Separation and Characterization of Synthetic Cannabinoid Metabolite Isomers using SLIM High-Resolution Ion Mobility-Tandem Mass Spectrometry (HRIM-MS/MS)

Ralph Aderorho, Shadrack Wilson Lucas, Christopher D. Chouinard* Department of Chemistry, Clemson University, Clemson, SC 29634, USA

*Corresponding Author: Christopher D. Chouinard (<u>cchouin@clemson.edu</u>); Hunter Chemistry Laboratory, 211 S. Palmetto Blvd, Clemson, SC 29634, USA ORCID ID: 0000-0002-1416-1812

Keywords: Synthetic cannabinoids, Isomers, SLIM, Ion Mobility-Mass Spectrometry (IM-MS)

Supporting Tables

	Table S1. Instrumental	parameters for the MOBI	Lion MOBIE SLIM &	Agilent 6546 QTOF
--	------------------------	-------------------------	-------------------	-------------------

Instrument Region	Instrumental Parameter	Experimental Value	
	Polarity	Positive	
	Gas Temp	325 °C	
	Drying Gas	12 L/min	
	Nebulizer	20 psi	
Ionization Source	Sheath Gas Temp	275 °C	
	Sheath Gas Flow	10 L/min	
	VCap	4000 V	
	Nozzle Voltage (Expt)	1000 V	
	Fragmentor	400 V	
	Oct 1 RF Vpp	750 V	
	Funnel In	165 V	
	Funnel Out	100 V	
	Funnel Conductance Limit (CL)	95 V	
SLIM Conditions	SLIM Bias	90 V	
	SLIM Mode	HRIM (13 m)	
	SLIM Wave Shape	Sine	
	Fill Time	40 ms	
	Trap Time	0.3 ms	
	Release Time	3.2 ms	
	IMS Frame Length	1000 ms	
	Fill TW Frequency	15 kHz	
	Fill TW Amplitude	5 V _{pp}	
	Release TW Frequency	15 kHz	
	Release TW Amplitude	30 V _{pp}	
	Separation TW Frequency	20 kHz	
	Separation TW Amplitude	35 V _{pp}	
	SLIM Exit CL	50 V	
	Quad Bias	45 V	
	Quad Pressure (Rough Vac)	2.5 Torr	
	SLIM RF Amplitude	270 V	
	SLIM RF Frequency	1200 kHz	

Table S2. Experimental ${}^{DT}CCS_{N2}$ and raw ${}^{SLIM}CCS_{N2}$ for the protonated species, [M+H]⁺, for all metabolites. These ${}^{SLIM}CCS_{N2}$ values were derived based on a calibration using the Agilent Tune Mix ions. Chemical formulae and theoretical *m*/*z* are also included.

Metabolite	Formula	[M+H] ⁺ <i>m/z</i>	^{DT} CCS _{N2} (Ų)	^{SLIM} CCS _{N2} (Ų)	∆CCS (%)
JWH 018 4-hydroxyindole			189.0 ± 0.1	187.8 ± 0.2	-0.64%
JWH 018 N-(5-hydroxypentyl)	C24H23NO2	358.181	187.0 ± 0.1	187.0 ± 0.2	0.00%
JWH 018 6-hydroxyindole			192.4 ± 0.1	191.0 ± 0.4	-0.73%
JWH 250 N-(4-hydroxypentyl)	C22H25NO3	352.191	187.6 ± 0.1	186.4 ± 0.2	-0.64%
JWH 250 N-(5-hydroxypentyl)			187.6 ± 0.1	186.7 ± 0.4	-0.48%
JWH 250 5-hydroxyindole			191.5 ± 0.1	189.9 ± 0.3	-0.84%
MDA-19 N-(4-hydroxybenzoyl)	$C_{21}H_{23}N_3O_3$		196.1 ± 0.1	194.2 ± 0.1	-0.97%
MDA-19 N-(5-hydroxyhexyl)		366 182	189.3 ± 0.1	188.3 ± 0.1	-0.53%
4-cyano CUMYL-BUTINACA		500.102	186.4 ± 0.1	ND	
APP-BUTINACA phenylpropanoic acid			187.3 ± 0.1	185.3 ± 0.4	-1.07%

Table S3. Experimental $^{DT}CCS_{N2}$ and raw $^{SLIM}CCS_{N2}$ for the sodiated species, [M+Na]⁺, for all metabolites. These $^{SLIM}CCS_{N2}$ values were derived based on a calibration using the Agilent Tune Mix ions. Chemical formulae and theoretical m/z are also included.

Metabolite	Formula	[M+Na]⁺ <i>m/z</i>	^{DT} CCS _{N2} (Ų)	^{SLIM} CCS _{N2} (Ų)	∆CCS (%)	
JWH 018 4-hydroxyindole	C24H23NO2	2 380.163	206.4 ± 0.1	204.6 ± 0.1	-0.88%	
JWH 018 N-(5-hydroxypentyl)			193.9 ± 0.1	191.6 ± 0.1	-1.19%	
JWH 018 6-hydroxyindole			206.3 ± 0.1	207.5 ± 0.1	0.58%	
JWH 250 N-(4-hydroxypentyl)	C22H25NO3		184.3 ± 0.1	186.1 ± 0.2	0.97%	
JWH 250 N-(5-hydroxypentyl)		374.173	183.8 ± 0.1	181.1 ± 0.4	-1.48%	
JWH 250 5-hydroxyindole			203.7 ± 0.1	200.8 ± 0.2	-1.43%	
MDA-19 N-(4-hydroxybenzoyl)	C21H23N3O3		211.1 ± 0.1	208.4 ± 0.3	-1.29%	
MDA-19 N-(5-hydroxyhexyl)			200 161	190.8 ± 0.1	189.4 ± 0.2	-0.74%
4-cyano CUMYL-BUTINACA		300.104	195.7 ± 0.1	193.5 ± 0.2	-1.13%	
APP-BUTINACA phenylpropanoic acid			194.8 ± 0.1	192.7 ± 0.1	-1.08%	

Table S4. Experimental ${}^{DT}CCS_{N2}$ and raw ${}^{SLIM}CCS_{N2}$ for the sodiated dimer species, [2M+Na]⁺, for all metabolites. These ${}^{SLIM}CCS_{N2}$ values were derived based on a calibration using the Agilent Tune Mix ions. Chemical formulae and theoretical *m/z* are also included.

Metabolite	Formula	[M+Na]⁺ <i>m/z</i>	^{DT} CCS _{N2} (Ų)	^{SLIM} CCS _{N2} (Ų)	∆CCS (%)
JWH 018 4-hydroxyindole			281.7 ± 0.1	289.5 ± 0.4	2.73%
JWH 018 N-(5-hydroxypentyl)	C ₂₄ H ₂₃ NO ₂	737.336	261.9 ± 0.1	267.9 ± 0.1	2.27%
JWH 018 6-hydroxyindole			290.8 ± 0.1	296.5 ± 0.2	1.94%
JWH 250 N-(4-hydroxypentyl)	C22H25NO3		271.4 ± 0.1	278.3 ± 0.2	2.51%
JWH 250 N-(5-hydroxypentyl)		725.357	259.1 ± 0.1	266.4 ± 0.2	2.78%
JWH 250 5-hydroxyindole			267.6 ± 0.1	273.4 ± 0.2	2.14%
MDA-19 N-(4-hydroxybenzoyl)	C ₂₁ H ₂₃ N ₃ O ₃	752 229	281.6 ± 0.1	285.8 ± 0.2	1.48%
MDA-19 N-(5-hydroxyhexyl)			268.4 ± 0.1	272.8 ± 0.1	1.63%
4-cyano CUMYL-BUTINACA		755.550	264.5 ± 0.1	268.2 ± 0.3	1.39%
APP-BUTINACA phenylpropanoic acid			275.0 ± 0.1	279.2 ± 0.3	1.52%

Supporting Figures

Figure S1. Structures of the synthetic cannabinoid metabolites analyzed in this study, grouped by isomers with structural differences highlighted in red.

Figure S2. SLIM IM separations of (A) JWH-018 isomers as [M+H]⁺, (B) JWH-250 isomers as [M+H]⁺, and (C) MDA-19 isomers as [M+Na]⁺. All groups are displayed as individual compounds and an equimolar mixture.

Figure S3. Reaction of dansyl chloride with JWH-018 metabolites selectively results in product formation for the 6-OH metabolite, yielding the $[M_{DC}+H]^+$ product at m/z 591.23.