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ABSTRACT. Substrate positioning dynamics (SPD) orients the substrate to reactive 

conformations in the active site, accelerating enzymatic reactions. However, it remains unknown 

whether SPD effects originate primarily from electrostatic perturbation inside the enzyme or can 

independently mediate catalysis with a significant non-electrostatic component. Here we 

investigated how the non-electrostatic component of SPD affects transition state stabilization. 
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Using high-throughput enzyme modeling, we selected Kemp eliminase variants with similar 

electrostatics inside the enzyme but significantly different SPD. The kinetic parameters of these 

selected mutants were experimentally characterized. We observed a valley-shaped, two-segment 

linear correlation between the TS stabilization free energy (converted from kinetic parameters) and 

an index used to quantify SPD. Favorable SPD was observed for a distal mutant R154W, leading 

to the lowest activation free energy among the mutants tested. R154W involves an increased 

proportion of reactive conformations. These results indicate the contribution of the non-

electrostatic component of SPD to mediating enzyme catalytic efficiency. 
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Elucidating the catalytic origin of enzymes, a fundamental question in chemistry, guides the 

development of engineering strategies to create enzyme variants for chemical synthesis,1-3 waste 

degradation,4-7 fuel production,8-11 disease diagnosis, and treatment.12-14 Protein dynamics, which 

ranges over ten orders of magnitude,15-24 have been widely reported to mediate catalysis.17, 18, 25-28 

For example, residue vibrations and collision have been proposed to facilitate transition state (TS) 

barrier crossing in the sub-picosecond time scale (e.g., lactate dehydrogenase, alcohol 

dehydrogenase, and purine nucleoside phosphorylase).15-17 Residue and loop motions have been 

proposed to facilitate the positioning of substrates to form reactive conformation (or near-attack 

conformation29) in the pico- to nanosecond time scale (e.g., dihydrofolate reductase, chitinase, β-

lactamase, retro-aldolase, Kemp eliminase, glycoside hydrolase, Cytochrome P450, and soybean 

lipoxygenase).21-24, 30-37 Conformational change of loops and domains have been demonstrated to 

enable substrate binding, solvent shielding, or product releasing in the nanosecond to millisecond 

time scale (e.g., triosephosphate isomerase and adenylate kinase).18, 19, 38, 39  

Substrate positioning dynamics (SPD) serves to orient the substrates for an energetically favorable 

barrier crossing and desired selectivity.33, 36, 40-52 Experimentally, the impact of SPD on catalysis 

has been investigated using mutagenesis, where mutating dynamically-important residues results 

in a significant rate reduction (e.g., Gly121 in dihydrofolate reductase53-56). Furthermore, rate-

enhancing mutants have been created through optimizing SPD.49, 57 Broom et al. observed 700-

fold rate acceleration in Kemp eliminase HG4 after multiple rounds of mutagenesis that turned out 

to rigidify the dynamic motion of active site residues.49 However, a major pitfall of this 
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mutagenesis-based approach is that SPD is coupled to the electrostatics inside enzyme,25, 58 which 

is an established physical factor contributing to the high catalytic efficiency of enzymes based on 

theoretical,59 computational,34, 60-62 spectroscopy,63-65 kinetic and mutagenesis studies.58 Upon 

mutation, any change in SPD likely affects the projection of the enzyme electric field along the 

reacting bond. For instance, Wu et al. showed experimentally that the SPD mediates catalysis 

through tuning electrostatics in ketosteroid isomerase. This casts doubts on whether the correlation 

between the change of SPD and that of enzyme catalytic efficiency is confounded by electrostatics 

inside enzyme.63  

We introduced eq. 1 and eq. 2 to quantitatively express the relationship between SPD and catalytic 

efficiency. Catalytic efficiency is represented by the transition state (TS) stabilization free 

energy,66-70 denoted as Δ𝐺!"#$%& , which stands for the difference in free energy between the enzyme-

catalyzed transition state and the transition state in water (eq. 1 and Scheme 1). This quantity is 

first introduced by Wolfenden using a thermodynamic box to describe the catalytic origin of 

enzyme.66, 68 The change of SPD affects Δ𝐺!"#$%&  through two components: electrostatic 

stabilization energy Δ𝐺'('(𝑆𝑃𝐷) and a non-electrostatic component Δ𝐺)*)'('(𝑆𝑃𝐷) (eq. 2). To 

clarify, non-electrostatic component of SPD does not refer to non-electrostatic interactions 

between a substrate and enzyme residues but indicate the component of protein dynamics that 

mediates enzyme kinetics without perturbing interior electrostatics.  

 Δ𝐺!"#$%& ≡ 𝐺%&,'),- − 𝐺%&,.#"'/  (1) 

 Δ𝐺!"#$%& (𝑆𝑃𝐷) = 	Δ𝐺'('(𝑆𝑃𝐷) + Δ𝐺)*)'('(𝑆𝑃𝐷)  (2) 
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Scheme 1. The definition of Δ𝐺!"#$%&  through a conceptual energy profile of enzymatic reaction (in 

blue) and uncatalyzed reaction (in black).  [EA]‡	 and [Uncat]‡  are transition states for the 

enzymatic reaction and uncatalyzed reaction, respectively. E, A, EA, EP, P are enzyme, substrate, 

enzyme-substrate complex, enzyme-product complex, and product, respectively. [bind]‡	 and 

[release]‡ are transition states for the substrate binding and product release, respectively. Δ𝐺!"#$%&  

is the transition state (TS) stabilization free energy. 

Unless the impact of electrostatics is factored out in mutagenesis,27, 71-73 it will remain unknown 

whether SPD originates primarily from electrostatic perturbation inside enzyme 

(Δ𝐺)*)'('(𝑆𝑃𝐷) ≈ 0), or can independently mediate catalysis with a non-trivial Δ𝐺)*)'('(𝑆𝑃𝐷). 

The answer to the question will not only deepen our fundamental understanding of the catalytic 

origin of enzymes but also inform whether dynamics-related descriptors should be considered as 

a general and independent factor for the computational engineering of biocatalysts. In this work, 

we investigated how the non-electrostatic component of SPD, Δ𝐺)*)'('(𝑆𝑃𝐷), contributes to TS 

stabilization free energy, Δ𝐺!"#$%& , using Kemp eliminase (KE07-R7-2) as a model enzyme.35, 74  

Through in silico high-throughput screening by EnzyHTP,75 we identified single-point KE07-R7-

2 mutants involving significantly different SPD but similar electrostatics inside enzyme 
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(Δ𝐺'('(𝑆𝑃𝐷) ≈ 0). We characterized the turnover rate and Michaelis constant of these mutants 

using biochemical assays. Based on these data, we investigated the correlation between the TS 

stabilization free energy and SPD to evaluate the contribution of Δ𝐺)*)'('(𝑆𝑃𝐷).   

Model System: Kemp Eliminase. We used Kemp eliminase (KE),34, 35, 39, 50, 61, 74, 76-79 the first de 

novo-designed enzyme, as the model enzyme in this study. The substrate 5-nitro-1,2-benzoxazole 

undergoes C–H deprotonation and ring opening catalyzed by a general base, generating 2-hydroxy-

5-nitrobenzonitrile through a single transition state (Figure 1a top). In the KE07 series,74 the 

general acid-base mechanism is enabled by active site residues, including Ala9, Ile11, Ser48, 

Trp50, Glu101, Tyr128, His201, Arg202, and Lys222 (Figure 1a bottom). Specifically, Glu101 

serves as the general base that deprotonates the substrate, Lys222 acts as the hydrogen bond donor 

to stabilize the phenoxide intermediate, and Trp50 acts as the π-stacking residue to stabilize the 

substrate binding and charge-separated transition state. Four polar residues (Ser48, Tyr128, 

His201, and Arg202) stabilize the substrate binding or transition state through electrostatic or polar 

interactions. The nonpolar residues Ala9 and Ile11 likely favor substrate binding via dispersion 

interactions. 

We employed KE07-R7-2, the KE variant out of seven rounds of directed evolution,35, 74 as the 

wild-type (WT) scaffold. Three reasons support this choice. First, computational benchmarks80 

and biochemical assay protocols81 have been established for KE07-R7-2, ensuring accuracy and 

reproducibility. Second, kinetic parameters have been experimentally characterized by Bhowmick 

et al.35 for KE07-R7-2 mutants, providing references for this study. Third, both electrostatics inside 

the enzyme61 and protein dynamics35 are known to mediate catalytic efficiency of KE, making 

KE07-R7-2 a suitable model to investigate the electrostatic and non-electrostatic components of 

SPD.  
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Figure 1. (a) The model enzyme, Kemp eliminase, used in the study and (b) the schematic 

definition of substrate positioning index, SPI. (a, top) A putative reaction mechanism. The 

carboxylic group of Glu101 deprotonates the C–H bond on the substrate, 5-nitro-1,2-benzoxazole. 

(a, bottom) The active site structure of Kemp eliminase, KE07-R7-2. The active site residues and 

the substrate are shown in stick. The substrate is shown in green, and the carbon, oxygen, and 

nitrogen of the residues are shown in gray, red, and blue, respectively. The catalytic base is labeled 

in red, and others are labeled in black. The structure is derived from the crystal structure with a 

PDB ID of 5D38.39 (b) The solvent-accessible surface area (SASA) of the substrate (SASAsub) and 

enzyme pocket (SASApkt) are evaluated separately by isolating these two parts from the complex. 

The SPI value is computed as an average over all snapshots sampled along the MD trajectories. 
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Substrate Positioning Index. To quantify the impact of protein dynamics on substrate 

positioning, we introduced a computational descriptor derived from molecular dynamics (MD) 

simulations. Existing descriptors for SPD, including mechanism-based bond parameters (e.g. 

length of a certain H-bond) and root-mean-square deviation (RMSD) of the active site, do not 

directly inform the dynamic response of substrate to the conformational fluctuation of the active 

site residues.44, 49 Instead, we defined a substrate positioning index (SPI) based on solvent-

accessible surface area (SASA, and see Figure S5 for the solvent-exclusive surface area test). SPI 

was determined by averaging the SASA ratio values calculated from individual snapshots 

extracted from the trajectories. Specifically, the SASA ratio between the substrate and active site 

residues (listed in Figure 1a bottom, selected based on previous benchmark80) was first computed 

for each snapshot, with SASAsub and SASApkt calculated using isolated coordinates (as described 

in Text S1). Subsequently, these values were averaged across the conformational ensemble to 

derive the SPI value (i.e., <SASAsub/SASApkt>, Figure 1b).  

When the same substrate binds to different enzyme mutants, a higher SPI value indicates that 

protein dynamics leads to a tighter positioning of the substrate in the active site. As such, SPI 

quantitatively describes SPD: 

 𝑆𝑃𝐷 = 	𝑆𝑃𝐷(𝑆𝑃𝐼) (3) 

This descriptor was first introduced in our prior study of mutation effects in lactonase SsoPox,46 

where a piecewise linear correlation was observed between the activation free energies and SPI 

values for various lactonase mutant-substrate pairs. An optimal range of SPI was identified that 

enables the non-native substrate to react as efficiently as the native substrate. 
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KE Mutant Selection. We designed a high-throughput computational workflow to identify single 

amino acid mutations with significant variation in SPD (represented by SPI, eq. 3) but minimal 

change in electrostatics inside enzyme (Figure 2), therefore approximating Δ𝐺'('(𝑆𝑃𝐷) to zero 

(eq. 2). Electrostatics inside enzyme is represented by the electric field (EF) change of the breaking 

C–H bond relative to the WT, ΔEFC–H (Text S1). Using EnzyHTP,75, 82 we constructed the high-

throughput computational workflow to build structural models for 98 KE variants, identify 

thermally stable mutants using a folding stability test at room temperature (Table S1), and 

eventually perform a functional test to select mutations that perturb SPI significantly but electric 

field minimally (Figure 2a and Table S2).  

The 98 KE variants used in this study consist of 1 wild-type enzyme (KE07-R7-239, 74), 17 mutants 

reported by Bhowmick et al.35 and involved in our previous benchmark study,80 and 80 randomly-

generated mutants using EnzyHTP.75 The 80 randomly generated mutants were first tested for 

folding stability using Rosetta cartesian_ddg83, 84 to minimize unexpressed and misfolded mutants. 

Through the stability test, 61 mutants were retained with their folding free energies of less than 10 

Rosetta Energy Units. These mutants were used for the following MD simulations, in which the 

average SPI and ΔEFC–H were calculated using snapshots sampled from MD production 

trajectories. Structural constraints were applied throughout the MD simulations to enhance the 

sampling of enzyme conformations that stabilize pre-reaction complexes (Figure S1). To calculate 

ΔEFC–H, we first calculated the electric field strength projected along the breaking C–H bond of 

the substrate (EFC–H) in each MD snapshot. The EFC–H was summed at the middle point of the C–

H bond from all partial charges of protein atoms. Then the relative electric field change, ΔEFC–H, 

was calculated as the difference between the average EFC–H of a mutant and the WT: ∆𝐸𝐹1–3 =

〈𝐸𝐹1–345"#)"〉 − 〈𝐸𝐹1–36%〉.  
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To factor out the impact of electrostatics, we selected the mutants whose averaged electric field 

strength was determined to be within ±2.88 MV/cm compared to the wild-type enzyme (KE07-

R7-2). This range corresponds to the fluctuation of electrostatic stabilization energy (Δ𝐺'(') of 

±0.1 kcal/mol, in which Δ𝐺'(' was estimated by the projection of the electric field on the reacting 

dipole of C–H bond (Text S1). Within these variants, we further selected 5 KE variants for a kinetic 

assessment, including N247W, K4M, R154W, K37Q, and WT. These variants are evenly 

distributed across an SPI range from 1.30 to 1.70 (orange dots in Figure 2c) with an interval 

between 0.12 and 0.15.  

After the first round of kinetic measurements, R154W was found to exhibit a 1.4-fold increase in 

kcat/KM compared to the WT (Tables S4 and S5). We further selected D14F (from our random 

mutants) and E185A (characterized by Bhowmick et al.35) for the second round of kinetic 

measurement (white dots in Figure 2c) because they contribute additional data points for mutants 

that possess an SPI value greater than that of R154W. These mutation sites are distant from the 

active site and from each other (Figure 2b). In addition to these 7 mutants, we identified another 7 

mutants from the study of Bhowmick et al.,35 including H201A, M62A, N25S, K162A, K132M, 

H84Y, and L170A. Their projected electric field strengths also fall within ±2.88 MV/cm compared 

to KE07-R7-2. We thus obtained 14 variants for experimental characterization. Despite nearly 

identical averaged electric field strengths in the 14 mutants compared to the WT, a potential factor 

affecting the results may stem from multiple conformations, causing multimodal distribution of 

electric field strength. To test this possibility, we calculated the distributions of electric field 

strength for the 14 variants. Only single-peak EFC–H distribution is observed for all variants (Figure 

S2). This means that conformational diversity is unlikely to affect the results.  
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We measured the kinetic parameters for the 14 selected variants, and converted their turnover 

number kcat and Michaelis constant KM values to the change of TS stabilization free energy upon 

mutation85 (i.e., ΔΔ𝐺!"#$%& ) using eq. 4: 

 ΔΔ𝐺!"#$%& ≈ ΔΔ𝐺'77
‡ = −𝑅𝑇 ln 8!"#

$%#"&# 9'
$%#"&#:

8!"#() 9'
():

  (4) 

In this equation, KM approximates to be dissociation constant, kcat/Km approximates the apparent 

rate constant, and thus ΔΔ𝐺'77
‡  approximates the change of the apparent activation free energy upon 

mutation. According to Scheme 1, ΔΔ𝐺'77
‡  approximates to the change of Δ𝐺!"#$%& upon mutation 

(i.e., ΔΔ𝐺!"#$%& ). Temperature T is set at 298 K and R represents the gas constant. Since 

Δ𝐺)*)'('(𝑆𝑃𝐷) ≈ 0, combining eq. 2-4 leads to: 

 ΔΔ𝐺!"#$%& (𝑆𝑃𝐼) = 	ΔΔ𝐺'('(𝑆𝑃𝐼) + ΔΔ𝐺)*)'('(𝑆𝑃𝐼) ≈ ΔΔ𝐺)*)'('(𝑆𝑃𝐼)  (5) 

This relation allows us to investigate the contribution of non-electrostatic component of substrate-

positioning dynamics (ΔΔ𝐺)*)'(' ) directly from the change of TS stabilization free energy 

(ΔΔ𝐺!"#$%& ). Upon change of SPI, a trivial change in ΔΔ𝐺!"#$%& (𝑆𝑃𝐼) indicates that SPD originates 

primarily from electrostatic perturbation inside enzyme, while a significant change in 

ΔΔ𝐺!"#$%& (𝑆𝑃𝐼)  indicates that SPD independent mediates catalysis with a substantial non-

electrostatic component.  
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Figure 2. The computational protocol for the selection of KE variants for kinetic assessment. (a) 

Computational workflow to screen for mutants with a single amino acid substitution that 

significantly affects the substrate positioning dynamics but minimally the electric field strength on 

the breaking bond. (b) The structure of KE07 with the Cα atoms of mutation sites highlighted as 

red spheres. The structure is the KE07 design model by Röthlisberger et al.74 (c) Distribution of 

the electric field change, ΔEFC–H versus the substrate positioning index, SPI. The ΔEFC–H of WT 

is set to be the reference (0 MV/cm). The dashed lines show the EFC–H range cutoff from which 

mutants with a small electrostatic effect were selected. The dots include the data points for 63 KE 

variants, including 61 randomly generated variants that pass the folding stability test, E185A 
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reported by Bhowmick et al.35, and the wild-type KE07-R7-2 enzyme. Orange and white dots are 

the mutants selected for the first and second rounds of kinetic characterization, respectively. Other 

mutants are shown in blue. The blue shade under the dots shows the data distribution in the 2D 

space and the curves with blue fill on the sides show the data distribution of EFC–H or SPI. The 

shade and curves are derived from fitting all 63 data points using Kernel Density Estimation (Text 

S1). 

Non-electrostatic Component of Substrate Positioning Dynamics. Based on eq. 5, we 

performed correlation analysis between ΔΔ𝐺!"#$%&  and SPI to evaluate non-electrostatic component 

of SPD. A valley-shaped, two-segment piecewise linear correlation was observed between 

ΔΔ𝐺!"#$%&  and SPI values for the 14 selected KE variants (Figure 3a). The first linear segment 

involves a gradual drop of ΔΔ𝐺!"#$%&  from 1.7 kcal/mol (H201A) to -0.2 kcal/mol (R154W), which 

accompanies the increase of SPI value from 1.17 (H201A) to 1.56 (R154W). The second linear 

segment involves a gradual increase of ΔΔ𝐺!"#$%&  from -0.2 kcal/mol (R154W) to 0.3 kcal/mol 

(K37Q), which accompanies the increase of SPI value from 1.56 (R154W) to 1.68 (K37Q). The 

Pearson correlation coefficients for the two linear segments are -0.83 and 0.83, respectively. 

R154W exhibits the most favorable ΔΔ𝐺!"#$%& value with an SPI of 1.56. The observed outcomes 

demonstrate a strong statistical significance, as the error bars of ΔΔ𝐺!"#$%& values show minimal 

overlap among the seven variants chosen from our computational mutagenesis (e.g., N247W, WT, 

K4M, R154W, D14F, E185A, and K37Q). The largest standard error is only 0.05 kcal/mol for 

N247W, which is half of the electrostatic stabilization energy selection window (i.e., 0.1 kcal/mol). 

Despite H201A appearing as an outlier, the removal of this data point does not disrupt the linear 

correlation on the left linear segment, which maintains a Pearson correlation coefficient of -0.82.  
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The correlation shown in Figure 3a indicates the non-trivial contribution of non-electrostatic 

component of SPD in catalysis, with ΔΔ𝐺)*)'(' changing from -0.2 to 1.7 kcal/mol upon variation 

of SPI. Although ΔΔ𝐺!"#$%&  has been observed to change 3-7 kcal/mol upon variation of electric 

field inside enzyme through mutagenesis,64 an unfavorable SPD can substantially disrupt catalysis. 

As an example, we experimentally characterized the kinetic parameters for S48N (gray dot in 

Figure 3a). This mutant involves a favorable electrostatic environment (a ΔEFC–H of 5.68 MV/cm), 

but a small SPI value (1.23) that substantially deviates from the predicted optimal range (1.56). 

The ΔΔ𝐺!"#$%&  value of S48N was measured to be +1.56 kcal/mol, which is >10-fold slower than 

the wild-type enzyme at room temperature. This negative impact of substrate-positioning 

dynamics is projected to be even worse if the favorable electrostatic contribution is factored out in 

S48N.  

According to eq. 4, ΔΔ𝐺!"#$%&  can be decomposed to contributions from kcat ( ΔΔ𝐺8!"#
‡ =

−𝑅𝑇 ln 8!"#
$%#"&#

8!"#() ) and KM (ΔΔ𝐺9'
‡ = −𝑅𝑇 ln 9'

$%#"&#

9'
() ). To identify the key factor influencing the 

valley-shaped curve, we separately examined the correlation of SPI with ΔΔ𝐺8!"#
‡  and ΔΔ𝐺9'

‡  

(Text S2 and Figure S6). The result shows that ΔΔ𝐺8!"#
‡  dominates the valley-shaped trend except 

for the outlier N247W, while ΔΔ𝐺9'
‡  exhibits minimal dependence on SPI. Notably, in our 

previous work for lactonase SsoPox, we observed a similar trend between ΔΔ𝐺8!"#
‡  and SPI.46  A 

recent study by Bååth et al.86 showed that the turnover of poly(ethylene terephthalate) hydrolases 

also follows a valley-shaped trend,87, 88 where the turnover rate is initially enhanced and then 

diminished as the monotonic decrease of enzyme-substrate binding affinity (Sabatier principle).  
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Figure 3. The impact of substrate positioning dynamics on the activation barrier and reaction 

conformation for KE07-R7-2 variants that are experimentally tested in this work (blue) and 

reported by Bhowmick et al.35 (orange and gray). (a) The correlation between change of activation 

free energy (ΔΔ𝐺!"#$%& ) versus the substrate positioning index (SPI). For each data point tested in 
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this work, the mean and standard error (shown as the vertical error bar) are derived from three 

independently repeated kinetic measurements. The horizontal dashed line indicates the position of 

ΔΔ𝐺!"#$%& = 0. The vertical dashed line indicates the position of SPI = 1.56 where the beneficial 

mutant R154W is located. The vertical dashed line is also the boundary of the two-segment 

piecewise linear fitting. The fitting lines are shown in red and labeled with the corresponding 

Pearson correlation coefficient (r). The data point of R154W is included in both fitting lines. S48N 

is not included in the fitting because its electric field strength is outside the selection window of 

±2.88 MV/cm. (b) Structure of the idealized transition state optimized from QM calculations.74 

The dashed lines indicate the breaking or forming bonds. (c) Scatter plots for the root-mean-square 

deviation from the idealized transition state, i.e., RMSDiTS versus SPI of the selected KE07-R7-2 

variants. The dashed and red lines are drawn similarly to (a). The horizontal dashed line indicates 

the value of WT RMSDiTS (0.94 Å). 

Substrate Positioning Dynamics Mediates the Sampling of Reactive Conformations. The 

increase of SPI from 1.17 to 1.68 reflects the process in which mutations reshape protein dynamics, 

gradually positioning the substrate toward a more compact active-site conformation. As such, we 

hypothesized that the non-electrostatic component of SPD mediates enzyme kinetics by perturbing 

the population of reactive conformation. To validate this hypothesis, we calculated the mass-

weighted RMSD relative to the active site of the idealized transition state (iTS),74 i.e., RMSDiTS, 

for each KE variant, and tested their correlation to SPI. RMSDiTS was calculated by considering 

all heavy substrate atoms, as well as Cα and side chains of Trp50, Glu101, and Lys222 amino acid 

residues, using the Röthlisberger et al. model as the reference structure74. The structural model of 

iTS is shown in Figure 3b. Using this structure as the reference, we calculated the mass-weighted 
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RMSD of each MD snapshot as RMSD;%& = K∑ =*(?*@?+),)-.
*/0

B
, where X represents the coordinate 

of an atom, i denotes the ith atom in this snapshot, and iTS denotes the corresponding atom in the 

reference iTS structure. mi is the mass of the ith atom. N is the total number of heavy atoms and M 

is the total mass. We have confirmed that RMSDiTS is an effective descriptor for reactive 

conformation population with a decent linear correlation (Pearson coefficient = 0.82, Figure S8). 

As shown in Figure 3c, the correlation between the average RMSDiTS and SPI values also follows 

a valley-shaped, two-segment piecewise linear trend. The RMSDiTS decreases from 1.14 Å 

(H201A) to 0.88 Å (K132M) as SPI increases from 1.17 (H201A) to 1.56 (R154W) whereas 

RMSDiTS starts to increase beyond the SPI value of 1.56 and reaches a local maximum of 1.03 Å 

in D14F. The Pearson coefficients for the two fitting lines are -0.87 and 0.36. This result informs 

more physical details behind the valley-shaped correlation pattern. During the first linear segment, 

the increase of SPI leads to the reduction of active-site pocket space, which enhances the sampling 

of reactive conformations that resemble the active-site geometry of an idealized TS. However, 

when the pocket further shrinks and surpasses the optimal SPI range, the active site tends to 

populate in a non-reactive conformation that deviates significantly from the iTS. As such, the non-

electrostatic component of SPD promotes enzyme kinetics by shifting the conformation ensemble 

towards TS-like geometries. This may help lower the conformational entropy cost during the 

transition from reactant to transition state. This two-segment piecewise linear correlation trend 

may exist universally in enzymes when electrostatic contributions are factored out, which is similar 

to the “volcano plot” or Sabatier principle broadly observed in catalysis89. The specific SPI value 

for optimal enzyme kinetics, however, is likely to be case-dependent.  
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To understand the molecular mechanism of how mutations mediate substrate positioning 

dynamics, we conducted conformational analyses on R154W (SPI = 1.56) and compared it against 

the results of WT (SPI = 1.42). As shown in Figure 4a, R154W is a remote mutation located on 

the surface of the enzyme and is spatially distant from the active site (i.e., ~19.4 Å away from the 

active site). Compared to the WT, the SASApkt of R154W decreases by 18.30 Å2. To identify 

which residue contributes the most to the change of active-site pocket, we decomposed the 

SASApkt into contributions of individual residues (Table S6). The decomposition shows that Trp50 

contributes over 84% of the overall decrease. As shown in Figure 4b, the large reduction in 

SASApkt is driven by the shortening of spatial proximity between Trp50 and Ser144. This is 

supported by the downshift of distance distribution between Ser144 Oγ and Trp50 Hε (𝑑C1@32) 

upon mutation (average 𝑑C1@32  values: 4.45 Å in R154W; 6.87 Å in WT, Figure 4c left). 

Furthermore, the formation of hydrogen bond between Ser144 Oγ and Trp50 Hε is observed in 

R154W (around 2.72 Å) but is absent in WT. 

Compared to WT, the close contact between Ser144 and Trp50 eliminates the accessible space of 

the substrate, forcing it to adopt a conformation that is parallel to the sidechain of Trp50 (Figure 

4b). This conformation directs the breaking C–H bond towards the carboxylic group of Glu101. 

The RMSDiTS distribution of R154W shifts towards smaller values, generating more 

conformations that resemble the iTS (Figure 4c right). This likely reduces the activation entropy 

cost, which ultimately reduces the activation barrier. Notably, a similar phenomenon has been 

observed in HG3, another member of the Kemp eliminase family.57 Otten et al. showed that the 

evolved HG3 variants have more ordered side-chain orientations, leading to optimal positioning 

of the residues crucial to the chemical transformation and constraining of the ligand in the reactive 

pose.  
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Figure 4. The molecular mechanism underlying the impact of R154W mutation on substrate 

positioning dynamics. (a) Structure overlay of the representative conformation of WT (gray) and 

R154W (orange) with the residues at the sites of 50, 144, and 154 shown in stick. The structures 

of the representative conformation are chosen from MD trajectories based on the S144 – W50 

distance (𝑑C3@34), that is, picked randomly from structures that have the distance in the range of 

6.9 ± 0.3 and 2.4 ± 0.3 Å for WT and R154W, respectively. They are peak values of the distance 

distribution shown in Figure 4c left. (b) Surfaces of Trp50 and Ser144 in WT and R154W. The 

distance between Ser144 Oγ and Trp50 Hε, 𝑑C1@32, is shown as the red dashed line. The opaque 

substrate indicates its favorable position in the active site, while the transparent substrate illustrates 

a potentially unfavorable position in the WT. This unfavorable position is a conceptual illustration 

since it is prohibited by the constraints applied during the MD simulation. (c) Distribution of the 
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distance between Ser144 Oγ and Trp50 Hε, 𝑑C1@32 in the WT and R154W (left) and RMSD to the 

idealized transition station (right). In the 𝑑C1@32  distribution, the gray vertical dashed line 

represents the sum of van der Waals radii for oxygen and hydrogen (2.72 Å). The curves are made 

by fitting the corresponding data from all snapshots from MD using Kernel Density Estimation 

(Text S1). 

In summary, we combined computational and experimental approaches to investigate the non-

electrostatic component of substrate positioning dynamics (SPD) in mediating enzyme kinetics 

using Kemp eliminase (KE) as a model system. To quantitatively describe SPD, we introduced a 

molecular dynamic-derived descriptor, substrate positioning index (SPI), which is defined using 

the ratio of solvent-accessible surface area between the substrate and the enzyme active site 

residues. We designed a high-throughput computational workflow to identify stable KE variants 

that involve similar electrostatics inside enzyme but distinct SPI values.  

The resulting KE variants were characterized using kinetic assays. The correlation between 

activation free energies and SPI values demonstrates a valley-shaped, two-segment piecewise 

linear relationship. The trend was validated using additional KE data reported by Bhowmick et 

al.35 The presence of an optimal SPI value was observed in R154W, which corresponds to the 

lowest activation free energy among the selected mutants. We further investigated the relationship 

between SPI and the root-mean-square deviation of each conformational ensemble from an 

idealized active-site transition state model. The results show that the non-electrostatic component 

of SPD promotes enzyme kinetics by shifting the conformation ensemble towards TS-like 

geometries. To understand the molecular details behind how mutation reshapes the SPD, we 

performed conformational analyses on R154W and compared the results against the WT. We 
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found that this distal mutation has a significant impact on the conformational distribution at the 

active site, where the mutation enables a hydrogen bonding between Ser144 and Trp50, limiting 

the accessible space of the substrate and positioning the substrate towards chemical activation. 

These results indicate the presence of a non-electrostatic component of SPD in mediating enzyme 

catalysis. To promote catalysis, SPD has to position the substrate in an optimal active-site cavity 

to favor barrier crossing. The study implies that SPD should be considered as an independent factor 

in developing strategies for pinpointing rate-enhancing mutants for biocatalysis. The study also 

highlights SPI as a descriptor that informs the impact of the mutation on substrate positioning 

dynamics. SPI can be easily calculated from molecular mechanical modeling and implemented in 

high-throughput computational workflows for computational enzyme engineering. On a separate 

note, statistical energy (EMaxEnt), which quantifies the fitness of a specific sequence in evolution, 

has been recently demonstrated to display a strong anti-correlation90 (correlation values are -0.88 

and -0.89 for log(kcat/KM) and logkcat, respectively) to the corresponding activity (log(kcat/KM) or 

logkcat) in the KE variants reported by Bhowmick et al.35 Although EMaxEnt is different from SPI, 

further investigations into the relationship between substrate positioning dynamics and the 

evolutionary profile of sequences may inform the synergy between the free energy landscape and 

fitness landscape that mediates enzyme catalysis in evolution.57 

Computational and Experimental Methods  

Computational Methods. We employed EnzyHTP, a software developed by our lab, to perform 

high-throughput computational screening of Kemp eliminase (KE) mutants.75 A job script was 

prepared that leveraged EnzyHTP functions to automate the process of enzyme structure 

preparation, random mutation generation,91 folding stability assessment,83, 84 molecular dynamics 
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simulation using AMBER18,91 quantum mechanics calculation using Gaussian1692 and 

TeraChem,93, 94 and post-analysis of results using PyMol.95 The workflow starts from KE07-R7-

2,39 the “wild-type” structure used in this study and then creates and simulates 98 random KE 

variants with single amino acid substitution. The configurations of the EnzyHTP functions are 

detailed in Text S1. 

Experimental Methods and Characterization. The enzymes were expressed in Escherichia coli 

BL21(DE3) using a pET-29b(+) vector (Novagen) and purified using Ni-NTA resin (Invitrogen). 

Kinetic parameters were determined using 5-nitro-1,2-benzoxazole as the substrate, with 

concentrations ranging from 5 to 1500 μM. The reactions were initiated by adding 50 μL of the 

enzyme (8 μM final concentration) to 150 μL of the substrate in a 96-well plate (Corning-Costa) 

at 25 °C in 25 mM HEPES (pH 7.25), 100 mM NaCl, 5% glycerol and 1.5% (v/v) acetonitrile.35 

The formation of the product was monitored at 380 nm using a SpectraMax iD3 microplate reader 

(Molecular Device). Vmax and Km were calculated by nonlinear regression with the Michaelis-

Menten model using GraphPad Prism software (Version 8).96 Three biologically independent 

replicates were used to calculate means and standard deviations. More details can be found in Text 

S1. 
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