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ABSTRACT: Diaryliodonium salts are bench stable aryl radical precursors. While photocatalysts are generally responsible for radical genera-
tion, recent reports have emerged exhibiting photocatalyst-free radical generation using select Lewis bases as activators. Herein, we demonstrate 
1) the ability of numerous Lewis bases to enable light-driven radical generation and 2) these radicals can be captured by transition-metals for 
coupling reactions. These results are the first step toward developing new organometallic aryl radical coupling reactions without photocatalysts. 

Hypervalent iodine-containing molecules like Dess-Martin pe-
riodinane, 2-iodoxybenzoic acid (IBX), (diacetoxyiodo)benzene 
(PIDA), and others have a rich history in organic synthesis as mild, 
non-toxic reagents and oxidants.1 Additionally, PIDA serves as a 
common non-metallic oxidant in organic chemistry, which is bene-
ficial from cost and sustainability standpoints.2 In contrast, cationic 
diaryl-containing I(III) salts function as arylation reagents3 and are 
experiencing a resurgence in popularity.4 The attractiveness of dia-
ryliodonium (Ar2I) salts are a result from of facile preparatory meth-
ods incorporating wide ranging functional group (FG) patterns, ex-
ceptional bench stability, and broad FG tolerance in many different 
arylation reactions.5 

On one hand, Ar2I salts can be activated by TM complexes6 or 
attacked by nucleophiles7 to furnish arylated products in ground 
state processes (Figure 1a and b). On the other hand, excited state 
transformations employing Ar2I salts as aryl radical precursors have 
emerged as powerful tools for selective arylation. By various photo-
redox approaches, (hetero)arenes,8 heteroatoms,9 alkenes,10 and 
C(sp2)–H bonds11 can be arylated at room temperature (Figure 1c).  

Reactions of  Ar2I salts induced by light, but in the absence of a 
photocatalyst (PC), are of particular interest for a sustainable future 
(Figure 1d).12 Chatani and coworkers demonstrated that N-
methylpyrrole solutions of Ar2I salts generate aryl radicals when irra-
diated by white LEDs.13 While limited to N-methylpyrrole in solvent 
quantities, the resulting radicals selectively arylate the pyrrole C2–H 
bond showing that PC-free, light-driven arylation can be achieved. 

Years later, Karchava et al. discovered that phosphines14 and phos-
phinamines15 were more efficient activators of Ar2I salts than pyrrole 
and underwent P-arylation to furnish phosphonium salts in excellent 
yields under purple LED irradiation. In these cases, aryl radical gen-
eration and recombination dominates due to radical cage effects,16 
which explains how solvent molecules encapsulating pairs of gener-
ated radicals hinder diffusion of radicals away from each other.  Most 
recently, Murarka et al. overcame this limitation for a PC-free, light-
driven activation of Ar2I salts using a triad activator system consist-
ing of NaI, N,N,N’,N’-tetramethylethylenediamine (TMEDA), and 
PPh3.17 While this report serves as an exciting development, alterna-
tive bases besides TMEDA would provide additional opportunities 
when creating new reactions of aryl radicals, especially those using 
transition-metal-based catalysts.  

 

Figure 1. Previous uses of Ar2I salts for ground and excited state trans-
formations (a-d). This work investigates Lewis base generated aryl rad-
icals for direct and organometallic arylation reactions. 
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Herein, we report that numerous Lewis bases (LBs) are com-
petent to serve as sole activators of  Ar2I salts permitting they contain 
an aryl group proximal to the coordinating heteroatom. Through a 
series of kinetic rate measurements, we conclude that the electronic 
parameters of the adjacent aryl ring are more important than the ba-
sicity of the coordinating atom. In addition to aryl radical borylation, 
we demonstrate that this PC-free aryl radical generation strategy can 
be interfaced with a Pd-catalyzed C–H activation manifold to per-
form selective arylation reactions. Altogether, our results demon-
strate that this simple PC-free, light-driven radical generation strat-
egy can be leveraged to create new arylation reactions using bench 
stable Ar2I salt precursors without the need for expensive photocata-
lysts or stoichiometric additives.  

Lewis bases as Ar2I activators. We began our investigation by 
surveying a range of Lewis basic molecules ascertain their ability to 
generate aryl radicals from diphenyliodonium salts ([Ph2I][OTf], 
2a) under purple LED irradiation. To quantify Ph● generation, we 
settled on trapping the generated radicals by B2Pin2 (BPin = 4,4,5,5-
tetramethyl-1,3-dioxaborolane), which is a commonly employed 
aryl radical trap,18 to furnish Ph-BPin 3. In the absence of any LB ac-
tivator, 3 was generated in 13 ± 2% yield after 4 hours. As such, ad-
ditives providing yields >15% are considered beneficial and those 
giving yields between ≤15% are classified as inactive (Figure 2). We 
chose 30 mol% LB loading so we could determine whether any LBs 
catalytically generate radicals. 

 

Figure 2. Different Lewis base additives and their ability to furnish 
borylation products from 2a. All reported GC yields are determined rel-
ative to mesitylene as internal standard using the calibration curves for 
independently prepared 3. aPerformed under N2. 

By these metrics, oxygen-only activators (DG15-17) were inef-
fective. We attribute this outcome to the weak coordinative capabil-
ities of esters, ethers, and carbonyls. In contrast, we rated the best 
activators as those providing 3 in >30% yield (DG1-3,7-8,12-14). Im-
portantly, 30% was the chosen threshold because it equates to the 
additive loading amount. Thus, yields greater than 30% suggest cat-
alytic turnover is occurring. The commonality linking the best addi-
tives is the presence of a strongly coordinating functional group. In-
stead, weak to moderate activators give 3 in 17-29% yield. Im-
portantly, these data support the conclusion that stronger 

coordinating functional groups19 lead to better activation of Ar2I salts 
while weaker groups lead to marginal, if any, activation beyond that 
observed in the absence of an activator. See the SI for a deeper dis-
cussion regarding the importance of additive loading for those fea-
turing weakly coordinating groups. 

Impact of activator electronic properties. DG1-17 in Figure 2 
consist of two components: a Lewis basic group and a proximal aryl 
ring. We set out to determine which component played a greater role 
in the rate of borylation. Here, we assume that radical capture by 
B2Pin2 is fast, and that the borylation reaction rates are governed by 
the aryl radical generation step. Using a range of readily prepared, 
electronically diverse 2-arylpyridine derivatives 1a-j as activators, we 
used gas chromatography to monitor the initial rate of borylation to 
determine the impact of FG modifications on 1 (Figure 3). As a 
baseline for this study, the rate of formation of 3 in the absence of 
any activator was 9.89 x 10-5 M.min-1, which is identical to the reac-
tion rate in the presence of simple pyridine. This result supports the 
importance of the C2 aryl group. 

 

Figure 3. Relative rates of aryl borylation using 2-arylpyridines. All krel 
are reported as relative to the rate of borylation with no additive. 

Interrogating the impact of the flanking aryl ring on Ph-BPin 
formation, we determined that mesomeric donor/acceptor groups 
(1d-f) gave higher rates than inductive donors/acceptors (1a-c). 
Surprisingly, a phenyl group at the 2-position on the flanking ring 
(4b) lead to notably faster generation of 3 than any other derivative 
surveyed here. Like mesomeric groups, arenes can impact the aro-
matic π-system of the activator by extending conjugation, which is a 
well-known strategy to impact photophysical properities.20 Looking 
at the basicity of the pyridine moiety, mesomeric groups gave slower 
borylation rates than inductive groups, indicating a narrow basicity 
range exists for optimal reactivity. Like on the flanking ring, donor 
groups were better than the corresponding withdrawing groups. 

Mechanistic insights. We began by gathering additional sup-
port of radical generation by our LB/Ar2I system by exchanging 
B2Pin2 as our trapping reagent for the equally common 1,1-diphe-
nylethylene.21 Irradiation of a mixture of diphenylethylene, 2a, and 
30 mol% 1b led to the formation and detection of 1,1,2-tri-
phenylethylene by GC-MS (SI Figure S26 and S27). In the works of 
Chatani13 and Karchava,14-15 association of the activator to the iodine 
atom was postulated, leading to a photoactive intermediate.22 Sup-
porting potential EDA adduct formation in our system, Sanford and 
coworkers previously demonstrated that 2-arylpyridines of type 1 
bind to iodonium salts with Keq > 100 at 110 oC.6d In contrast to these 
precedents, we do not observe evidence of any association between 
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1b and 2a by UV-Vis nor 1H NMR (see SI for more information and 
stacked plots). Additionally, no color changes were observed in any 
reactions once assembled. Thus, if an association occurs between 
these species under our reaction conditions, the Keq must be very 
small to preclude detection. However, the importance of heteroa-
tom basicity in our LB screen strongly supports adduct formation. 

Previous investigations propose electron transfer (ET) from 
the Lewis base to the iodonium as the dominant radical formation 
mechanism.13-15 However, we argue that ET from the pyridine N-
atom to iodine is not supported based upon the kinetic data we ob-
tained. In a mechanism where such an ET event occurs, mesomeric 
groups bound to the pyridine ring would exhibit a beneficial rate im-
pact since the added electron density would support the generated 
pyridinium radical cation. In contrast, 1h was among the worst acti-
vators surveyed. While it could be possible that ET from the C2-aryl 
ring to the iodonium group occurs, our rate data do not support this 
conclusion. Specifically, electron-donating substituents (1c,e-f) 
would be expected to give higher reaction rates than electron-with-
drawing groups (1a,d) giving lower krel. This trend was not observed. 
In fact, our results suggest that energetic and orbital manipulation of 
the aromatic π-system on the C2-aryl ring is key. This conclusion is 
supported by the high yield of 3 when using benzo[h]quinoline 
(DG3) in Figure 2 and exceptional krel with 4b. As such, our data sug-
gests that energy transfer (EnT) from the proximal aryl ring to the 
iodonium moiety, rather than ET, may be the radical generation 
pathway under our conditions. Detailed experiments are ongoing to 
gather conclusive data in this regard.  

Radical capture by a transition-metal. While our ability to 
perform aryl radical borylation will set the stage for the development 
of other PC-free aryl processes of organic molecules, we were deter-
mined to challenge our system by interfacing our radical generation 
approach with Pd-catalyzed C–H arylation. Sanford et al. leveraged 
aryl radicals derived from Ar2I salts and an Ir-based fluorophore to 
perform Pd-catalyzed C–H arylation at room temperature11b with-
out using explosive diazonium21b, 23 salts.24 We set out to demonstrate 
that our protocol would enable analogous arylations of C(sp2)–H 
bonds without a PC. In support of metal-mediated C–H activation 
occurring under our conditions, control reactions without Pd failed 
to provide detectable concentrations of arylated pyridine products. 
The full set of optimization and control experiments can be found in 
the supplementary information. 

Using 2-arylpyridines as both activator of 2a and substrate for 
Pd, we obtained 4b from 1b in 46% isolated yield (Figure 4). Curi-
ous whether faster aryl radical generation would furnish higher con-
versions to arylated products, we tested CN derivative 1d, which 
promoted the model borylation reaction ca. 50% faster than 1b. Sur-
prisingly, arylated product 4d in 9% yield was only obtained by ad-
dition of K2CO3 to the reaction, indicating the rate of cyclopallada-
tion might play an important role for electron-poor derivatives. De-
rivative 1k with a tert-butyl group underwent arylation to give 4k in 
64% yield with no traces of 5k. Lastly, difunctionalized 1l was pre-
pared and subjected to these arylation conditions, giving 46% yield 
of mono-arylated 4l. 

Next, we sought to correlate pyridine structure to arylation ca-
pability. So, we used GC-FID to determine approximate total aryla-
tion (sum of mono- and di-arylation) for a range of pyridine deriva-
tives under the conditions depicted in Figure 4. When total arylation 
percentage was plotted versus the Hammett σ value for each func-
tional group, a clear correlation was revealed (Figure 5).25 

 

Figure 4. Proof of concept Pd-catalyzed arylation of 1. Yields are of iso-
lated products. aSelectivities for 4 versus 5 and GC yields were deter-
mined by GC-FID analysis of crude reaction mixtures relative to an in-
ternal standard using the calibration curves generated for 4b and 5b. b20 
mol% L5 + 40 mol% L34. c30 mol% L5 + 1.5 eq. K2CO3. d30 mol% L5. 

 

Figure 5. Visualization of approximate total arylation observed by GC-
FID for a range of 1 functionalized on the flanking ring (a) and on the 
pyridine ring (b). *Presumed site of arylation for (a) shown only for 
Hammett value comparisons. Internal standard was mesitylene. aMulti-
ple mono-arylation regioisomers observed. 

Figure 5a demonstrates the importance of electron-richness at 
the presumed site of C–H arylation. In general, total arylation per-
centage decreases as FG donor ability decreases (i.e., as Hammett 
parameter increases). As a result, FGs with σ values greater than 0.3 
were inactive and required additive K2CO3 for any arylation prod-
ucts to form. From a mechanistic standpoint, this trend and the ki-
netic experiments presented in Figure 3 suggest the possibility that 
an electrophilic C–H palladation step is hindering reactivity of the 
most electron deficient substrates. In contrast, the total arylation 
trend observed in Figure 5b aligns well with the substituent trend 
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observed in Figure 3 for substitution of the pyridine ring. Specifi-
cally, strong mesomeric donor/acceptor FGs gave poor arylation 
counts while inductive donors/acceptors gave moderate to good to-
tal arylation percentages. At this point, we cannot rule out the possi-
bility that this trend does not have origins in reactivity of the Pd cat-
alyst. 

The impact of functional groups on the iodonium salt reagent 
using 2-phenylpyridine 1b as activator demonstrate the positive ef-
fect of electron-withdrawing groups on total arylation (Figure 6a). 
Interestingly, incorporation of ethyl or methoxy groups at the meta 
position of the Ar2I salt led to depressed yields as compared to a me-
thyl group at the same position. We expect that this decline in aryla-
tion efficiency results from the slightly increased steric hinderance 
associated with those groups, indicating an extreme sensitivity of 
radical generation to FG size. Plotting total arylation for para func-
tionalized iodonium salts versus Hammett-Brown σ+ values gave a 
linear correlation (Figure 6b). The positive slope is consistent with 
Lewis acid/base reactivity, which supports the importance of pyri-
dine coordination to diaryliodonium salts for photoactivity, despite 
our inability to spectroscopically observe such interactions. 

 

Figure 6. Impact of the FG electronics on iodonium salt function as an 
aryl radical precursor. Approximate total arylation was determined via 
GC-FID using  ndodecane as an internal standard. 

In Figure 5a, only acetamide as the FG on 2-phenylpyridine 
gave a second mono-arylation regioisomer, which we attributed to 
arylation via the directing capability of the amide function. Since ac-
etanilides are capable of furnishing borylation products by our light-
driven approach (see DG5-6) and they have been previously used in 
C–H arylation reactions catalyzed by Pd,21b, 26 we sought to show that 
our light-driven strategy was also applicable to Pd-catalyzed acetan-
ilide arylation. As with 1 as substrates, control reactions using 6b 
without Pd fail to provide detectable concentrations of arylated 
products. Using our optimized conditions, we observed a negative 
correlation for arylation of acetanilide substrates 6 as Hammett pa-
rameter increases. Here too, the most electron-withdrawing groups 
like CN or NO2 afford no detectable arylation products (Figure 7). 

As with 2-arylpyridine derivatives, the factor limiting application of 
this methodology to electron-poor acetanilides is most likely cy-
clopalladation and not aryl radical generation; however, thorough 
mechanistic investigations are needed before firm conclusions can 
be drawn. Nevertheless, these results suggest that our light-driven 
Ar2I activation approach can be applied broadly to transition-metal-
catalyzed C–H arylation reactions even if the substrate doubles as 
the iodonium salt activator. 

 

 

Figure 7. Pd-catalyzed arylation of 6. Visualization of approximate total 
arylation observed by GC-FID for a range of 6. *Presumed site of aryla-
tion shown only for Hammett value comparisons. Internal standard was 
ndodecane. 

In summary, we have disclosed a strategy to generate aryl radi-
cals from bench-stable diaryliodonium salt precursors using organic 
Lewis base activators and visible light. Our results indicate a broad 
array of Lewis bases can serve as activators even if a Lewis acid/base 
adduct is not spectroscopically observable. In contrast to literature 
precedent, kinetic studies suggest an EnT mechanism of radical gen-
eration rather than ET is occurring. Following homolysis, we 
demonstrated that the aryl radicals can escape the solvent cage and 
be captured by diboron reagents. Alternatively, generated aryl radi-
cals can be captured by a TM for use in organometallic C–H aryla-
tion reactions. In either case, our results serve as conclusive evidence 
that aryl radicals generated from Ar2I salts using only visible light and 
Lewis basic molecules can arylate molecules/complexes not in-
volved in the radical generation step. Investigations are ongoing in 
our laboratory to interrogate the mechanisms of the radical genera-
tion step (EnT versus ET) and of the Pd-catalyzed C–H arylation 
reaction to understand why electron-poor substrates are incompati-
ble. We expect that these results will spur the development of new 
reactions leveraging aryl radicals generated without a PC. 
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