotic use has increased during the COVID-19 

pandemic[2,3] and is still on the rise in agriculture.[4] Yet against this backdrop, most 

pharmaceutical companies have shut down their antibiotic development programs. 

This is reflected in a meagre clinical pipeline with only a small number of compounds 

with novel modes of action in clinical trials, even though there has been a slight but 

promising increase in recent years.[5] As the conventional sources for antibiotics, i.e. 

natural products and small organic molecules are not enough to contain the worsening 

antimicrobial resistance (AMR) problem, novel approaches are urgently needed. 

Transition metal complexes have made a lasting impact in medicine with the platinum-

based anticancer drugs constituting some of the most effective chemotherapeutic 

cancer regimens in the clinic today.[6,7] Over the last decade, more and more studies 

have highlighted the promising antimicrobial properties of metal complexes.[8–11] The 

recent progress in this field has been highlighted in several review articles.[12,13] We 

have recently shown that metal complexes have superior hit-rates against critical 

bacteria[14] and fungi[15] in vitro compared to purely organic molecules. We could show 

that metal complexes did not possess higher rates of cytotoxicity or haemolysis 

against human cells compared to their organic counterparts.[14] Ruthenium complexes 

in particular seem to have promising antibacterial properties, with one compound 

family currently undergoing preclinical evaluations.[9,16,17] However, at this stage the 

vast transition metal chemical space remains largely uncharted, particularly in 

comparison with the vast screening campaigns that have been performed on organic 

molecules. 

Machine-learning (ML) approaches have been applied to different facets of the drug 

discovery process, including the prediction of bioactive compounds. In 2020, Stokes 

et al. reported the application of deep learning to the prediction of antibacterial 

compounds. The authors trained a deep neural network on Escherichia coli growth 

inhibition data of 2,335 unique compounds. The library comprised a large portion of 

US Food and Drug Administration (FDA) approved compounds as well as natural 

products. With the trained model, the authors identified halicin from the Drug 

Repurposing Hub as an antibacterial compound and verified its activity both in vitro 

and in vivo.[18] A similar approach was utilized to discover the antibiotic abaucin which 

displayed narrow-spectrum activity against Acinetobacter baumanii both in vitro and 

in vivo, highlighting that ML models can be utilized to predict both broad-spectrum as 

well as narrow-spectrum antibiotics.[19] Recently, Capecchi et al. have shown that ML 

can also be utilised to predict non-hemolytic antimicrobial peptides.[20] Despite these 

encouraging examples, their numbers are still sparse and they rely on available 

databases such as already FDA approved drugs or collections such as the Drug 

Repurposing Hub, limiting their potential to discover entirely new compounds. 

The application of ML approaches to transition metal complexes has been even slower 

as the number of curated datasets is hitherto very limited. The Kulik group has made 

notable developments towards the application of ML towards the efficient search of 

https://doi.org/10.26434/chemrxiv-2023-72srv-v2 ORCID: https://orcid.org/0000-0001-6169-2491 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-72srv-v2
https://orcid.org/0000-0001-6169-2491
https://creativecommons.org/licenses/by-nc/4.0/


vast chemical spaces for optimised transition metal complexes.[21–24] Balcells et al. 

recently described a new representation for deep graph learning on transition metal 

complexes.[25] In the field of homogeneous catalyst development, the group of 

Corminboeuf reported the application of genetic optimisation as a tool to accelerate 

catalyst discovery.[26] 

An additional difficulty when dealing with metal complexes is that standard string 

representations such as SMILES tend to not be generally applicable. However, many 

cheminformatics tools rely on these representations to translate molecules into a 

computer-readable format that can be utilised for training of ML models. 

To tackle these challenges, we have opted to utilize systematic data generated 

inhouse, maximising its robustness. Secondly, we have focused this study on a single 

metal scaffold. Herein we report the application of ML to the prediction of antibacterial 

ruthenium complexes. We present a new, yet simple fingerprint that describes these 

metal complexes sufficiently for ML models to be trained on antimicrobial activity data. 

We then use these models to predict novel active ruthenium complexes from a virtual 

library of over 70 million possible compounds. We validate the ML approach by 

acquiring and synthesizing a selection of predicted compounds showing that we could 

significantly increase our hit-rate through the ML-guided building block selection to 

discover entirely novel antibacterial ruthenium complexes. 

Results and Discussion 

In ongoing work we have prepared a combinatorial library of novel ruthenium-arene 

Schiff-based complexes and evaluated their antimicrobial properties.[27] This was 

based on an combinatorial synthesis approach described by the Ang group in earlier 

work.[28–31] 

 

Figure 1. General reaction scheme for the synthesis of combinatorial ruthenium arene Schiff-base complexes. 

By combining 6 picolinaldehydes with 12 aniline derivatives and 4 ruthenium-arene 

precursors, 288 novel compounds could be prepared (Figure 1). All 288 compound 

crudes were directly screened through the CO-ADD initiative[32] for their ability to inhibit 

microbial growth against a panel of ESKAPE pathogens (Escherichia coli, Klebsiella 

pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, MRSA) and two 

fungi (Cryptococcus neoformans (yeast) and Candida albicans). No significant 

inhibition was found against the Gram-negative bacteria and only three compounds 

showed some inhibition of C. neoformans. However, 27 compounds (9.4%) showed 

significant growth inhibition against Gram-positive MRSA at 20 µM. For 16 (5.6%) of 

these a minimum inhibitory concentration (MIC) <20 µM could be determined (Figure 
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2). Further investigation of lead compounds is currently underway and will be reported 

separately. 

Figure 2. Structures of the picolinaldehydes (PA), aniline derivatives (AD) and ruthenium arenes (RA) for the 

combinatorial library and the MRSA growth inhibition-% data at 20 µM given for the 288 tested compounds (white 

dots indicate a confirmed MIC < 20 µM, for specific MICs see Table S1). 

It is evident that even though we have prepared 288 complexes with high ease and 

low costs, this is barely scratching the surface of the possible compounds that could 

be made. To construct a more robust library towards antimicrobial efforts without 

blindly making more compounds, a more guided approach could be applied to the data 

obtained and direct future synthetic explorations.  

While ML approaches have gained widespread attention and application in organic 

drug discovery, they have not been widely applied to metal complexes yet. One reason 

is that most conventional methods to generate descriptors or feature vectors for 

molecules rely on molecular representations, such as SMILES, which cannot be easily 

extrapolated onto metal complexes with multiple coordinating ligands. While some 

solutions have been proposed, they have not been widely applied yet.[33,34] In our case 

we took advantage of the fact that all 288 tested compounds and any compound of 

this class we wished to predict shared several similarities. All compounds contain 

ruthenium(II), have a chlorido ligand and in an approximation adopt the same pseudo-

‘piano stool’ geometry. We therefore hypothesized that it would be sufficient to 

represent each ruthenium complex as a linear combination of the molecular 

fingerprints of its ligand components (Figure 3). Since each component (Ru-arene, 

aniline-derivative and picolinaldehyde) is a conventional organic molecule, we were 

able to use available python libraries to generate fingerprint vectors. In our case, we 

opted for the RDKit[35] implementation of the widely applied extended-connectivity 

fingerprints (ECFP4[36]). With regards to the fingerprint length, we opted for 512-bits 
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as a trade-off between encoding efficiency and feature-size, since we are operating in 

a low-data regime.  

Initially we considered a XOR-type combination of the three fingerprints, resulting in a 

single vector where all the bits that were activated in the fingerprints of the three 

components remained activated in the final vector. However, we decided against this 

representation as some information would be lost in the final vector if the same bit is 

active in two or more of the building blocks. We settled on the second approach, which 

entailed combining fingerprints through bit-wise summation. This method allowed us 

to retain more information about the three distinct components in the final vector. 

Essentially, the fingerprint indicates the presence of any circular substructure and how 

many components contain the substructure. We consider this to be a more appropriate 

representation for the combinatorial library, as it allows the models to capture whether 

certain moieties need to be present in one or more components. 

 

Figure 3. Schematic illustration of how fingerprints for the ruthenium-arene Schiff-base complexes were 
generated. 

As we only had a limited dataset of 288 compounds, we converted the percentage 

inhibition data into binary classification data. Taking advantage of the more detailed 

dose-response data allowed us to exclude some false positives from the actives, 

leaving 16 compounds with confirmed activity. All compounds were either labelled 

inactive (‘0’) or active (‘1’). With the fingerprints and labels in hand, we evaluated six 

classical machine learning models in a 10-fold cross validation utilizing the scikit-learn 

package. The models used were: Random Forest (RF), Naïve Bayes (NB), Support 

Vector Machine (SVM), Multilayer Perceptron (MLP), Extreme Gradient Boosting 

(XGB) and k-Nearest Neighbours (kNN). As the dataset is highly unbalanced, a model 

guessing all compounds to be inactive would still give accurate predictions 90% of the 

time. To make sure the models are not learning the underlying data distribution, we 

rerun the 10-fold cross validations with scrambled labels for all models. Additionally, 

we paid close attention to the performance of the models with respect to the generation 

of false-negatives and false-positives (confusion matrices for all models are provided 

in the SI). 

In general, apart from Naïve Bayes, all models demonstrated comparable 

performance in the classification task, indicating that the utilisation of a linear 

combination of ligand fingerprints is a suitable proxy for the encoding of the entire 

metal complex in our specific use-case. The best training results were obtained for the 

SVM and MLP algorithms, with a mean AUC of 0.98 (Figure 4, and Figure S1-S6). 

Both models also showed very low numbers of false-positives and false-negatives. At 
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the same time, the models performed no better than random when scrambled labels 

were used, indicating that they did not just replicate the underlying data distribution. 

 

Figure 4. Performance evaluation of selected models. a) AUC of SVM model for all 10 cross-validations. The mean 
AUC of all cross-validations is displayed in brown; the standard deviation interval is displayed in grey. b) AUCs for 
the SVM model with scrambled labels. c) AUC of MLP model for all 10 cross-validations. The mean AUC of all 
cross-validations is displayed in purple; the standard deviation interval is displayed in grey. d) AUCs for the MLP 
model with scrambled labels. 

To evaluate the accuracy and usefulness of these models, we created a virtual library 

of possible complexes to synthesize next. To assemble this library, we conducted 

targeted substructure searches on the curated chemistry database Reaxys. The goal 

was to generate a library of building blocks that can, in principle, be commercially 

acquired. To this end all results were filtered for ‘commercial availability’ during the 

searches. As the ruthenium arene precursor was the most difficult to synthesize and 

not much variety was available, we selected only 14 arenes for the virtual library. In 

total, 864 commercially available picolinaldehydes were included. In the case of 

aniline-derivatives, the results were further filtered for a molecular weight smaller than 

200 Da, leaving 6356 amines. The full lists of the selected building blocks are available 

in our GitHub repository.[37] Altogether, these building blocks generated a virtual library 

containing 76,906,368 possible ruthenium complexes. We now utilized our trained 

SVM and MLP models to evaluate the virtual library, saving only compounds which 

were predicted to be active by both models (Figure S7). This left 2,299,553 possible 

ruthenium compounds that, according to our trained ML models, were likely to be 

active against MRSA.  

https://doi.org/10.26434/chemrxiv-2023-72srv-v2 ORCID: https://orcid.org/0000-0001-6169-2491 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-72srv-v2
https://orcid.org/0000-0001-6169-2491
https://creativecommons.org/licenses/by-nc/4.0/


Breakdown of the predicted actives into their respective building blocks showed that 

some building blocks were clearly favoured for activity over others (The ranked lists of 

building block frequencies are provided in the GitHub repository[37]). To investigate 

whether the ML might just correlate simple properties of the molecules such as logP, 

topological polar surface area (TPSA) or molecular weight with activity, we calculated 

these properties for all ranked building blocks. No correlation between rank/frequency 

and the properties logP, TPSA and molecular weight was found (Figure S8-S13). The 

feature importance was also analysed from the support vectors of SVM. Oxygen and 

chloro-substituents were shown to contribute positively to activity while sulfonyl and 

amidine groups such as the ones on AD9-12 overall contributed negatively to activity 

in the SVM model (Figure S14-S15). 

To verify the ML model predictions, we aimed to synthesize a small set of the 

compounds predicted to be active. As the RA4 ruthenium-arene building block 

seemed to be highly favored over the others, we kept it constant and selected different 

picolinaldehydes (PA) and aniline-derivative (AD) building blocks. Starting from the 

most frequent building blocks, commercial suppliers were searched that provided a 

given building block at a reasonable price-point (at least 250 mg at <200 USD) and 

within a realistic time-period. Finally, 6 new picolinaldehydes (nPA1-nPA6) and 9 new 

aniline derivatives (nAD1-nAD9) were obtained. The new building blocks differ 

significantly from the original library in structure with a mean Tanimoto similarity of 

0.22 ± 0.07 between the two AD groups and 0.27± 0.1 between the PAs (Figure S16-

S17) 

With these building blocks in hand, we assembled a new small combinatorial library of 

54 novel ruthenium(II) arene Schiff-base complexes. The reaction progress was 

Figure 5. Structures of new picolinaldehydes (nPA) and aniline derivatives (AD) utilised together with RA4 to 
prepare the ML-predicted combinatorial library with MRSA growth inhibition-% for the new library at 20 µM (white 
dots indicate confirmed complete growth inhibition at 5 µM.) The six compounds resynthesized for verification are 
highlighted with black squares. 
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monitored by LC-MS, confirming that the target complexes had formed (Table S1). 

The average assembly yield was 66 ± 21%, indicating that in most crudes the putative 

complex was the major species. The crude compounds where then tested for their 

antimicrobial activity against both a methicillin-susceptible S. aureus (MSSA) as well 

as a MRSA strain. At 20 µM, 29/54 (53.7%) showed significant growth inhibition 

against MRSA, representing a 5.7x higher hit-rate compared to the initial ‘blind’ testing 

(27/288 or 9.4% active, Figure 5 and Table S2-S3). When screened at 5 µM, 17/54 

(31.5%) still showed complete growth inhibition. When one considers that considers 

that only 16 out of the 27 active compounds in the original library showed an MIC ≤10 

µM (Table S4), the improvement in the predicted library is even better. The activity-

levels against MSSA were the same (29/54, 53.7% showing growth inhibition at 20 

µM, Table S5). Even if one only compared the activity rates of compounds containing 

arene RA4 between the old and new library, a significant 3.2x improvement was 

evident, increasing from 12/72 (16.7%) to the aforementioned 29/54 (53.7%). None of 

the new building blocks showed any bacterial growth inhibition by themselves at 20 

µM (Table S6) supporting the conclusion that any observed activity stemmed from the 

putative ruthenium complexes.  

As a final verification of these results, we selected 6 RAS complexes within the new 

library for targeted synthesis so that the isolated complexes could be directly evaluated 

for their antibacterial efficacies. To challenge the validity of the ML-predicted 

compounds, we chose RAS combinations that showed activity at 5 µM against MRSA 

but displayed the lowest assembly yields (Figure 5, black squares). As a negative 

control we choose RA4-PA6-AD10 from the original library which showed no bacterial 

growth inhibition. These compounds were re-synthesized on batch scale, purified by 

flash silica column chromatography and characterised by 1H, 13C-NMR, HPLC and 

HR-MS (cf. Supporting Information), verifying their purity (>92%) and identity. With the 

purified compounds in hand, their antibacterial activity was determined against both 

MRSA and MSSA strains (Figure S18-19, and Table 1). All 6 ruthenium compounds 

that showed activities in the crude screening exhibited high efficacies against both 

bacterial strains with MIC values as low as 0.24 µM, which are comparable, and in 

some cases better than the standard-of-care vancomycin. The negative control 

compound did not show any antibacterial activity at the highest tested concentration. 

These results not only provide further evidence that our ML-models are indeed able to 

predict bioactive metal complexes but also support the crude-screening approach 

given that even in cases where the assembly yield is low, the antibacterial activity of 

the putative compound can be detected reliably. 
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Table 1. Minimum inhibitory concentration (MIC) of selected purified RAS complexes against MRSA 1768 and 

MSSA RN4220 in µM.  

Compound1 MRSA 1768 MSSA RN4220 

RA4-nPA3-nAD2 2.41 2.41 

RA4-nPA3-nAD5 0.51 0.51 

RA4-nPA3-nAD7 1.08 1.08 

RA4-nPA6-nAD3 0.49 0.24 

RA4-nPA6-nAD4 2.13 2.13 

RA4-nPA6-nAD6 0.98 1.97 

RA4-PA6-AD10 
(negative control) 

>43.5 >43.5 

Ampicillin 25 0.2 

Vancomycin 0.78 0.78 
1Each experiment were performed with 3 biological replicates per concentration and at least 2 independent 

experiments were carried out. Final concentrations were adjusted based on ICP-OES measurements of stock 

solutions. MIC value is indicated by vertical dotted line in the dose-response graph (Figure S18-S19). 

 

In conclusion, we have demonstrated for the first time the application of ML for the 

prediction of bioactive metal complexes. A linear combination of the building blocks’ 

ECFP fingerprints was successfully utilized as a descriptor for a library of ruthenium 

complexes. The trained ML models enabled us to screen close to 77 million possible 

compounds and narrowed our search to ~2 million which the two best models 

predicted to be active. Further filtering by building block frequency and commercial 

availability led to the acquisition of 15 new building blocks and synthesis of a small 

new library. We found a significantly improved rate of antibacterial activity in the ML-

predicted library compared to the initial one. The activity of the predicted compounds 

was verified further by resynthesizing and purifying six metal complexes. These 

isolated compounds showed low MICs comparable with currently employed 

antibiotics. This is but the exciting first step into the application of ML methods to the 

discovery of bioactive metal compounds. With this successful proof of concept, the 

door is open for future work with larger compound libraries and higher resolution 

models able to predict more precise activity levels but also other properties such as 

toxicity, haemolysis, solubility, stability etc. Better descriptors that include the 

properties of the transition metal will be needed to train models that are able to predict 

molecular properties across the periodic table.  
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Materials and Methods 

1H, 13C{1H}, 19F{1H} NMR spectra were obtained using either Bruker Avance III HD 400 

or Bruker AVNEO 500 spectrometer, and the chemical shifts (δ) are reported in parts 

per million (ppm) with reference to residual solvent peaks.  

The HPLC was Shimadzu Prominence System equipped with a DGU-20A3 degasser, 

two LC-20AD liquid chromatography pumps, a SPD-20A UV/vis detector, and an 

Agilent, ZORBAX Eclipse Plus C18 column (4.6 × 150 mm, 5 μM) with flow rate of 1.0 

mL/min with 254 and 280 nm detection wavelength. The gradient elution conditions 

were 20-95% of solvent B (MeCN with 0.1% trifluoroacetic acid) and solvent A (H2O 

with 0.1% trifluoroacetic acid) over a 30 min elution period. 

Electrospray-ionization mass spectrometry (ESI-MS) spectra were obtained using a 

Thermo Finnigan MAT ESI-MS System. 

Determination of Ru concentration of stock solution was made using Perkin Elmer Avio 

500 Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES) operated 

by CMMAC, NUS, using internal indium standards at 0.5 ppm analyzed at 325 nm 

wavelength. 

 

Dataset preparation 
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The set for training and evaluation of the machine learning models was generated 

starting from the components (anilines, picolinaldehydes, Ru-arenes) of the original 

combinatorial library. For all components, the ECFP4 fingerprints were calculated as 

512-bit sized vectors using the RDKit (2022.3.4) implementation. All possible 

combinations of the obtained fingerprints were then generated by bit-wise addition for 

a total of 288 molecular fingerprints. Finally, the 288 molecular fingerprints were 

labelled based on their experimental antimicrobial activity (0 inactive, 1 active). 

The screening library was generated in a similar fashion by combining the ECFP4 

fingerprints of 14 Ru-arenes, 864 picolinaldehydes and 6356 anilines, for a total of 

76,906,368 combinations.  

 

Model evaluation  

Random Forest (RF), Naïve Bayes (NB), Support Vector Machine (SVM), Multilayer 

Perceptron (MLP), Extreme Gradient Boosting (XGB) and k-Nearest Neighbours 

(kNN) models were implemented using the python scikit-learn (0.22.1) package. All 

models were evaluated in a 10-fold cross validation with a train/test split of 0.75/0.25 

and performances compared with scrambled labels to check for meaningful fitting. The 

mean area under the receiving operating characteristic curve (ROC-AUC) along all 

cross validations was used to evaluate and select the best models for prediction on 

the large screening library.  

 

Library Synthesis 

All experiments were carried out without exclusion of moisture and air. All chemicals 

and solvents were obtained from commercial sources without further treatment. All 

chemicals and solvents at analytical grade or high-performance liquid chromatography 

(HPLC) grade were purchased from commercially available sources. RuCl3·xH2O 

precursor was purchased from Precious Metal Online. [(η6-1,3,5-

Triisopropylbenzene)RuCl2]2 was synthesized according to previously reported 

protocols.[28] 

Separate stock solutions containing [(η6-1,3,5-Triisopropylbenzene)RuCl2]2 dimer (10 

mM), picolinaldehyde PA (40 mM), and aniline derivatives AD (40 mM) were prepared 

in DMSO. The reactions were then carried out on a 96-well flat-bottom plate (Greiner) 

with sequential addition of H2O (100 μL), PA (25 μL), AD (25 μL) and RA (50 μL), 

added to each well in one portion, yielding RAS complexes (5 mM) in DMSO/H2O (1:1 

v/v, 200 μL). The plates were sealed and incubated with shaking at room temperature 

for 36 h.  

To ascertain assembly efficiency, RAS complexes (50 µL) were freeze dried and 

reconstituted in 0.9 % (w/v) NaCl solution and characterized using LC-MS Thermo 

Scientific Vanquish HPLC-PDA tandem Thermo Scientific LTQ XL instrument and 

Thermo Xcaliber Qual Browser software. The acquisition method was obtained with 

ZORBAX Eclipse Plus C18 column (4.6 × 150 mm, 5 μM) with flow rate of 1.0 mL/min 

using solvent B (MeCN with 0.1% formic acid) and solvent A (H2O with 0.1% formic 

https://doi.org/10.26434/chemrxiv-2023-72srv-v2 ORCID: https://orcid.org/0000-0001-6169-2491 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-72srv-v2
https://orcid.org/0000-0001-6169-2491
https://creativecommons.org/licenses/by-nc/4.0/


acid). The gradient elution conditions were 20 → 80 % solvent B over 20 min followed 

by a consistent 80% solvent B for 10 min. 

 

Single Concentration Antibacterial Testing 

All antimicrobial susceptibility testing followed clinical laboratory standards institute 

(CLSI) guideline.[38] Methicillin-susceptible Staphylococcus aureus (MSSA) RN4220, 

methicillin-resistant Staphylococcus aureus (MRSA) BAA-1768 were first inoculated 

in Lysogency broth and incubated at 37 °C for 4-6 h. Afterwards, bacterial cells were 

inoculated into 96-well flat-bottom plates (Greiner) with a density of 5×104 CFU/100 

μL per well, followed by 5 µL addition of stock solution of assembled RAS complexes 

into 100 μL per well Mueller-Hinton II broth to obtain the desired corresponding 

concentration. 5 µL of 1:1 v/v DMSO/H2O were added for blank controls and Mueller-

Hinton II broth was added for background subtraction. The plate was sealed and 

incubated in a shaker at 37 °C for 16 h. The viability was determined by absorbance 

at OD600 using a microplate reader. 

Determination for Minimum Inhibitory Concentration (MIC) 

All antimicrobial susceptibility testing followed clinical laboratory standards institute 

(CLSI) guideline.[38] Methicillin-susceptible Staphylococcus aureus (MSSA) RN4220, 

methicillin-resistant Staphylococcus aureus (MRSA) BAA-1768 were first inoculated 

in Lysogency broth and incubated at 37 °C for 4-6 h. Afterwards, bacterial cells were 

inoculated into 96-well flat-bottom plates (Greiner) with a density of 5×104 CFU/100 

μL per well. The RAS complexes were prepared in DMSO stock and serially diluted 

across the wells to obtain a range of concentrations in 100 μL per well Mueller-Hinton 

II broth. Ru concentrations of RAS complexes stock solutions were determined by ICP-

OES. Blanks using Mueller-Hinton II broth was added for background subtraction. 

Antibiotics ampicillin and vancomycin were included for comparison purposes. The 

plate was sealed and incubated in a shaker at 37 °C for 16 h. The viability was 

determined by absorbance at OD600 using a microplate reader. The MIC was 

determined by the lowest concentration that induced no bacterial growth (as indicated 

on the graph with a vertical line).  

 

General procedure for the synthesis and purification of RAS complex. The 

picolinaldehyde PA (1.2 equiv) and aniline derivatives AD (1.2 equiv) were added to 

MeOH (10 mL) and stirred at r.t. over 24 h. Next, the Ru dimer RA4 (0.5 equiv) in 

MeOH (10 mL) was added to the reaction mixture for reflux over 24 h. The solvent was 

removed in vacuo, and the resultant crude product was purified by flash column 

chromatography (EtOH/CHCl3) to afford the desired RAS complex. 

RA4-nPA3-nAD5. Yield: 23.3 mg (60.8 %). 1H NMR (400 MHz, DMSO-d6): δ 0.92 (9H, 

d, J=6.80 Hz), 1.17 (9H, d, J=6.84 Hz), 1.48 (3H, t, J=6.96 Hz), 2.35 (3H, sep, J=6.80 

Hz), 3.81 (3H, s), 4.33 (2H, q, J=6.96 Hz), 5.72 (3H, s), 7.16 (1H, dt, J=3.20 Hz), 7.59 

(1H, dd, J=9.25, 10.61 Hz), 7.71 (1H, d, J=2.76 Hz), 7.77 (1H, q, J=3.20 Hz), 7.81 (1H, 
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dd, J=2.82, 9.51 Hz), 8.32 (1H, d, J=8.36 Hz), 8.74 (2H, t, J=9.15 Hz), 9.13 (1H, d, 

J=2.40 Hz) ppm. 13C{1H}-NMR (125 MHz, DMSO-d6): δ 14.43, 21.40, 22.26, 30.87, 

55.94, 64.55, 77.64, 107.03, 111.08, 113.16, 116.33, 116.37, 117.55, 117.72, 125.37, 

125.93, 131.03, 131.52, 138.61, 144.58, 152.80, 155.64, 159.58, 173.41 ppm. 19F 

NMR (376 MHz, DMSO-d6): δ 136.34 ppm. HRMS (+ mode): m/z calculated for 

C34H41ClFN2O2Ru, [M]+ = 665.1885, found: 665.1890. Purity (HPLC) = 95.6%. 

RA4-nPA3-nAD2. Yield: 26.2 mg (71.7 %). 1H NMR (400 MHz, DMSO-d6): δ 0.87 (9H, 

d, J=6.84 Hz), 1.18 (9H, d, J=6.80 Hz), 1.48 (3H, t, J=6.94 Hz), 2.42 (3H, sep, J=6.82 

Hz), 3.97 (3H, s), 4.31 (2H, q, J=6.94 Hz), 5.57 (3H, s), 7.50 (1H, dd, J=10.95, 8.75 

Hz), 7.68 (2H, q, J=3.34 Hz), 7.73 (1H, dd, J=2.82, 9.51 Hz), 7.98 (1H, dd, J=2.42, 

7.74 Hz), 8.20 (1H, d, J=8.40 Hz), 8.68 (1H, d, J=8.40 Hz), 8.85 (1H, d, J=9.53 Hz), 

9.06 (1H, s) ppm. 13C{1H}-NMR (125 MHz, DMSO-d6): δ 14.43, 21.31, 22.25, 30.84, 

56.30, 64.46, 73.79, 107.03, 109.21, 116.13, 117.40, 124.81, 125.66, 131.08, 131.24, 

138.44, 144.28, 147.10, 147.13, 147.19, 150.71, 153.46, 159.25, 168.93 ppm. 19F 

NMR (376 MHz, DMSO-d6): δ 132.75 ppm. HRMS (+ mode): m/z calculated for 

C34H41ClFN2O2Ru, [M]+ = 665.1885, found: 665.1894. Purity (HPLC) = 95.0%. 

RA4-nPA3-nAD7. Yield: 32.7 mg (93.7 %). 1H NMR (400 MHz, DMSO-d6): δ 1H-NMR 

(DMSO)  0.92 (9H, d, J=6.76 Hz), 1.11 (9H, d, J=6.88 Hz), 1.48 (3H, t, J=6.96 Hz), 

2.28 (3H, sep, J=6.81 Hz), 2.57 (3H, s), 3.85 (3H, s), 4.33 (2H, q, J=6.88 Hz), 5.80 

(3H, s), 6.97 (1H, dd, J=2.78, 8.87 Hz), 7.10 (1H, d, J=2.76 Hz), 7.70 (1H, d, J=2.80 

Hz), 7.82 (1H, dd, J=2.80, 9.53 Hz), 7.91 (1H, d, J=8.85 Hz), 8.26 (1H, d, J=8.36 Hz), 

8.68 (2H, d, J=9.73 Hz), 8.71 (2H, d, J=8.44 Hz), 8.91 (1H, s) ppm. 13C{1H}-NMR (125 

MHz, DMSO-d6): δ 14.45, 18.53, 20.89, 22.96, 30.67, 55.64, 64.49, 80.20, 107.12, 

110.47, 112.45, 115.95, 124.75, 125.45, 125.53, 130.51, 130.61, 131.21, 138.52, 

143.80, 144.45, 153.00, 158.93, 159.29, 171.75 ppm. HRMS (+ mode): m/z calculated 

for C35H44ClN2O2Ru, [M]+ = 661.2136, found: 661.2146. Purity (HPLC) = 92.9%. 

RA4-nPA6-nAD6. Yield: 39.5 mg (85.4 %). 1H NMR (400 MHz, DMSO-d6): δ 0.89 (9H, 

d, J=6.84 Hz), 1.18 (9H, d, J=6.80 Hz), 2.43 (3H, sep, J=6.81 Hz), 3.92 (3H, s), 5.65 

(3H, s), 7.31 (1H, t, J=1.96 Hz), 7.69 (1H, t, J=1.94 Hz), 7.76 (1H, t, J=1.64 Hz), 8.15 

(1H, dd, J=2.40, 9.33 Hz), 8.32 (2H, t, J=4.20 Hz), 8.50 (1H, d, J=2.36 Hz), 8.84 (1H, 

d, J=8.36 Hz), 8.91 (1H, d, J=9.37 Hz), 9.17 (1H, s) ppm. 13C{1H}-NMR (125 MHz, 

DMSO-d6): δ 21.35, 22.17, 30.85, 56.25, 75.27, 79.19, 108.16, 115.46, 116.35, 

125.66, 127.92, 129.90, 131.24, 133.26, 134.26, 134.93, 139.93, 146.64, 152.22, 

156.21, 160.35, 170.52 ppm. HRMS (+ mode): m/z calculated for C32H36Cl3N2ORu, 

[M]+ = 673.0928, found: 673.0921. Purity (HPLC) = 95.3%. 

RA4-nPA6-nAD4. Yield: 33.8 mg (97.8 %). 1H NMR (400 MHz, DMSO-d6): δ 0.89 (9H, 

d, J=6.84 Hz), 1.18 (9H, d, J=6.84 Hz), 2.44 (3H, sep, J=6.84 Hz), 3.91 (3H, s), 5.65 

(3H, s), 7.14 (1H, td, J=2.18, 10.69 Hz), 7.55 (1H, td, J=1.93, 9.55 Hz), 7.58 (1H, t, 

J=1.84 Hz), 8.15 (1H, dd, J=2.42, 9.35 Hz), 8.32 (1H, d, J=8.36 Hz), 8.50 (1H, d, 

J=2.40 Hz), 8.84 (1H, d, J=8.40 Hz), 8.92 (1H, d, J=9.37 Hz), 9.16 (1H, s) ppm. 
13C{1H}-NMR (125 MHz, DMSO-d6): δ 21.27, 22.25, 30.85, 56.28, 74.98, 103.02, 

103.21, 105.68, 116.69, 125.66, 127.92, 129.90, 131.23, 133.26, 134.92, 139.90, 

https://doi.org/10.26434/chemrxiv-2023-72srv-v2 ORCID: https://orcid.org/0000-0001-6169-2491 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-72srv-v2
https://orcid.org/0000-0001-6169-2491
https://creativecommons.org/licenses/by-nc/4.0/


146.62, 152.14, 152.24, 156.20, 160.89, 170.36 ppm. 19F NMR (376 MHz, DMSO-d6): 

δ 109.44 ppm. HRMS (+ mode): m/z calculated for C32H36Cl2FN2ORu, [M]+ = 

655.1230, found: 655.1238. Purity (HPLC) = 95.8%. 

RA4-nPA6-nAD3. Yield: 28.7 mg (70.9 %). 1H NMR (400 MHz, DMSO-d6): δ 0.84 (9H, 

d, J=6.88 Hz), 1.18 (9H, d, J=6.76 Hz), 2.41 (3H, sep, J=6.79 Hz), 3.96 (3H, s), 5.61 

(3H, s), 7.36 (1H, dd, J=2.50, 8.95 Hz), 7.52 (1H, d, J=2.36 Hz), 7.97 (1H, d, J=9.09 

Hz), 8.07 (1H, d, J=8.97 Hz), 8.12 (1H, dd, J=2.40, 9.33 Hz), 8.20 (1H, dd, J=2.16, 

8.89 Hz), 8.34 (1H, d, J=10.13 Hz), 8.48 (1H, d, J=2.40 Hz), 8.60 (1H, d, J=1.80 Hz), 

8.82 (1H, d, J=8.40 Hz), 8.98 (1H, d, J=9.29 Hz), 9.26 (1H, s) ppm. 13C{1H}-NMR (125 

MHz, DMSO-d6): δ 21.38, 22.08, 30.87, 55.49, 74.31, 106.42, 117.51, 120.43, 121.59, 

121.97, 125.29, 127.36, 127.90, 129.76, 130.36, 131.30, 133.07, 134.61, 134.91, 

139.75, 145.99, 146.56, 156.76, 158.82, 167.88 ppm. HRMS (+ mode): m/z calculated 

for C35H39Cl2N2ORu, [M]+ = 687.1481, found: 687.1486. Purity (HPLC) = 97.3%. 
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