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   ABSTRACT 

Coarse-grained (CG) Molecular Dynamics can be a powerful method for probing complex 

processes. However, most CG force fields use pairwise non-bonded interaction potentials 

sets, which can limit their ability to capture complex multi-body phenomena such as the 

hydrophobic effect. As the hydrophobic effect primarily manifests itself due to the non-

polar solute affecting the nearby hydrogen bonding network in water, capturing such 

effects using a simple one CG site or “bead” water model is a challenge. In this work, we 

systematically test the ability of CG one site water models for capturing critical features 

of the solvent environment around a hydrophobe as well as the Potential of Mean Force 

(PMF) of neopentane association. We study two bottom-up models: a Simple Pairwise 

(SP) Force-Matched water model constructed using the Multiscale Coarse-Graining 
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method and the Bottom-Up Many-Body Projected Water (BUMPer) model, which has 

implicit three-body correlations. We also test the top-down monatomic (mW) and the 

Machine Learned mW (ML-mW) water models. The mW models perform well in 

capturing structural correlations, but not the energetics of the PMF.  BUMPer 

outperforms SP in capturing structural correlations, but also gives an accurate PMF in 

contrast to the two mW models. Our study highlights the importance of including three-

body interactions in CG water models, either explicitly or implicitly, while in general 

highlighting the applicability of bottom-up CG water models for studying hydrophobic 

effects in a quantitative fashion. This assertion comes with a caveat, however, regarding 

the accuracy of the enthalpy-entropy decomposition of the PMF of hydrophobe 

association. 

 

I.    INTRODUCTION 

In recent years, Coarse-Grained Molecular Dynamics (CG-MD) simulations have 

garnered a lot of attention for its ability to computationally model complex chemical, 

biomolecular and condensed matter phenomena.1-4 CG-MD effectively reduces the 

dimensionality of the system by integrating out fast degrees of freedom, leading to a 

simplified energy landscape, thus permitting larger timesteps in MD simulations. 

However, owing to the loss of information, capturing atomistic properties through CG-

MD or simply CG simulations is a challenge. Broadly speaking, there are two approaches 

for constructing CG models, top-down and bottom-up.1, 3, 4 Top-down CG models5 are 

constructed directly from observable macroscopic and/or thermodynamic experimental 

data. However, they lack a rigorous statistical mechanical foundation and top-down 

models such as the MARTINI model6 suffer from accuracy issues arising from an incorrect 

enthalpy-entropy decomposition of free energies.7 Bottom-up CG methods ,1 such as the 

Multiscale Coarse-Graining (MS-CG)8-11 method, Iterative Boltzmann inversion (IBI),12 

Reverse Monte Carlo (RMC)13 and Relative Entropy Minimization (REM)14, 15 are 

constructed from a statistical mechanical framework. Recently, there has also been 
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significant interest in using Machine Learning (ML) techniques to develop CG-MD 

models.16-25 The MS-CG and REM methods in particular are capable of determining the 

many-body potential of mean force (PMF, i.e., the free energy surface) for the statistical 

distribution of the CG sites or “beads” in the system that corresponds to the exact 

distribution from the all-atom system projected by CG mappings onto the CG sites. 

However, the challenge in all such approaches is how to express the many-body PMF 

either mathematically or numerically because that PMF is generally not known. As a 

result, approximation are often made such as assuming the non-bonded CG interactions 

are pairwise decomposable. In that vein, it is these sometimes neglected multi-body 

interactions that can lead to additional or stronger multi-body correlations which in turn 

may render a CG model based on a simpler expression of the CG PMF less accurate than 

desired.26 In this paper, we explore one of the most fundamental of multi-body effects in 

the liquid state or in other soft matter systems, i.e., the hydrophobic effect.   

Hydrophobic effects are fundamental to many processes such as protein folding and 

self-assembly.27-31 Physically, the hydrophobic effects arise in water when the hydrogen 

bonded network of the liquid is affected by the presence of a non-polar solute, usually 

resulting in a multi-molecule structuring (correlation) of the water solvent hydrogen-

bond network and hence a lowering of the system entropy, which in turn causes the free 

energy to increase (this is the primary reason for the insoluble nature of smaller 

hydrophobes in water). In turn, the system may aggregate the hydrophobes in an attempt 

to minimize the increase in free energy.  

The dependence of hydrophobic effects on the solute size,32-37 solute-solvent 

attractions,37, 38 ionic strength,39 temperature33 and pressure40 has also been the subject 

of numerous studies. When a small solute is immersed in water, as noted in the last 

paragraph, the water molecules in the immediate vicinity of the solute can rearrange 

amongst themselves to maintain the hydrogen bonds, albeit at the aforementioned 

entropic cost. Increasing the size of the solute beyond a certain cutoff causes the 

disruption of these hydrogen bonds: an entropic as well as an enthalpic effect. 

Historically, this effect has captured much interest and several experimental studies41-46 
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and theoretical treatments34, 35, 37, 47-50 were put forward to explain the essence of 

hydrophobicity. The Lum-Chandler-Weeks34 theory, in particular, gives a mathematical 

treatment of hydrophobicity at both short and long length scales as well as the crossover 

between them. However, such hydrophobic effects are particularly difficult to capture 

owing to their inherent multi-body nature51. Scaled particle theory and its modifications52 

provide an explicit mathematical treatment of such multi-body effects. 

Hydrophobicity essentially has two aspects – hydration and association. Hydrophobic 

hydration at room temperature is typically characterised by a negative entropy of 

solvation and a large positive heat capacity.35, 53, 54 Hydrophobic association, or the 

association of two non-polar solutes in water, has very interesting thermodynamic 

consequences. In particular, the PMF of hydrophobic association32, 55 reveals very distinct 

features: a contact minimum (CM), a desolvation barrier (DB) and a solvent-separated 

minimum (SSM). All these effects have been studied extensively using All-Atom (AA) 

molecular dynamics (MD) models,32, 40, 55 but to the best of our knowledge, such effects 

have never been studied using a CG model, including bottom-up ones. It is important to 

emphasize that both entropy and enthalpy play significant roles here,35, 53, 56, 57 thus a 

rigorous bottom-up CG model would appear to be necessary. 

Although MS-CG has proven itself to be a robust and powerful approach for carrying 

out CG simulations, as noted earlier it typically uses pairwise basis sets for representing 

the CG force fields.10, 11, 58, 59 Previous studies have shown that such pairwise basis sets 

are somewhat lacking in reproducing the AA structural correlation functions in bulk 

water,26, 60 where strong hydrogen bonding determines the local tetrahedral network.61-

64 As the hydrophobic effect primarily manifests itself due to the modified hydrogen 

bonded network in water in the presence of a hydrophobe, capturing such effects using 

any CG model with pairwise basis sets is indeed a challenge. It becomes even more 

complicated due to a lack of an explicit description of hydrogen bonding in a one CG bead 

water model (as the hydrogen atoms are not explicitly represented).  

One natural way to overcome the limitation of having no explicit hydrogen bonds in a 

one CG bead water model is to explicitly incorporate three-body interactions in the CG 
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force field.26, 65, 66 It has been shown previously that CG water models employing three-

body interactions, such as the “top-down” monatomic or mW model,66 and the bottom-up 

three-body MS-CG model,26 can recapitulate structural properties of pure bulk water 

remarkably well. The recently developed Machine Learned mW model (ML-mW)17 has 

been shown to improve upon the original mW model across several metrics, including the 

description of the liquid water density anomaly. Recently, Jin et al developed the Bottom-

Up Many-Body Projected Water (BUMPer)60, 67 model. BUMPer, which has three-body 

correlations projected onto pairwise basis sets, was shown to improve upon Simple 

Pairwise (SP) CG water in predicting structural correlations and anomalous properties of 

bulk water. 

The main goal of this work is therefore to test the accuracy of a subset of both top-

down and bottom-up CG water models in capturing the hydrophobic effect32, 55 for a 

simple hydrophobe, neopentane, in water. It is also of clear interest to establish to the 

extent possible the physical accuracy of these CG models in that regard. As the PMF of 

neopentane association in water has been well studied using AA MD,32, 55 and since 

neopentane has been suggested to be a small solute demonstrating a few of the properties 

of macroscopic hydrophobic objects,32 it presents an excellent system for testing the CG 

models. 

The remainder of this article is organized as follows: In Section II, all the theory and 

methods used, namely the MS-CG methodology and ways to incorporate three-body 

correlations such as in BUMPer, are discussed in detail. The computational details, 

including the details and constructions of the CG models used are also discussed there. 

We then present the results and analysis in Section III. It must be mentioned that 

throughout the article, the terms All-Atom (AA) and Fine-Grained (FG) have been used 

interchangeably. Similarly, neopentane has also been referred to as simply the 

hydrophobe several times throughout the text. 
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II. THEORY AND METHODS 

A. The Multiscale Coarse-Graining (MS-CG) approach 

In the MS-CG framework, FG systems are mapped to CG models, under the constraint of 

thermodynamic consistency and they also have a close connection to aspects of liquid 

state theory:68 

𝑝CG(𝐑𝑁, 𝐏𝑁)  =  ∫ 𝑑𝐫𝑛𝛿(𝐌(𝐫𝑛)  −  𝐑𝑁) ∫ 𝑑𝐩𝑛𝛿(𝐌(𝐩𝑛)  −  𝐏𝑁) 𝑝FG(𝐫𝑛, 𝐩𝑛) 

Eq (1) 

𝑈𝐶𝐺(𝐑𝑁)  =  −𝑘𝐵𝑇ln ∫ 𝑑𝐫𝑛𝛿(𝐌(𝐫𝑛)  −  𝐑𝑁) exp(−
𝑢𝐹𝐺(𝐫𝑛)

𝑘𝐵𝑇
) +  (𝑐𝑜𝑛𝑠𝑡. ) 

Eq (2) 

In Eq (1) and Eq (2), pFG and pCG refer to the probability distributions of the FG and CG 

systems. Similarly, uFG refers to potential energy of the FG system, whereas UCG refers to 

the many-body PMF of the CG system. The CG variables or beads are generated from the 

FG variables using a mapping operator10, 11 ( ). Thereafter, a variational 

calculation is performed sometimes called Force-Matching (FM),8-11, 59 which aims at 

minimizing the force residual (χ2) between the projected FG forces (f) at their 

corresponding CG site, and the CG forces (F) (Eq (3)), such that 

𝜒2  =  
1

3𝑁
〈 ∑|𝐅𝐼(M(𝐫𝑛)) − 𝐟𝐼(𝐫𝑛)|

2
𝑁

𝐼=1

〉 

Eq (3) 

However, typically the CG potentials (the negative gradient of which yields F) are 

expanded in terms of a “basis set” of numerical functions such as B-spline functions 

existing of pairwise (or two-body) interactions only for simple one CG bead systems such 

as a liquid.59 But, the simple pairwise interaction approximation is generally unable to 

capture the multi-body correlations of water,26, 60 where strong anisotropic effects are 

important.63, 64 Even though it has been shown that MS-CG implicitly accounts to a certain 

https://doi.org/10.26434/chemrxiv-2023-jqqst-v2 ORCID: https://orcid.org/0000-0002-3267-6748 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-jqqst-v2
https://orcid.org/0000-0002-3267-6748
https://creativecommons.org/licenses/by-nc-nd/4.0/


7 

degree for three-body correlations through the Yvon-Born-Green equation,68 it is still 

limited by the use of pairwise basis sets. Several modifications of MS-CG have been 

proposed over the years, including Ultra Coarse-Graining (UCG)69-71 and CG with virtual 

sites (VCG);25, 72-74 however, a direct way to account for such effects is to account for three-

body or higher interactions (e.g., in the MS-CG scheme). 

B. Projecting three-body correlations onto pairwise basis sets: Bottom-Up 

Many-Body Projected Water (BUMPer) 

One natural step in the development of CG models is the incorporation of three-body 

effects 26. In addition to pairwise basis sets, functions explicitly incorporating three-body 

interactions can be added to the overall basis set (Eq (4)). Subsequent FM yields a CG 

potential with three-body interactions. 

𝑈3𝑏 = ∑

𝐼

∑

𝐽>𝐼

𝑈3𝑏
(2)

(𝑅𝐼𝐽) + ∑

𝐼

∑

𝐽≠𝐼

∑

𝐾>𝐽

𝑈3𝑏
(3)

(𝜃𝐽𝐼𝐾 , 𝑅𝐼𝐽, 𝑅𝐼𝐾) 

Eq (4) 

 

Here, the notation 𝑈3𝑏
(2)(𝑅𝐼𝐽)  refers to the two-body interaction in a potential that 

includes three-body terms, hence the subscript “3b”. In general, 𝑈3𝑏
(2) can, e.g., be 

expressed as a linear combination of spline functions as basis sets. However, instead of 

using spline functions for the three-body term, Larini et al.26 used the Stillinger-Weber 

(SW) function as the basis set:  

𝑈(3)(𝜃𝐽𝐼𝐾, 𝑅𝐼𝐽, 𝑅𝐼𝐾) = 

𝜆𝐽𝐼𝐾𝜀𝐽𝐼𝐾(𝑐𝑜𝑠𝜃𝐽𝐼𝐾 − cos𝜃0)
2

exp (
𝛾𝐼𝐽𝜎𝐼𝐽

𝑅𝐼𝐽−𝑎𝐼𝐽𝜎𝐼𝐽
) exp (

𝛾𝐼𝐾𝜎𝐼𝐾

𝑅𝐼𝐾−𝑎𝐼𝐾𝜎𝐼𝐾
)       Eq (5) 

      

 

where, λ and 𝜀 refer to the interaction strength and units, γ is a parameter to tune the 

decay of the potential, a is the non-bonded cutoff, 𝜃0 is the equilibrium triplet angle and 
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σ is the length unit. Explicit incorporation of these three-body interaction has then been 

shown to greatly improve the reproduction of structural properties of the CG water 

system. However, this model is still limited by its computational cost. Thus, it was 

desirable to develop a CG model which can successfully strike a balance between accuracy 

and computational cost, while retaining the effects of higher-body interactions. This led 

to the development of the Bottom-Up Many-Body Projected Water (BUMPer) model.60, 67 

BUMPer aims to project the three-body interactions onto effective pairwise basis sets. 

After an AA simulation followed by CG mapping, for a given triplet JIK with the central CG 

bead labelled as I, a three-body conditional probability p(θJIK,RIK | RIJ), is introduced which 

finds the probability at which RIK and θJIK take some specific values for a given RIJ. This 

conditional probability satisfies the relation: 

∫ 𝑑𝜃𝐽𝐼𝐾𝑑𝑅𝐼𝐾𝑝(𝜃𝐽𝐼𝐾 , 𝑅𝐼𝐾 ∣ 𝑅𝐼𝐽) = 1                                         Eq (6) 

An ensemble average is carried out over the conditional probability to get the effective 

interactions as a function of only one distance. 

𝑈𝑒𝑓𝑓
(2)

(𝑅𝐼𝐽) = 〈𝑈(3)(𝜃𝐽𝐼𝐾 , 𝑅𝐼𝐽, 𝑅𝐼𝐾)〉𝑝(𝜃𝐽𝐼𝐾 ,𝑅𝐼𝐾∣𝑅𝐼𝐽)

= 2(𝑁𝑐 − 1)∫ 𝑑𝜃𝐽𝐼𝐾𝑑𝑅𝐼𝐾𝑝(𝜃𝐽𝐼𝐾 , 𝑅𝐼𝐾 ∣ 𝑅𝐼𝐽)𝑈(3)(𝜃𝐽𝐼𝐾, 𝑅𝐼𝐽, 𝑅𝐼𝐾) 

Eq (7) 

where, 2(Nc -1) is a pre-factor accounting for the counting of the forces (𝑁𝑐 being the 
coordination number). 

Henceforth, the overall CG effective potential can be written as, 

𝑈(𝐑𝑁)  =  ∑

𝐼

∑

𝐽>𝐼

{𝑈3𝑏
(2)(𝑅𝐼𝐽)

+ 2(𝑁𝑐 − 1)∫ 𝑑𝜃𝐽𝐼𝐾𝑑𝑅𝐼𝐾𝑝(𝜃𝐽𝐼𝐾 , 𝑅𝐼𝐾 ∣ 𝑅𝐼𝐽)𝑈3𝑏
(3)(𝜃𝐽𝐼𝐾 , 𝑅𝐼𝐽, 𝑅𝐼𝐾)} 

Eq (8) 

It is important to note that for this model, the three-body interactions are imposed 

only up to 3.7 Å (also the cutoff for computing 𝑁𝑐), which roughly corresponds to the first 

solvation shell of water, where short-range effects dominate the local hydrogen bonding 
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network. Thus, to correct for the long-range interactions, Iterative Force-Matching 

(IFM)75 is carried out. The resulting effective pair potential is the BUMPer model. 

i. Merits of BUMPer 

A comparative analysis of a CG mapped AA model, SP, and BUMPer water reveals that 

unlike SP potentials, BUMPer is capable of accurately reproducing both two-body and 

three-body structural correlation functions in water.60, 67 Moreover, temperature 

transferable BUMPer models were constructed using a free energy decomposition 

scheme76 and the model was shown to capture the growth of ice at the ice/water 

interface.67 Statistical mechanical calculations also suggest that BUMPer can capture 

certain anomalies of water.67 Thus, it is important to see if BUMPer can capture the 

hydrophobic effect, as this effect involves multi-body correlations and should be 

especially challenging for a one bead CG water model. 

 

C. The mW and the ML-mW water models 

The monatomic water (mW) model66 is a top-down one CG bead water model which also 

employs the three-body Stillinger-Weber interaction. Specifically, the two-body and 

three-body interactions are given by – 

𝑈mW(𝜃𝐽𝐼𝐾, 𝑅𝐼𝐽, 𝑅𝐼𝐾)

= ∑

𝐽>𝐼

{𝐴𝜀 [𝐵 (
𝜎

𝑅𝐼𝐽
)

4

− 1] exp (
𝜎

𝑅𝐼𝐽 − 𝑎𝜎
)}

+  ∑

𝐽≠𝐼

∑

𝐾>𝐽

{𝜆𝜀[cos𝜃𝐽𝐼𝐾 − cos𝜃0]
2

× exp (
𝛾𝜎

𝑅𝐼𝐽 − 𝑎𝜎
) exp (

𝛾𝜎

𝑅𝐼𝐾 − 𝑎𝜎
)} 

Eq (9) 

where A = 7.049556277, B = 0.6022245584, θ0 = 109.47◦, ε = 6.189 kcal/mol, σ = 2.3925Å, 

a = 1.8, λ = 23.15, and γ = 1.2. In the original mW paper the model was shown to capture 

the tetrahedral network of liquid water along with other properties including energetics, 

phase transitions and density, heat capacity and diffusion anomalies, albeit for some of 
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those properties one must remain keenly aware of the “representability” problem77 as 

the calculated properties may not have a direct correspondence with the underlying FG 

ones. Even though the mW model has been previously used for investigating the PMF of 

methane-methane association in a top-down fashion78, it remains to be seen if it can used 

for neopentane, which is a significantly larger hydrophobe than methane (in the context 

of the length scale dependence of the hydrophobic effect34). 

The ML-mW model is a re-parameterized version of the original mW model, using a multi-

level hierarchical optimization machine learning strategy. The advantages of ML-mW 

over mW, as well as the parameters used in the ML-mW model can be found in Ref.17 It is 

important to note that the ML-mW model parameterization borrows principles from both 

top-down and bottom-up approaches. The training set for the fitting process consists of 

atomistic MD trajectories across a wide range of temperatures (i.e., a bottom-up 

approach) and the model is also fit to static and thermodynamic data such as the density 

of water/ice (i.e., a top-down approach).  

D. Computational details 

i. AA setup of the neopentane in water system 

For computing the distribution functions, a system of one neopentane immersed in a 

water box of 900 water molecules was set up. The box dimensions taken were 30.2 × 30.2 

× 30.2 Å3 under periodic boundary conditions (PBC). Water was modelled using the 

SPC/Fw79 model, while OPLS-AA80 interactions were used for neopentane. All cross 

interactions were computed using the standard Lorentz-Berthelot mixing rules.81 A 12 Å 

cutoff was used for the long-range non-bonded interactions, coupled with a particle-

particle particle-mesh solver82, 83 with a precision of 10-4. For all AA simulations, the 

timestep was set as 2 fs. The structures were constructed and visualized using Packmol,84 

Avogadro85 and VMD,86 and all simulations were carried out with the Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS)87 package. After minimization 

using the conjugate gradient method and a short constant NPT equilibration (2 ns), a 
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production constant NVT run with the Nosé-Hoover thermostat was carried out for 20 ns, 

with frames being printed after every 1 ps, for subsequent construction of the CG models. 

For computing the PMF of hydrophobe association, two hydrophobes were taken in the 

water box of said dimensions. 

ii. CG setup and construction of pair potentials 

The AA systems were first mapped to CG beads using a center of mass (COM) mapping 

operator, with both neopentane and water represented as single CG beads. The pair 

potentials were then generated by FM using the MSCGFM package59 and the recently 

released OpenMSCG package.88 For two-body FM, the CG force field was expressed as a 

linear combination of sixth-order B-splines, with a resolution of 0.1 Å and 15 Å as the 

outer cutoff. Inner cut-offs for the water-hydrophobe and hydrophobe-hydrophobe 

interactions were taken as 3.36 Å and 4.99 Å respectively. Details about the AA 

simulations of bulk water, two-body FM and three-body FM for constructing water-water 

pair potentials can be found in the Supplementary Material and in Ref.26, 60 The SW 

parameters in Eq (5) were chosen as follows: 𝑎𝐼𝐽 = 3.7 Å (at the COM resolution), γ𝐼𝐽 = 1.2, 

𝜀𝐽𝐼𝐾 = 1 kcal/mol and 𝜎𝐼𝐽 =  1 Å. Following Eq (6) and Eq (7), three-body correlations 

were projected onto pairwise basis sets (Eq (8)), and finally IFM was carried out to obtain 

BUMPer. The box dimensions were kept the same as the AA simulations, and the timestep 

used for all CG simulations was 5 fs. BUMPer is performant at timesteps of 8 or even 10 

fs26, 60, but this is not the focus of the current work. The constant NVT production runs 

were carried out for 20 ns, with frames being printed after every 1 ps. The temperature 

for both the AA and CG simulations was set at 300 K. It is important to emphasize that the 

water-water interactions used throughout our CG runs were parameterized separately 

from bulk water simulations (as in Ref.26, 60), to test the transferability of the CG water 

models. 

iii. The CG models 

For computing the radial and angular distribution functions, a system of one hydrophobe 

immersed in water was simulated, the purpose being to check the behaviour of the water-
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hydrophobe pairs and triplets. For computing the PMF of hydrophobe association, two 

hydrophobes were simulated in the solvent. In both cases, the CG mapped AA model 

(denoted simply as AA) and six CG models were taken - the Simple Pairwise model 

(denoted as SP), the BUMPer model (denoted as BUMPer) and two variations each of the 

mW and ML-mW models. Simple pairwise FM potentials were used for the water-

hydrophobe interactions in the SP and BUMPer models. The water-water interactions 

were modelled using the simple pairwise FM and BUMPer pair potentials in the SP and 

BUMPer models. Two separate cases were chosen for the mW models as it is a top-down 

model so the choice is not automatic. These two choices of the  water-hydrophobe 

interaction were (1) modelled as simple pairwise force-matched (the model thereby 

being denoted as mW-FM), and (2) a second using Boltzmann inversion (BI) (𝑈𝑛𝑤 =

−𝑘𝐵𝑇ln𝑔𝑛𝑤(𝑟)) of the AA water-hydrophobe RDF (hence called the mW-BI model). 

Similarly, FM and BI variants were constructed for the ML-mW models (denoted as ML-

mW-FM and ML-mW-BI). For all the CG models, the hydrophobe-hydrophobe potential 

was constructed using simple pairwise FM. It should be noted that instead of a system of 

one hydrophobe in water, a system of twenty hydrophobes immersed in 980 water 

molecules was taken for constructing the hydrophobe-hydrophobe CG potentials, to 

ensure sufficient sampling of the said interactions. 

iv. Computing the PMF of neopentane association 

Umbrella Sampling89 was used for sampling the configuration space in a system of two 

neopentane molecules immersed in bulk water. Harmonic biasing potentials were 

imposed on the distance (ξ) between the centre of masses of the two hydrophobes. 

𝑉(𝜉) = 𝑘(𝜉 − 𝑑0)2 

Eq (10)  

The force constant (k) was taken to be 2 kcal/mol/Å2 for all the AA and CG simulations.32, 

55 The simulations comprised 20 windows (each carried out for 40 ns) such that the 

equilibrium distance (d0) for each window ranged from 3.5, 4.0, ..., to 13.0 Å. The resulting 

distribution profiles were combined using the Weighted Histogram Analysis Method 
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(WHAM)90-92 to generate the free energy profile for hydrophobe association. To compute 

the final PMF, the Jacobian of the coordinate transformation was also accounted for by 

adding  2kBTlnξ  to the free energy obtained from WHAM. It was also ensured that the 

PMF decays to zero at large distances by adding an offset. All these simulations were 

carried out using the PLUMED93, 94 plugin in the LAMMPS package. 

III. RESULTS AND DISCUSSION 

A. Pair potentials 

Figure 1 shows the pair potentials used for all the CG models: Fig. 1a shows the water-

water pair potentials constructed from MSCGFM using simple pairwise basis sets, and the 

BUMPer potential (constructed separately from bulk water simulations). Figure 1b shows 

the two variants of the water-hydrophobe pair potential – the FM variant used in the SP, 

BUMPer, mW-FM and ML-mW-FM models and the BI pair potential used in the mW-BI 

and ML-mW-BI models. Finally, Fig. 1c shows the hydrophobe-hydrophobe FM potential 

used for all the CG models. 

 

 

 

 

 

 

 

 

Figure 1 : (a) SP and BUMPer pair potentials for water-water interactions (b) FM and BI pair potentials 
for the water-hydrophobe interactions (c) FM pair potential for the hydrophobe-hydrophobe 
interactions 
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B. Radial distribution functions 

The radial distribution function (RDF) lies at the heart of the statistical mechanics of 

fluids,61, 62 and hence is an important metric to assess the accuracy and validity of our CG 

models. The RDF is given by, 

𝑔(𝑅) =
𝑉

𝑁2
〈∑

𝐼

∑

𝐽≠𝐼

𝛿(𝑅 − 𝑅𝐼𝐽)〉 

Eq (11) 

 

where V is the volume of the simulation box, and I and J denote particle indices (FG or 

CG). The RDF obtained from a CG simulation reflects the ability of that CG model to 

capture pairwise structural correlations. In the context of the hydrophobic effect, the goal 

of a CG model is to accurately recapitulate the AA RDF of the solvent-solvent and solvent-

hydrophobe pairs. To this end, we computed the RDFs from the CG simulations 

corresponding to each CG model taken. We note that we only consider the water 

molecules/beads within the first two solvation shells of the hydrophobe (~ 9.5 Å) for the 

water-water RDF. Owing to the superior performance of the FM variants over the BI ones, 

only the RDFs using mW-FM and ML-mW-FM are presented in the main text. The reader 

is directed to the Supplementary Information (SI) for the complete set of results using all 

the models.  
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Table 1: Coordination numbers - For the water-water pairs (water molecules within 

first two solvation shells of neopentane considered only)

 

 

 

 

Table 2: Deviation (in percentage) in the coordination numbers from the AA data for 
the water-water pairs (water molecules within first two solvation shells of neopentane 
considered only) 

Cut-off 

(Å) 

AA SP BUMPer mW-FM mW-BI ML-mW-FM ML-mW-BI 

3.7 4.2 4.3 4.1 4.0 4.1 4.0 4.1 

4.5 7.3 7.4 7.2 7.3 7.5 7.1 7.3 

5.7 13.3 13.0 13.1 13.0 13.6 12.7 13.5 

Cutoff 

(Å) 

SP BUMPer mW-FM mW-BI ML-mW-FM ML-mW-BI 

3.7 2.7 2.1 3.7 2.0 4.4 2.5 

4.5 1.9 1.0 0.041 2.7 2.6 0.62 

5.7 2.5 1.6 2.4 2.4 4.3 1.1 

Figure 2 : (a) Water-water RDF considering only the water molecules in the first two solvation 
shells of neopentane (b) Neopentane-water RDF. See text for discussion of these results.  
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Figure 2 (and Figure S1 of the SI) depicts the RDFs of the hydrophobe in water, and 

the water-water pairs across all the models taken. It is clear from the figures that the 

bottom-up models (SP and BUMPer) do remarkably well in capturing the AA hydrophobe 

in water RDF, with minor deviations at the first peak. However, the first solvation shell is 

shifted for both. The mW-FM and ML-mW-FM models are also slightly shifted, with the 

first minimum shifted by ~ 5% from the AA one. Both the BI models yield a much more 

structured RDF (Figure S1), with significant deviations in both the peaks and the minima. 

The solvent-solvent RDF is well replicated by BUMPer and the mW and ML-mW models. 

It is also important to note that ML-mW-FM (9 % deviation in g(r) at the first peak) shows 

significant improvement over mW-FM (30% deviation) in capturing the first solvation 

shell in the water-water RDF and is almost as good as BUMPer (9%). However, 

unsurprisingly, SP is unable to capture this, as has been documented before.26, 60  

To quantify the accuracy of the models, coordination numbers (CN) about the central 

atom were also calculated. The coordination number is given by, 

𝑁𝑐 = 4𝜋𝜌𝛽 ∫ 𝑔𝛼𝛽(𝑅)𝑅2 𝑑𝑅
𝑅𝑐

0

 

Eq (12) 

where, β is the central atom about which the number of α atoms (FG or CG) are counted. 

𝜌𝛽 is the density of β particles and 𝑅𝑐 refers to the cutoff up to which the CN is computed. 

For the water-water pairs (Tables 1 and 2), three cut-offs were chosen for computing 

the CNs - 3.7 Å, 4.5 Å and 5.7 Å, which roughly corresponds to the first solvation shell, the 

second correlation peak, and the second solvation shell. While mW-FM has the lowest 

deviation from AA for the 4.5 Å cut-off, and mW-BI for the 3.7 Å cutoff, it can be seen that 

overall BUMPer does well. Furthermore, Tables 3 and 4 reveal that within the first 

solvation shell of neopentane (6.5 Å), both the mW models do very well and for the second 

solvation shell, SP, BUMPer, and mW-FM are comparable. It is also interesting to note that 
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the CN of water becomes around 30 within the first solvation shell of the hydrophobe (as 

opposed to ~ 6 in bulk water up to the 3.7 Å cut-off 60).  

Table 3: Coordination numbers - For the neopentane-water pairs 

Cut-off 

(Å) 

AA SP BUMPer mW-FM mW-BI ML-mW-FM ML-mW-BI 

6.5 32.7 31.5 31.5 32.0 32.1 31.3 31.8 

9.5 113.5 112.5 112.9 112.6 115.1 112.2 114.8 

 

 

 

Table 4: Deviation (in percentage) in the coordination numbers from the AA data for 
the neopentane-water pairs 

Cut-off 

 (Å) 

SP BUMPer mW-FM mW-BI ML-mW-FM ML-mW-BI 

6.5 3.7 3.5 2.1 1.8 4.2 2.8 

9.5 0.82 0.53 0.74 1.4 1.2 1.2 

 

C. Angular distribution functions 

The angular distribution function (ADF) is given by, 

𝑃(𝜃) =
1

𝑊
〈∑

𝐼

∑

𝐽≠𝐼

∑ 𝛿(𝜃 − 𝜃𝐼𝐽𝐾)

𝐾>𝐽

〉 

Eq (13) 

where W is a normalization factor depending on the bin width and the number of frames 

of the trajectory, and indices I, J and K refer to the particles. Like the RDF, to test how well 

a CG model can capture three-body correlations, it is important to carry out a 

comparative analysis between the AA and CG ADFs. In this work, we computed the ADFs 
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of the various triplets at a distance from the simulation of a single hydrophobe in water, 

again considering only the water CG beads within the first two solvation shells of the 

hydrophobe for the water-water-water ADFs. Here again, we present only the results 

using the FM variants, the remainder can be found in the SI. Moreover, only a detailed 

look into the significant correlation peaks of the ADFs are presented here for simplicity; 

the reader is directed to the SI for the complete ADFs from all the models. 
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Figure 3 : Water-water-water ADFs (a) within first solvation shell of water (b) up to the 
second correlation peak (c) within the second solvation shell of water. See text for 
discussion of these results. 
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Figure 4 : Water-neopentane-water ADFs (a) within first solvation shell of neopentane 
(b) within the first two solvation shells of neopentane. See text for discussion of these 
results. 
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Figure 5 : Water-water-neopentane ADFs (a) within first solvation shell of neopentane 
(b) within the first two solvation shells of neopentane. See text for discussion of these 
results. 

 

Figure 3 (and Figure S2) shows the ADFs of the water-water-water triplets for three 

different cutoffs (similar to the RDF analysis) - 3.7 Å, 4.5 Å and 5.7 Å. While SP cannot 

accurately capture the two local maxima in the AA ADF (for 3.7 Å) at ∼ 50 ◦ and ∼ 100 ◦, 

BUMPer can, even though the first peak is shifted to ∼ 60 ◦. Interestingly, in the short 

range, both the mW models lead to an interchange between their two maxima. As the mW 

water model is specifically designed to capture the tetrahedral structure of water, mW-

FM does well in capturing the AA ADF at 4.5 Å. Moreover, up to the 4.5 Å and 5.7 Å cut-
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offs, mW-FM outperforms ML-mW-FM, but within the short-range 3.7 Å cut-off, ML-mW-

FM shows closer correspondence to the first correlation peak in the exact AA CG projected 

water-water-water ADFs than mW-FM. In general, ML-mW generates higher first 

correlation peaks than mW for the water-water-water triplets. The SP model fails 

significantly, while BUMPer does somewhat better, but not as well as the mW models. As 

the cutoff is further increased to 5.7 Å, it is again evident that SP does not do as well as 

the other CG models.  

It is also of importance to inspect the ADFs for the heterogeneous triplets: water-

neopentane-water (Figures 4 and S3) and water-water-neopentane (Figures 5 and S4) 

triplets. Both the mW models (particularly mW-FM) give water-neopentane-water ADFs 

close to their atomistic counterparts in this case. While BUMPer slightly underestimates 

the intensity of the first correlation peak by about 15% and the minimum by about 6% 

with a slight shift of about 3.7%, SP can capture neither the first peak (12% error) nor the 

minimum (24% error), within the 6.5 Å cutoff.  

A significant conclusion cannot be drawn from the water-water-neopentane ADFs, 

except for the fact that both mW-BI and ML-mW-BI are unable to reproduce these ADFs. 

Both of these models show significant over-structuring of the triplet, while BUMPer 

exhibits an under structuring.  
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D. Potential of Mean Force of CG neopentane association in CG water 

 

Figure 6 : The PMF of neopentane association in water using different CG models in 
comparison to the AA model (the error is of the order of 10−2 kcal/mol) 

 

The PMF of hydrophobic association in water is perhaps the most stringent and 

important test of the ability of a CG water model to capture the hydrophobic effect. As can 

be seen from Figure 6, the bottom-up approaches, SP and BUMPer, are able to capture the 

key features of the free energy profile remarkably well, i.e., the global minimum (~ 5.8 

Å), the desolvation barrier (~ 7.7 Å) and the solvent separated minimum (~ 9.2 Å). 

Interestingly, despite not having three-body interactions explicitly embedded into it, SP 

can accurately capture the key features of the PMF. This corroborates well with Ref. 68 

which suggests that the MS-CG method, by its inherent statistical mechanical framework, 

should be able to capture to some degree both two-body and three-body correlations. 

Even though pairwise basis sets limit its ability to accurately capture the RDFs and ADFs 

(Figures 2 and 3), it is still able to capture energetics of dissolving two solutes in a polar 

solvent. Even though there is no explicit description of hydrogen bonding in our CG 

systems, the fact that both SP and BUMPer can capture the essential features of the PMF 

suggests that they are indirectly able to capture the effects of the disruption of the 

hydrogen bonded network in water due to the hydrophobes. Such a distorted hydrogen 
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bonded network has been documented previously through both AA simulations32, 55 and 

spectroscopic studies.46  

On the other hand, the mW and ML-mW models fail to capture such features of the 

PMF. The mW-FM and ML-mW-FM potentials can correctly predict the neopentane-

neopentane distance corresponding to the contact minimum, but the depth of the 

minimum is off by more than a factor of two for both mW-FM and ML-mW-FM, and they 

are unable to capture the correct solvent separated minimum as well as the desolvation 

barrier. Instead, they have a shifted desolvation barrier with a very shallow solvent 

separated minimum at 9.4 Å. Both mW-BI and ML-mW-BI, on the other hand, fail to 

capture any of the three critical features of the CG projected AA PMF. The reader is 

referred to the SI for details of the error analysis of the PMF. 

It is also important to emphasize the transferability of some of the CG water models, 

especially the BUMPer model. Both the SP and BUMPer models were parameterized 

separately from bulk water simulations. Three-body interactions were imposed only on 

the water-water-water triplets; thus BUMPer could capture the PMF without any need to 

parameterize the heterogeneous water-neopentane triplets. The mW and ML-mW 

models by contrast are not transferable, at least in terms of calculating the PMF of 

hydrophobic association. 

 

E. Enthalpy-entropy decomposition 

Ideally, one should be able to perform an enthalpy-entropy decomposition of any 

accurate CG model. In other words, a CG model, based on the underlying statistical 

mechanical framework, should be able to yield the enthalpic and entropic components of 

the many-body PMF. In the context of the PMF of hydrophobic association, an accurate 

CG model for the hydrophobe in water system should be capable of reproducing the 

enthalpy-entropy decomposition of the AA PMF as projected onto the CG sites. To this 

end, we systematically carried out the enthalpy-entropy decomposition of the 

hydrophobe-hydrophobe PMF using the scheme illustrated in Refs.7, 76 This PMF was first 

computed across different temperatures (280 K, 290 K, 300 K, 310 K, 320 K). After 
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assuming negligible changes in the heat capacity, the PMFs can be decomposed according 

to: 

∆𝑊(𝑟, 𝑇)  =  ∆𝐻(𝑟)  −  𝑇∆𝑆(𝑟) 

 Eq (14) 

 

 

 

 

 

 

 

 

 

Figure 7: (a) Enthalpic component of the PMF (∆𝐻) (b) Entropic component of the PMF 
(−𝑇∆𝑆) at 300 K. See text for discussion of these results. 

 

A linear fit was performed for the PMF as a function of the temperature, at a certain 

distance value. The slope of this fit yields the entropic component (−∆𝑆) and the intercept 

the enthalpic component (∆𝐻). Thereafter, the two components were then plotted across 

the entire range of distance values to provide a systematic comparative analysis of the 

models. 

 Figure 7 shows the enthalpic and entropic components for the PMF of neopentane 

association for all the models computed at different temperatures. While both BUMPer 

and SP underestimate the enthalpic component and overestimate the entropic one 

(particularly BUMPer), both these models end up giving accurate values of the total PMF 

(Fig. 6), due to an apparent cancellation of errors between each component. Interestingly, 

the mW and ML-mW FM variants perform better than the bottom-up approaches in 

capturing the entropic component, but due to both of them underestimating the enthalpy 

and the entropy at the contact minima, they incorrectly predict a deeper well depth in the 

https://doi.org/10.26434/chemrxiv-2023-jqqst-v2 ORCID: https://orcid.org/0000-0002-3267-6748 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-jqqst-v2
https://orcid.org/0000-0002-3267-6748
https://creativecommons.org/licenses/by-nc-nd/4.0/


26 

overall PMF than the AA counterpart, as well as other spurious features at longer range 

(Fig. 6). However, the BI variants of the mW and ML-mW models give incorrect enthalpic 

and entropic components, which is further reflected in their highly inaccurate prediction 

of the PMF. A detailed look into the temperature dependence of the CG pair potentials as 

well as the PMF of hydrophobe association can be found in the SI (Figures S6, S7 and S8). 

The reader is also directed to the SI for the entropic component of the PMF at other 

temperatures (Figure S9). 

 

IV. CONCLUSIONS 

Capturing multi-body effects such as the hydrophobic effect using CG models is a 

challenge, even systematically constructed ones. This is inherently due in part to the 

limitations in the basis sets chosen for constructing the CG models, which are usually 

pairwise (or two-body) in nature. In particular, capturing the complex interactions 

between the hydrogen bonds of water and a non-polar solute using coarse-graining is 

very difficult. In this work, we explore this issue by constructing CG models to probe the 

Potential of Mean Force of hydrophobe (in our case, neopentane) association in water. 

We constructed six CG models - SP, BUMPer, mW-FM, mW-BI, ML-mW-FM and ML-mW-

BI. The first two models are bottom-up models employing Simple Pairwise and BUMPer 

pair potentials for water-water interactions, and the rest are CG models using the top-

down monatomic water (mW) and ML-mW potentials (which is a re-parameterized 

version of the mW model). 

We studied the corresponding radial and angular distribution functions of the 

neopentane in water system using our six CG models. Our tests show that BUMPer, the 

mW, and ML-mW models can accurately capture the water-water RDFs, while SP fails to 

do so due to its pairwise basis sets. For the hydrophobe in water RDF, except mW-BI and 

ML-mW-BI, the CG models do reasonably well in capturing the AA RDF. Interestingly, 

while the mW models are very good at replicating the AA homogeneous solvent triplet 

ADFs beyond the first solvation shell, they give inversely ordered peaks in the short-range 
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region. Furthermore, mW models do give accurate water-hydrophobe-water ADFs when 

compared to their AA counterparts projected on to the CG sites. While SP does not do well 

in capturing these distribution functions, BUMPer does much better, though not as good 

as the mW models for this particular ADF. 

In terms of the PMF for hydrophobe association – which is the most important 

property studied in this work – the bottom-up models significantly outperform the mW 

and ML-mW models. Both the SP and BUMPer models can accurately capture the most 

significant features of the PMF of neopentane association in water, despite the very 

coarse-grained one bead model used for neopentane, and despite SP not having multi-

body correlations explicitly embedded into it. In contrast, the mW and ML-mW models 

fail to capture any of the important features of the PMF. While none of the CG models can 

accurately recapitulate the enthalpy-entropy decomposition of the AA PMF between two 

neopentane hydrophobes, the cancellation in the errors of the enthalpic and entropic 

components of the SP and BUMPer models lead to apparently accurate PMFs. This 

highlights the capacity of bottom-up CG methods, when properly formulated such as 

BUMPer, for studying multi-body effects such as the hydrophobic effect. It is also worth 

noting that the absence of explicit hydrogen bonds in the CG one bead water models is 

likely one of the major reasons why capturing the enthalpy-entropy decomposition of the 

AA PMF is a challenging task.  

As was noted before, the SP and BUMPer water models were separately 

parameterized from bulk water simulations alone. Thus, despite not explicitly accounting 

for the hydrophobe(s) in the simulations used for constructing these water-water CG 

potentials, they were still able to capture the hydrophobic effect. The models, and 

especially BUMPer, thus exhibit a clear degree of transferability for having a hydrophobe 

(or at least two) added to them.  

Overall, it can also be concluded that the mW and ML-mW models are reasonably well 

suited for studying distribution functions in the hydrophobe-water systems, but not for 

capturing the PMF of hydrophobe association. Recently, it has also been found that mW 
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differs from TIP4P in capturing the kinetics of nucleation and growth of methane 

clathrate hydrates.95  

As far as BUMPer is concerned, not only was it able to yield accurate RDFs and 

reasonably good ADFs across all the cutoffs taken, it was also able to yield an accurate 

PMF of neopentane association. This leads us to conclude that BUMPer is indeed a very 

powerful, bottom-up one bead CG water model, which can be used for more complex 

systems. One natural way to improve upon the BUMPer method in the future is to 

explicitly incorporate heterogeneous or hybrid three-body interactions (up to reasonable 

and physically meaningful cutoffs), and project them onto pairwise basis sets. Though the 

development of a generalized BUMPer method is not the goal of the current work, the 

existing methodology can be extended to hybrid triplets (depending on the system being 

studied) and will be the subject of a future work. Furthermore, as is already well-known 

in literature, CG models offer substantial speed-up compared to the AA models,1, 3, 60 and 

thus this work could successfully point to the merit of using bottom-up CG models such 

as BUMPer for capturing complex multi-body phenomena. Although attempts have been 

made recently to incorporate multi-body effects in CG force fields using neural 

networks,20 such CG neural network potentials based MD simulations are significantly 

slower than simulations using more conventional pairwise CG potentials. Our work 

therefore opens a new direction to be pursued in the future: the development and 

application of systematically constructed bottom-up CG models for studying hydrophobic 

effects in complex systems such as proteins and membranes. 

 

SUPPLEMENTARY MATERIAL 

See the Supplementary Information for (i) Details on the AA simulations of bulk water, 

(ii) Constructing Simple Pairwise and BUMPer pair potentials from them, (iii) Complete 

radial and angular distribution profiles for all the models used, (iv) A representative 

example of proof of convergence of the PMF with error bars and the plots of the 

probability distribution for each simulation window, and (v) The CG pair potentials used, 
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the PMF of neopentane association generated across different temperatures and their 

entropic components (−𝑇∆𝑆). 
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