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Abstract 

Virtual screening of large-scale chemical libraries has become increasingly useful for identifying 

high-quality candidates for drug discovery. While it is possible to exhaustively screen chemical 

spaces that number on the order of billions, indirect combinatorial approaches are needed to 

efficiently navigate larger, synthon-based virtual spaces. We describe Shape-Aware Synthon 

Search (SASS), a synthon-based virtual screening method that carries out shape similarity 

searches in the synthon space instead of the enumerated product space. SASS can replicate 

results from exhaustive searches in ultra-large, combinatorial spaces with high recall on a 

variety of query molecules while only scoring a small subspace of possible enumerated 

products, thereby significantly accelerating large-scale, shape-based virtual screening. 

 

Introduction 
In the past decade there have been significant advances in the scale and success of virtual 
screening campaigns.[1, 2, 11–14, 3–10] Traditionally, the scope of virtual screening was limited to 
compounds that were either present in local chemical inventory or available for purchase from 
vendors of chemical screening compounds. In either case, physical samples of compounds that 
were identified as desirable by computed metrics could be easily obtained and assayed. The 
scale of such efforts was millions of compounds, which puts a heavy, though manageable, 
resource burden on the computational methods. 
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The recent development of synthesis-on-demand libraries, such as those offered by Enamine,[15] 
Wuxi AppTec,[16] OTAVA,[17] ChemSpace,[18] and eMolecules,[19] has greatly expanded the scope 
of virtual screening. Instead of including only physically available compounds, chemical spaces 
now include compounds that are assumed to be readily synthesizable via validated reactions 
and reagents. This assumption greatly expanded the chemical space of available compounds 
that are relevant to drug discovery from millions to billions and beyond.[20, 21] Virtual screening 
methods have managed to keep pace, with several reports in the literature describing docking 
or shape similarity screening campaigns of up to a billion compounds.[6, 8, 22, 23] One important 
observation in these studies was that by increasing the size of the virtual screens, not only were 
more potent molecules found, but also that the novelty and quality of the hits improved. Thus, 
searching larger chemical spaces is worth the extra computational effort. 
 
A significant roadblock to virtual screening on very large scales develops when the number of 
synthesis-on-demand compounds outpaces the ability to explicitly evaluate them 
computationally. Often the mere instantiation (i.e. creating a representation of the molecule in 
computer memory) and storage of an entire synthesis-on-demand library in silico is not trivial, 
and neither is the evaluation of the fully enumerated product space. To navigate such 
unenumerable libraries, one approach involves using generative models to propose in-library 
molecules based on learned distribution from a subset of the library.[24, 25] In another approach, 
similar to how the libraries are defined by the synthons, virtual screening methods evaluate the 
synthons instead of the full libraries and only instantiate and evaluate products formed from top 
synthons, thereby limiting the computational resources required to evaluate such large chemical 
spaces. Several 2D molecular graph-based virtual screening methods that rely on evaluation of 
synthons have been reported to search ultra-large chemical spaces efficiently.[26–30]  
 
Only recently, however, has such synthon-based approach been adopted for 3D virtual 
screening. Two such methods are Chemical Space Docking[14] and V-SYNTHES[9], which first 
dock individual synthons to identify promising synthons and then instantiate and evaluate only 
products formed from those synthons. Those methods have hit rates well over 10%. In addition, 
a genetic algorithm-based approach has been reported for exploring synthon-based libraries 
using pharmacophore similarity as the scoring function.[31] 

 
Ligand shape similarity is an additional important 3D method that, to our knowledge, has not 
been applied to synthon-based virtual screening. In this paper, we describe such a method that 
we term Shape-Aware Synthon Searching (SASS). As in the case of the synthon-based docking 
approaches, our shape-based approach identifies promising synthons and combines them to 
make products. Evaluation of only a subset of products formed from promising synthons is 
crucial to limiting the search space. This method uses ROCS[32] to calculate shape similarity,[33] 
but any shape-based similarity method[34] should be compatible with the approach. 
 
We first describe SASS for two-component reactions, while drawing attention to some of the 
important considerations and parameters involved. We then apply the method to several shape 
queries to show that this method can achieve high recall on a diverse set of queries when 
compared to search results on fully enumerated libraries, while using a fraction of the 
computational cost. Finally, we demonstrate that this method can be scaled to a very large 
number of compounds while maintaining performance. 
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Methods 

To search ultra-large chemical spaces, SASS evaluates synthons instead of the products they 
form. Synthon scores are combined, and only the top synthon combinations are selected to 
generate a subset of products to be scored that is much smaller than the fully enumerated 
library.  This approach reduces the search space from nk (size of the fully enumerated library) to 
n x k (total number of synthons) + m, where n is the number of synthons per reaction 
component, k is the number of reaction components, and m is the size of the subset of products 
to be scored in the second stage (after synthon scoring). 

In this work, synthons are evaluated based on 3D shape similarity to a query molecule, which is 
complicated by the fact that synthons are usually much smaller than the query. In addition, we 
do not seek the top-scoring synthons when compared to the whole query molecule, but instead 
seek compatible synthons from the same reaction that score well when compared to 
complementary substructures of the whole query. When such synthons are combined according 
to the reaction rules, the resulting products will likely have high shape similarity to the whole 
query. 

 

As a result, we split the query into a pair of query fragments, and score synthons against each 
query fragment. To ensure that the connector atoms on the synthons roughly point toward each 
other, we apply custom ROCS color features during the ROCS scoring (see Synthon scoring 
section for details). After scoring, we rank the synthon combinations by their aggregated scores. 
The top-m synthon combinations are used to generate m products, which are then scored with 
ROCS to generate their final ranking. The steps of SASS are summarized in Fig 1. Details of 
each step are described below. 

 

 

Fig 1. Overall schema of SASS. Synthon conformers are enumerated and scored against query 
fragments. Top synthon combinations are instantiated to form a subset of the products of the full 
chemical space. Conformers from these products are then enumerated and scored by their 
shape similarity to the complete 3D query molecule. 
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Query fragmentation 

We split a 3D query molecule into fragments by cleaving acyclic and cyclic bonds (Fig 2). To 
generate two fragments from a query, one acyclic bond or two cyclic bonds that are in the same 
cycle are cleaved. The cleaved bonds are capped with special connector atoms to preserve the 
information on query fragment connectivity. For these connector atoms, heavy isotopes 13C and 
14C are used, because they are normally not present in synthons and are thus ideal for tracking 
connection points. To avoid generating overly small fragments that are unlikely to match well to 
any synthons, we remove any fragment pairs where one of the cleaved fragments had fewer 
than 5 heavy atoms, or cyclic fragments that had fewer than 5 heavy atoms outside the partial 
ring (i.e. not counting the former ring atoms). 

 

Fig 2. Query fragmentation. (A) Valid cuts (blue) of acyclic bonds in a query molecule to 
generate two query fragments. (B) One example among many possible ways to split a query 
molecule on two cyclic bonds (blue and green). Bonds with red bars are not chosen to fragment 
the query, because cleaving those bonds would result in overly small fragments. Structures are 
shown in 2D for clarity. In practice, the query is a 3D molecular conformer, and each query 
fragment retains the conformation of the parent query molecule after the split. 
 

For this paper, we examine two-component reactions in the Enamine REAL Space and thus 
split the query molecules into two fragments. Future work will extend to 3 and 4 component 
reactions, which will require splitting the query molecule into 3 and 4 fragments. 
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Synthon conformation sampling 

In order to score synthons against query fragments with ROCS, synthon conformations are 
required. For each non-ring-forming synthon, we use OMEGA directly to sample its low-energy 
conformers. For ring-forming synthons, there are two connector atoms, and care must be taken 
to ensure the conformations enumerated for the synthon are comparable to the ring formed 
upon product creation. With no constraints, it is likely that the atoms in the partial ring of the 
synthon will rotate out of the ring plane because of steric clashes. To prevent this, we apply a 
series of operations in which we first complete the partial ring by adding the minimal set of 
atoms from a complementary synthon (i.e., atoms that fall on the shortest path between the two 
connector atoms in a ring-forming synthon). Conformers are then generated for this minimal 
product. After conformers are generated, the minimal set of atoms that has been added to 
complete the ring is removed and the connector atoms are returned to their positions in each 
enumerated pose. This ensures that atoms in the partial ring of synthons are properly oriented 
so that the synthons can be accurately compared to cyclic query fragments (Fig 3). 

  

Fig 3. Conformer sampling of ring-forming-synthons. (A) An example of two synthons that form 
a ring in their product. The low-energy conformer of the product is shown in 3D. (B) Direct 
conformer sampling of a ring-forming synthon leads to conformers that do not resemble the 
conformation of the synthon in the product. (C) Workflow that consists of ring completion, 
conformer sampling, and removal of added atoms and bonds leads to synthon conformers that 
match the conformation of the synthon in the product.  

 

Synthon scoring 

Once synthon conformers have been enumerated, they need to be scored for shape similarity to 
each of the valid query fragment pairs. Each reaction type in the chemical space combines a set 
of S1 synthons with a set of compatible S2 synthons, and these must be compared with each 
pair of query fragments, F1 and F2. Because we do not know which synthon set should match 
which of the two query fragments, we score both synthon sets against both query fragments (i.e. 
S1-F1, S1-F2, S2-F1, and S2-F2) 
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To enable proper scoring of the synthons, not only should the best overlay pose between a 
synthon and a query fragment have high volume and chemical feature overlap, but the 
connector atoms on the synthon and the connector atoms on the query fragment must also be 
in close proximity (Fig 4), to ensure that the orientation of this best overlay pose of the synthon 
is similar to the pose it adopts in the instantiated product.  

 

 

 

Fig 4. Example of overlays between two synthons 1 and 2 (green) and a query fragment 
(purple). Connector atoms are shown as spheres. Synthon 1 shows an example of a good 
overlay: there is high shape similarity and close proximity between the connector atoms of the 
query fragment and the synthon. Synthon 2 shows an example of a poor overlay: there is high 
shape similarity but poor proximity between the connector atoms. Products generated from 
synthon 2 will be unlikely to have good shape similarity to the whole query molecule. 

 

To prioritize synthon poses where the connector atoms on the synthon are in close proximity 
with the connector atoms on the query fragment, we add custom attractive interactions between 
the connector atoms to the ROCS color force field. The best type, weight, and radius of such 
interactions can be determined empirically (see below). 

Typically, we score non-ring-forming synthons against acyclic query fragments (i.e. those that 
were generated by cleaving acyclic bonds in the query molecule), and ring-forming synthons 
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against cyclic query fragments (i.e., those that were generated by cleaving pairs of cyclic bonds 
in the query molecule). We can also score non-ring-forming synthons against cyclic query 
fragments, and vice versa (cross-scoring). This requires a small modification because the non-
ring-forming synthons (of a two-component reaction) have only one connector atom, while the 
cyclic query fragment to be scored against has two (and vice versa). For cross-scoring, we 
replace the two connector atoms in the cyclic query fragment with one centroid connector atom, 
so that during shape comparison, the custom attractive interaction is applied between the 
connector atom on the acyclic synthons and the connector centroid on the cyclic query 
fragment.  

 

Product selection 

After scoring all synthons against all query fragments, we combine the scores of compatible 
synthons for all reactions in the chemical space (Fig 5). Because we score each of the query 
fragments (F1 and F2) against each of the synthons (S1 and S2), we combine the synthon 
scores from S1-F1 with S2-F2 and S2-F1 with S1-F2. For duplicate synthon combinations, only 
the top-scoring combination is kept. 

Scores can be aggregated by means of a simple average or a weighted average, where each 
synthon score is weighted by the number of its heavy atoms (to approximate the size of the 
synthon). 

For practical purposes, if a synthon list is very large (e.g. >10000 synthons), we can reduce the 
number of pairwise combinations and sorting time by taking only a fraction of the top scores 
from each synthon-fragment score list after combining the scores (S1’, S2’ in Fig 5, also see SI).  

Score combinations from all reactions are concatenated and sorted. Finally, the products from 
the top-scoring synthon combinations are instantiated, and their conformations are generated 
and scored against the full (unfragmented) query. The products are then ranked by their scores 
to give the final product list.  
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Fig 5. Synthon score combination and product selection. The scores are organized by reactions 
(R1, R2, …), then query fragment pair (P1, P2, …), then the four sets of scores (F1-S1, F1-S2, 
F2-S1, F2-S2). During synthon aggregation, either the full sets (e.g. S1, S2) or only subsets 
(e.g. S1’, S2’) are pair-wise aggregated. 

  

Evaluation 

Because our aim is to reproduce the virtual screening results for the fully enumerated library 
(ground truth), we evaluate SASS by how well it can recall the top-ranked compounds in the 
ground truth. For example, if 80 out of the top x = 100 compounds from the results of SASS are 
in the top 100 of the ground truth, the recall at the top x = 100 results is 80%. Similarly, we can 
calculate the recall rate at any value of x. To reflect the performance of this method over a 
range of x values, we calculate the AUC of the recall rate for all values of x up to 1000 
(AUC@1000). We choose 1000 because this is a reasonable scale of compounds to be 
selected and post-processed (manual inspection, clustering, etc.) after a search. 

  

Results 

Method optimization  

The major parameters of SASS to tune are those influencing the alignment between connector 
atoms on the synthons and those on the query fragments (i.e., the weight (w) and radius (r) of 
the interactions between connector atoms that are defined by the custom interactions in the 
ROCS color force field). To optimize the w/r parameters using a representative set of reactions 
and synthons, we selected all two-component reactions from the Enamine REAL Space[33] and 
randomly selected up to 100 synthons from each synthon set from each reaction, which totaled 
~40k synthons and 4.2M enumerated products (including all isomers of products). 

After defining the chemical space, we selected six molecules (including some well-known drug 
molecules, Fig S1) as the queries for parameter optimization. For molecules with known crystal 
structures, their PDB ligand conformations were used. Otherwise, the conformation of the 
molecules was optimized with energy minimization in MOE. To generate the ground truth 
ranking for evaluation, conformers were generated for each of the 4.2M products resulting from 
the procedure above and scored against each query molecule using ROCS.  

To run SASS, we fragmented the query molecules as described above and scored the synthons 
against query fragments. For simplicity, we initially scored ring-forming synthons against only 
ring query fragments, and non-ring-forming synthons against only non-ring query fragments. 
After synthon scoring, the top 20k synthon combinations were selected (top-m=20k, which 
corresponds to 0.5% of the full library size), the corresponding subset of products was 
instantiated, conformers generated, and products ranked by ROCS scores.  
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Initially, with the default color force field, running SASS on query 1 gave AUC@1000 of 0.56 
(Fig S2). To reward connector atom alignment, we added connector atom interactions to the 
ROCS color force field. Because some synthons contain two connector atoms while others 
contain one, the weights of the interactions were normalized, such that the maximum reward 
from connector atom alignment that every synthon can obtain would be the same, regardless of 
the number of connector atoms in the synthon. With the default w/r parameters (w = -1, r = 1) for 
the custom connector atom interaction, the AUC@1000 increased to 0.73.  

We examined various values of w and r with the default Gaussian color features[35] for the 
connector atoms using queries 1-6, and found that w = -10 and r = 10 gave the best results on 
average (Fig S3, S4). The seemingly large weight likely reflects the importance of connector 
atom alignment, and using a large weight tends to favor synthons with a slightly worse shape-
match but a good connector atom alignment over synthons with better shape-match but worse 
connector atom alignment. The benefit of a large radius could be twofold: 1) it could allow for 
the “detection” of connector atom “interaction” when the ROCS initial alignment places 
connector atoms far apart. During the overlay optimization, the interaction between connector 
atoms moves them closer; 2) it might not require the connector atoms to be very close to each 
other to contribute significantly to the color score, and this fuzziness appears to be beneficial. 
Since the connector bonds can move when forming the product compared to their positions in 
individual synthons, exact superposition of the connector atoms during overlay of synthons with 
query fragments is neither needed nor desired.  

For aggregating synthon scores, both simple average and weighted averages gave similar AUC 
results for queries 1-6 (Fig S5), so simple averages were used for ranking the synthon 
combinations.  

 

Testing with “self-recall” 

A simple test of the validity of SASS is to verify that a molecule can “find itself”:  if a low-energy 
3D conformer of a synthon-derived product is used as a query, will that same compound be 
found? Because the synthons that make up these queries are contained within the synthon lists 
(i.e. positive controls), a good synthon-based search method should rank the aggregated scores 
of synthons that constitute these queries very highly. We ran SASS using 96 randomly selected 
products from the full library space (4.2M) as the queries[36] and ranked the full library of 
compounds by the combined score of each compound’s constituent synthons. The query 
molecules were indeed close to the top of all products: out of 96 queries, 89 synthon 
combinations were ranked #1, 2 ranked #2, 4 ranked #3, and one ranked #29 (Fig S6), which 
means that even with a very stringent top-m of 100 (number of products selected for re-scoring), 
all those exact query molecules would have been recalled by this method.  

 

Testing on additional queries 

We examined the generalizability of our method by applying it to 9 query molecules from the 
literature,[8, 14] which are diverse and represent a broad class of molecules and targets. The 
results are summarized in Fig 6. This method showed strong performance for 6 out of 9 (1ERE, 
2ETR, 3V5W, 4BKS, 4X8G, 5NDZ) queries, with AUC@1000 > 0.85 (top-m = 20k, 0.5% of fully 
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enumerated space). The AUC@100 values were even higher, as expected (see Fig S7). In 
addition, aggregation of the top 1000 ground truth compounds across all queries showed that 
the recall is the best for the top-ranked compounds, i.e., the method performs the best when it 
counts the most (Fig 7).  

For 2ETR, we examined some top-ranked ground truth compounds, and found several 
examples of scaffold-hopping (Fig 8), in which the amide bond is reversed, or extended to a 
urea moiety, but the product is still similar to the original query molecule in overall shape. 
Gratifyingly, this method was able to recall those compounds (i.e. reproduce the results of a full 
library search). 
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Fig 6. Structures of the query molecules (top) and the search performance (bottom). Orange 
bars in the graph represent the results when the ground truth is calculated by running ROCS 
with up to 500 conformers for each product. Black lines represent the results when ground truth 
is calculated with up to 50 conformers for each product. For 1ERE, the results are with cross-
scoring. Without cross-scoring, the AUC@1000 is 0.07 (blue dashed line).  
 

 

Fig 7. Stacked histograms of the ranks of ground truth molecules across all 9 queries that were 

recalled and not recalled. 
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Fig 8. Examples of top-ranked products in ground truth that have different scaffolds compared to 
the query. SASS ranked these products within top 20k among 4.2M products. 
 

The AUC@1000 values were lower for 2RGU (0.66) and 4X60 (0.58) (Fig 6, black lines), and 
while those lower values could be attributed to 3D shape similarities not always being additive 
(i.e. the optimal conformations of synthons in products can be different from their optimal 
conformations during ROCS overlay with query fragments), we also examined the possibility of 
insufficient conformer sampling when calculating the ground truth results. By default, OMEGA 
outputs up to 50 lowest energy conformers for each molecule, and those conformers of the fully 
enumerated products were used for ROCS scoring to generate the ground truth. When we 
increased the conformer number to up to 500 (while keeping the same energy window of 10 
kcal/mol), scored the full library against the query, and used this new ground truth to compute 
the recall, the AUC@1000 value improved from 0.58 to 0.77 for 4X60 (Fig 6, orange bars). 
Improvements of varying degrees were also seen for other queries. This represents an 
interesting additional utility of the method, i.e. identifying shape-similar compounds based on 
synthon combinations that would have been missed by the full enumeration approach due to 
insufficient conformer sampling of the whole products. While we saw that the increased 
conformer sampling of the products was beneficial, we did not see any improvement of the 
query performance when the conformer sampling of synthons was increased (Fig S8). This was 
likely due to the much smaller size and fewer conformers available to the synthons. 

  

The performance on the 1ERE ligand was very poor (AUC@1000=0.07, Fig 6, blue dashed 
line), but it is a special case where the query generates no valid acyclic query fragments, only 
ring-fragments. By default, we only scored ring-forming synthons against ring-fragments, and, 
as a result, any potential top compounds in the ground truth results that arise from combination 
of non-ring-forming synthons would not be found (Fig S9). In addition, the ratio of ring-forming 
reactions/synthons to non-ring-forming is ~1:9, so scoring only the ring-forming synthons greatly 
limited the choice of synthons. To address this issue, we included scores between non-ring-
forming synthons and ring-fragments of 1ERE query (cross-scoring) in the selection pool for the 
final top-m combinations. This led to a much improved AUC@1000 of 0.90, demonstrating that 
this method is robust even for molecules with only fused rings. It should be noted that including 
cross-scoring did not benefit other queries (Fig S10) while at least doubling the time for the 
synthon-scoring step, which suggests it may be best to reserve cross-scoring to queries that 
cannot be split by cleaving only acyclic bonds. 
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Testing at Scale 

To assess whether the high recall persists at scale, we increased the chemical space to include 
up to 1000 random synthons from each two-component-reaction synthon set. This resulted in a 
fully enumerated library of 229M products. We ran SASS with 4X60 and 4X8G because those 
queries represent the low and high ends of the performance on the 4M-scale. 

As shown in Fig 9, the performance of this method is maintained at this larger scale. For both 
queries, the AUC is higher than the 4M-scale experiment at the same fraction of the library 
scored (black lines). For 4X8G, SASS achieved a recall AUC of 0.94 at top-m=20000, which 
corresponds to less than 0.01% of the full 229M library. Even with top-m=2000 (0.001% of the 
full library), the recall AUC was still 0.60. For 4X60, to achieve the same recall as on the 4M-
scale library (where we rescored 0.5% of the full library), we needed to rescore only 0.02% of 
the full library. 

   

  

Fig 9. Recall AUC when scoring different fractions of the full library. The fully enumerated space 
contains 229M molecules. Black lines represent the AUC at the same fraction (0.5%) when 
querying on the smaller 4M library (Fig 6). 

 

Furthermore, we also ran SASS on the entire two-component reaction space, which totaled 
1.9M synthons and 2.8B molecules (estimated to grow to 5B when all stereoisomers are 
enumerated). Due to the scale, we did not calculate the ground truth. However, a comparison of 
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the top 1000 scores from the 5B-scale vs the 229M-scale experiment showed further increase in 
the ROCS scores of the top hits (Fig S11). 
 

Discussion  

Effect of connector atom alignment 

Fundamental to the success of SASS is being able to correctly score and rank synthons. To 
take into consideration the alignment between the connector atoms on the synthons and those 
on the query fragment during synthon scoring, we applied custom color interactions between the 
connector atoms. To visualize the effect of the custom interaction, we examined some overlay 
poses between synthons and query fragments. For example, without the custom interaction 
between connector atoms (Fig 10A), the overlay optimization superimposed the 5,6-ring of the 
synthon almost perfectly with the 5,6-ring of the query-fragment, leaving the synthon connector 
atom and the query fragment connector atom pointing in opposite directions. On the other hand, 
with the custom interaction, the synthon was flipped in the best overlay pose, trading the perfect 
5,6-ring overlay for having the connector atoms pointing in the same general direction (Fig 10B). 
The score from the overlay pose on the right is more accurate for ranking the synthons.  
 

 
Fig 10: Best overlay pose of a synthon (green) against a query fragment (purple, connector 
atoms shown as spheres). A: Overlay without custom interaction between connector atoms 
(synthon shifted by 0.2 Å for visual clarity). B: Overlay with custom interaction between 
connector atoms. 

 

Time and Space considerations 

The compute times for the full-enumeration approach and SASS can be calculated as the sum 
of each step outlined in Fig 1. First, conformers (products or synthons) need to be generated, a 
process that can be particularly time consuming for the products of fully enumerated large 
libraries. For the full-enumeration approach, the ranked product list is yielded directly from the 
output of the product scoring step. For SASS, top-scoring synthon combinations are instantiated 
to create a subset of the full library.  Conformers for this subset of products are generated and 
scored to yield the final product list. 
 
Exact compute times can be affected by the hardware, the programming language, and the 
efficiency of parallelization.  As a result, runtimes provided here are an estimate used for 
comparison of the full-enumeration approach to SASS. 
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For a library of 229M products, the full-enumeration approach (product instantiation and 
conformer generation) took 34,000 cpu-hr, and the ROCS query step took 9000 cpu-hr, totaling 
43,000 cpu-hr. In contrast, for SASS, synthon conformer generation of the 350k synthons that 
make this library took 30 cpu-hr. Subsequent synthon scoring, synthon selection, product 
instantiation (20k), and product scoring took 20 cpu-hr, totaling 50 cpu-hr for SASS. This 
represents a time saving factor of 800. Because this method scales roughly linearly with respect 
to the square root of the full library size, we expect an even larger acceleration factor for larger 
libraries. 
 
In addition to the time consideration, we also examined the space requirements for full-
enumeration vs SASS. Storing billions of conformers is not trivial: in our hands, the conformers 
of 229M products required 6.9 TB disk space when stored in the oez format,[37] and this number 
scales linearly with respect to the size of the library. In contrast, the total file size of the 
conformers of 350k synthons is 1.3 GB, representing a space saving factor of 5000. Again, we 
expect larger efficiency gains for larger libraries. 
 

Other considerations 

While the recall AUC of this method is high on most queries, the performance on some queries 
(e.g. 4X60) is moderate. In addition, it is necessary to score and rank the top-ranked synthon 
combinations (as opposed to ranking products by the aggregated synthon scores directly), 
because while the aggregated synthon scores allow enrichment of the top ground truth products 
in the top-m selection, the exact rankings of aggregated synthon scores do not correlate well 
with the rankings of top ground truth products. These observations are likely due to the fact that 
the shape similarity of two partial molecules is not always additive (partial solutions for 3D 
searching are not independent[3]), i.e. the conformations of synthons can change when they are 
combined into products, due to sterics and/or electrostatic repulsion between the two synthons. 
Such interactions cannot be predicted when synthons are examined individually. Thus, two 
synthons that match well to two query fragments may not generate a product that matches well 
to the shape of the whole query molecule (see SI for examples).  
 
In addition, for this study we limited the chemical space to products generated from two-
component reactions. Future work will expand this method to 3- or 4-component reactions, 
which will cover an even larger chemical space. 
 
Finally, while we used ROCS as the scoring function, other 3D shape-based scoring methods 
should also be suitable. 
 

Conclusion 

We presented Shape-Aware Synthon Search (SASS), a shape similarity-based method for 
exploring synthon-based chemical spaces by fragmenting queries and scoring synthons against 
query fragments. This method recalled a large proportion of the top-scoring molecules while 
consuming significantly less compute and storage resources than an exhaustive search. The 
efficiencies introduced by SASS provide a new 3D ligand-based method to efficiently search 
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very large synthon-based chemical spaces that are not amenable to a full enumeration 
approach.  
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Fig S1 

 

Fig S1. Query molecules 1-6 for parameter optimization shown in 2D and 3D. Molecules 1 and 2 

are fictitious. Molecules 3 (1XBB), 4 (1TBF), 5 (1HWK), 6 (4FFW) are known drug molecules 

taken from their PDB structures. 
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Fig S2 

  

Fig S2. Recall curves for query 1. Left: with default color force field. Right: with custom 

interactions (w=-1, r=1) between connector atoms added to the color force field to improve 

connector atom alignment. The chemical space consists of all Enamine Real Space (2020-09) 

2-component reactions, up to 100 synthons for each synthon set of each reaction. The fully 

enumerated library is ~4M compounds. The number of instantiated products scored is 20k (top-

m=20000). 
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Fig S3 

 

Fig S3. Performance (recall AUC@1000) on queries 1-6 with custom color interaction at various 

weights and radii for the connector atoms. The red horizontal lines represent the performance 

without custom interaction. The chemical space is the same as the one described in Fig S2, top-

m=20000.  
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Fig S4 

 

Fig S4. Average performance on queries 1-6 summarized from Fig S3. 
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Fig S5 

 

Fig S5. Comparison of performance using different synthon score aggregation method during 

the product subset selection step. The chemical space is the same as the one described in Fig 

S2, top-m=20000. Custom color interactions with w=-10 and r=10 were used for connector 

atoms. 
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Fig S6 

 

Fig S6. The distribution of the ranks of the product scores (aggregated synthon scores) for the 

two synthons that make up the query molecules in the “self-recall” experiment. The chemical 

space is the same as the one described in Fig S2, top-m = 20000, w = -10, r = 10. 
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Fig S7 

 

Fig S7. Search results (recall AUC@100) for various test queries. 
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Fig S8 

  

Fig S8. Comparison of using up to 50 vs 500 conformers of the synthons during synthon 

scoring. Increasing the number of conformers for the synthons did not improve the query 

performance. The chemical space is the same as the one described in Fig S2, top-m=20000, 

w=-10, r=10. 

 

Fig S9 

 

Fig S9. Top ground truth results of query 1ERE ligand. All these products are made of two non-

ring-forming synthons joined with an acyclic bond. 
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Fig S10 

 
Fig S10. Comparison of query performance with or without cross-scoring. The chemical space is 

the same as the one described in Fig S2, top-m=20000, w=-10, r=10. 
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Fig S11 

 
Fig S11. Boxplots showing the distribution of the top 1000 ROCS scores from the results of the 

experiments with 5 billion and 229 million full library sizes. The score distribution of the 5B 

experiment is higher than the score distribution of the 229M experiment, indicating that 

compounds with higher shape similarity to the query molecule were found. 

 

Selecting products from subsets of synthon score lists 

During the synthon combination and product selection step (after synthon scoring, before 
product subset instantiation), we do not need pairwise combination of the entire synthon score 
lists, but only a subset of each synthon’s score list. For example, for query 1, we ran an 
experiment with the chemical search space limited to one reaction comprising synthon sets S1 
(40k synthons) and S2 (10k synthons) with a full library size of 6 M. During product selection 
step, we either aggregated all synthon scores or only the top 10% of each score list. The results 
for both runs were very similar (AUC@1000 = 0.61 vs 0.56), suggesting that there’s high degree 
of enrichment of “good” synthons at the top of each synthon score list. This also represents 
additional efficiency gain during the product selection step as only 1% of the synthon pairs were 
aggregated and the scores sorted. 

 

Non-additivity of synthon scores 
Shown below are some examples where each of the two synthons match well to the query 

fragments (their combined scores are ranked very highly among all aggregated synthon scores), 

the rank of the ROCS score of the instantiated product is low among all products. 
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Fig S11. Comparison of the overlays between synthons and query fragments with the overlay 

between the product and whole query molecule (query 6). (A) Both synthons (green) aligned 

well with the query fragments (purple), and the aggregates synthon score of this combination 

ranked #5 among all possible synthon combinations. (B) The product from those two synthons 

(green) did not overlay well with the whole query (purple). The product ranked > #30000 among 

all products based on the ROCS score. The connector atoms on synthons/query fragments and 

the atoms along the bonds formed by the reaction are highlighted.  

 

Fig S12. Another example where the overlay between synthons and query fragments are good 

(A), but the overlay between the instantiated product and the whole query is poor 

(synthon/product in green, query fragment/whole query in purple).  
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