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ABSTRACT 

 

The quantification of molecular similarity has been present since the beginning of 

cheminformatics. Although several similarity indices and molecular representations have been 

reported, all of them ultimately reduce to the calculation of molecular similarities of only two 

objects at a time. Hence, to get the average similarity of a set of molecules, all the pairwise 

comparisons need to be computed, which demands a quadratic scaling in the number of 

computational resources. Here we propose an exact alternative to this problem: iSIM (Instant 

Similarity). iSIM performs comparisons of multiple molecules at the same time and yields the 

same value as the average pairwise comparisons of molecules represented with binary fingerprints 

and real-value descriptors.  In this work, we introduce the mathematical framework and several 

applications of iSIM in chemical sampling, visualization, diversity selection, and clustering.  

 

1. Introduction 

 Molecular fingerprints are one the most common representations of compounds in 

cheminformatics. The simplest version of fingerprints are binary vectors, where the presence of a 

structural feature is represented by a 1 and the absence by a 0.1 Another popular representation are 

molecular descriptors, which correspond to useful numbers that encode information about a 

molecule; commonly they could be calculated from graph theory, quantum chemistry, topological 

or experimental methods, to mention some sources.2 Despite their apparent differences, both 

descriptors and fingerprints can be used to calculate the similarity between two molecules. From 

a mathematical point of view, a similarity index is a metric that measures how “related” are two 
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points in a chemical space.3 Multiple similarity measurements have been reviewed and analyzed, 

with the well-known Jaccard-Tanimoto coefficient (JT)4,5 being the usual go-to in the 

cheminformatics community.6 The main point of calculating similarity measurements lies on the 

“molecular similarity principle”: similar molecules have similar properties/activities.7 This 

powerful idea is at the core of virtual screening8–11, hit selection12, QSAR/QSPR modeling13,14, 

many chemical space exploration methods15,16, activity landscape description17,18, diversity 

selection19, clustering20,21, and many more applications.   

 The common way of quantifying similarity is by comparing two molecules. If one wants 

the similarity/diversity of a library, the typical way of doing so would be calculating the average 

similarity of all the possible comparisons in the library, which is a computationally costly O(N2) 

step. Motivated to solve this problem, our group recently developed the concept of extended 

similarity.22,23 Extended similarity performs the comparison of all the molecules in a set at the 

same time and yields a similarity metric for the whole set. Briefly, for a matrix of size N × M, 

where M is the size of the fingerprint or number of molecular descriptors and N the number of 

molecules in a set, the first step is to sum the elements column wise, ∑ = [𝜎1, 𝜎2, … , 𝜎𝑀]. Each 

column sum, 𝜎𝑘, can be used to classify the column when it is compared to a threshold in the 

following way: i) if 2σk - N > γ it will be a 1-similarity column, ii) if N - 2σk > γ it will be a 0-

similarity column, iii) otherwise it will count as dissimilarity. Then, using ∆𝜎𝑘= |2𝜎𝑘 − 𝑁| as 

independent variable a weighting function should be used to consider partial similarity and 

dissimilarity, the function should be positive and increasing.  Now the variables of any similarity 

metric can be transformed using the sum of the weighted or non-weighted counters. The major 

advantage of extended similarity is that it calculates a similarity metric for the whole set much 

more efficiently than by using the traditional pairwise comparisons, with this calculation now 

scaling as O(N). 22,23  

 Extended similarity has been applied to several cheminformatics problems like diversity 

selection, 23,24 molecular dynamics simulations,25,26 library diversity studies,27–29 activity cliffs,30 

descriptor selection for QSAR/QSPR model,31 fingerprint evaluations,32 and chemical space 

visualization.33 Despite the advantages, linear scaling and simultaneous multiple comparisons, 

there are certain some drawbacks like the need of a coincidence threshold analysis to determine 

the best similarity/dissimilarity separation and a different numeric value than the pairwise 

comparisons. Those limitations inspired this work where we show the mathematical framework, 
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analysis, and cheminformatics applications of iSIM, an “instantaneous” similarity measurement 

for binary fingerprints and molecular descriptors that yields virtually the same value as the average 

pairwise similarity comparisons in a linear scaling with the number of observations.  

 

2. Theory 

2.1 Binary representations 

Comparisons over molecular fingerprints are based on three key indicators: the number of 

times there is a coincidence of two “on” bits between the fingerprints (denoted by a), the number 

of times there is a coincidence of two “off” bits between the fingerprints (denoted by d), and the 

mismatches between the fingerprints, when one bit is “on” and the other is “off” (denoted by b + 

c). With these ingredients one can propose a plethora of similarity indices, which could be 

interpreted as such as long as they are monotonically increasing functions of a and d, and 

monotonically decreasing functions of b + c. Here, we will be concerned mainly with the Russel-

Rao (RR)34, Jaccard-Tanimoto (JT)4,5, and Sokal-Michener (SM)35 indices: 

 RR
a

a d b c
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 JT
a
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 (2) 

 SM
a d
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 (3) 

(Notice that, trivially, RR JT SM  .) 

The very definition of, say, a, seems to imply that when we have N molecules, as we need 

to consider the 
 1

2 2

N N N  
 

 
 distinct pairs to check the coincidence or not of on bits. However, 

it is possible to access the same information in far fewer operations. The first step is to arrange all 

the fingerprints in a matrix, with each fingerprint corresponding to a row. Then, we just need to 

find the sum of each column, which generates a vector  1 2... mK k k k , with element qk  

corresponding to the sum of the qth column, and m indicating the length of the fingerprints. The 

key insight is to note that the k’s are all that we need to calculate the number of times we will have 

coincidence or not of any type of bits. For instance, there will be 
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which two on bits will coincide in column q. Likewise, there will be 

  1
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q qq
N k N kN k    

 
 

 coincidences of off bits. Finally, the number of mismatches is 

 q qk N k . It is natural then to make the following identification (with the sums running over all 

bit positions): 
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With this, we have everything in place to define instantaneous similarity (iSIM) versions of the 

previously discussed indices, iRR, iJT, and iSM, as: 
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The case of iRR and iSM is special, because the denominators in Eqs. (1) and (3) are always 

constant, since a d b c m    , the number of digits in the fingerprints (a fact that we explicitly 

use in the 2nd, simpler, form of the iRR and iSM indices shown above). Then, we can interpret Eqs. 

(7) and (9) as effectively combining the RR and SM similarities over each independent bit 

positions. Given the constant-denominator characteristic, it is then easy to see that the iSIM version 

of these indices will provide the exact average of all the pairwise RR and SM values over the given 

set, but at only O(N) cost. iJT, on the other hand, will not in general give exactly the same value 

as the average of the pairwise Tanimoto calculations. Once again, the key is that the JT 

denominator is not the same for arbitrary pairs of fingerprints. In this case, we can interpret iJT as 

an O(N) mediant approximation36,37 to the O(N2) average. Despite this simplification, as shown 

below, iJT still provides superb estimates for the pairwise average over a varied set of conditions. 

 

2.2 Real-value representations 

The previous results are promising, so it is certainly desirable to extend them to more 

general types of molecular representations. Here, we show how this can be done for vectors of real 

values. The key insight is to use inner products between the molecular “vectors” instead of the 

more limited a, d, and b + c indicators used in the binary case. To do this we will focus on the case 

where the ith molecule,  i
X , is represented by a vector of descriptors        

1 2, ,...,
i i i i

mX x x x 
 

. 

Without losing any generality, these vectors are considered to be normalized: 
 

, : 0 1
i

qi q x   . 

The main motivation behind the focus on normalized descriptors is that we can then easily define 

the “flipped” representation of a molecule,  i
X , as the real-value equivalent of flipping the bits 

of a binary representation, that is:        
1 21 ,1 ,...,1

i i i i

mX x x x    
 

. In terms of inner products, 

the previously analyzed indices can be written as: 
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Notice that, for simplicity, we have directly used the fact that the denominators of the RR and SM 

indices are constant and equal to the total length of the molecular vectors, m. 

Once again, the way of writing Eqs. (10)-(12) seems to suggest that calculating the average 

of all the RR, JT, or SM comparisons demands O(N2). However, we can actually calculate the sum 

of all the involved inner products in O(N) (albeit, with a larger overhead, compared to the binary 

case). 

First, for the inner products between the molecular representations, we have: 
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Then, for the relevant inner products appearing in Eqs. (10)-(12): 
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From these expressions, it is clear that we can follow a similar route to the one taken for 

the binary input. First, we need to arrange all the molecular vectors in a matrix X. Then, we need 

to generate some related matrices: a) The “flipped” matrix 1X X  , b) the Hadamard (element-

wise) squares of these matrices, 2X , 2X . That is, if the element in row i and column q in X is 

given by 
 i
qx , then the corresponding elements of matrices 

2 2, ,X X X  will be 
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2 2

1 , , 1
i i i

q q qx x x  
  , respectively. It is important to remark that since we are only taking 

element-wise products, generating these auxiliary matrices will only demand O(N) operations. 

Then, the sum of the columns of matrices X and X  gives vectors with components 
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   , respectively. On the other hand, the sum of the columns for the Hadamard 

squares gives the factors     
2 2
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   . These are all the ingredients necessary to 

calculate the real-value iSIM similarity indices: 
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Once again, iRR and iSM provide the same exact results as the average of all the pairwise 

comparisons, due to the convenient constant denominators. For iJT, this is just a median-like 

approximation but, as it will be illustrated below with different numerical tests, Eq. (17) provides 

an excellent approximation to the O(N2) result. 

 

3. Systems 

10,000 random datasets were generated, with the number of fingerprints ranged from 100 to 1000 

and the size of the fingerprints ranged from 166 to 2048. For the binary case, to ensure that datasets 

covered the complete range of the similarity indexes domains, each dataset was randomly biased 

to have different proportion of ones and zeros.  

For testing on real libraries, 30 CHEMBL curated datasets by van Tilborg et al.38 were used. Three 

binary fingerprint types were generated using RDKit39: RDKIT39 (m = 2048), MACCS40 (m = 167) 
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and ECFP441 (m = 2014). All the real and discrete descriptors offered by the RDKit Descriptors39 

module was computed, descriptors with calculation errors or nan values were dropped for a total 

of 208 descriptors (full list, SI). Min max normalization was used prior to iSIM calculations. 

The code used in this manuscript can be found at: https://github.com/mqcomplab/iSIM   

 

4. Numerical Results 

4.1 Average similarity 

 

Figure 1: iSIM vs pairwise results for 10,000 randomly generated libraries. Molecules represented 

with binary fingerprints. 

 

Our first tests were oriented towards checking the correspondence between the iSIM results 

and the average of the pairwise comparisons over a large number of libraries. For this, we used the 

10,000 randomly generated libraries described in section 3. As can be seen in Fig. 1, the iSIM 

results perfectly reproduce the more computationally demanding standard comparisons. In our 

previous contributions, we had only focused on the relation between the previously extended 

similarity results and the pairwise metrics as far as the ability of the extended indices to preserve 

the ranking of the comparisons (see, for example, Fig. 7 in Ref. 23). The test presented in Fig. 1 is 

much more demanding, because we are comparing the similarity values obtained from both 

approaches. As noted in the Theory section, we expected the iRR and iSM results to be 

(analytically) identical to the pairwise averages. Even more remarkable, we see that iJT provides 

a superb estimate for the O(N2) averages. This behavior is also observed over real datasets. In Fig. 

2 we show a similar comparison, but now over 30 CHEMBL libraries, each represented with three 
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different types of fingerprints. Figure S1 and S2 include the same comparisons with more 

similarity indexes formulas that iSIM can be applied to.  

 

Figure 2: iSIM vs pairwise results for 30 CHEMBL libraries (binary input). Molecules represented 

with binary MACCS, RDKit, and ECFP4 (binary) fingerprints. 

 

Figs. 3 and 4 present the equivalent results, but for molecules represented with 

(normalized) descriptors (e.g., real values). Once again, iRR and iSM show a perfect agreement 

both for the randomly generated and for the real data. The median approximation in iJT is also 

remarkably robust over real data, essentially operating at close level as for the binary fingerprints.  

 

Figure 3: iSIM vs pairwise results for 10,000 randomly generated libraries (real input). Molecules 

represented with random generated fingerprints with real normalized variables. 
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Figure 4: iSIM vs pairwise results for 30 CHEMBL libraries (real input). Molecules represented 

with 208 RDKIT real normalized descriptors. 

 

4.2 Local analysis of molecular libraries 

4.2.1 Complementary similarity 

 Complementary similarity calculations can also be applied with iSIM, as they were 

previously applied using extended similarity. One molecule is taken out of the set, and iSIM is 

calculated on the remaining compounds, in this way low values will correspond to molecules that 

inhabit high density regions in chemical space. Conversely, high complementary similarity 

corresponds to molecules from low density regions, thus overall, least similar to the rest of the set. 

This tool enables a ranking of molecules on how similar they are to the rest of the set, the most 

similar molecule, the medoid, has the lowest complementary similarity and on the end of the 

ranking we will have the outlier. [cite] As example in Fig. 5, medoid and outlier molecules from a 

dataset can be identified doing the complementary similarity ranking. Since we have a ranking of 

the molecules, the medoid and outlier cutoff can be flexible depending on the user needs, this gives 

an opportunity of visualization of relevant structures for the set. The information contained in the 

complementary similarity ranking has proven to be very valuable in stratifying the data as a pre-

processing step in clustering,25 as well as a way to quickly sample different regions of chemical 

space.33 
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Figure 5: Structures of the CHEMBL214 database ranked by increasing complementary similarity 

using RDKIT fingerprints and iRR similarity index. Structures shown correspond to the top 

(medoids) and bottom (outliers) three molecules. 

 

4.2.2 Diversity selection 

To further expand on the applicability of iSIM, we focused on the classical cheminformatics 

task of sampling a given library in the most diverse way possible: the diversity picking problem. 

Just like the extended indices before, iSIM naturally leads to a diversity selection algorithm 

(iSIMDiv): 

a) Pick a molecule and add it to the Selected set. (This is usually done at random, but in order 

to increase the reproducibility of our results, in all cases we start from the medoid of the 

set.) 

b) At every step, pick the molecule that will result in the lowest iSIM for the Selected set. 

As shown in Fig. 6A, this simple recipe leads to more diverse sub-sets than the popular 

MaxMin diversity selection algorithm.42,43 There, we tested the performance of these algorithms 

over the CHEMBL214 library, corresponding to the 5-HT1a receptor. [cite] We selected a library 

with 3,317 molecules (represented using RDKIT fingerprints), and we monitored the process of 

selecting up to the 10% most diverse compounds. (The general trends observed for this library 

were corroborated for other libraries, similarity indices, and fingerprint types, see the SI.) If we 

quantify the chemical diversity of the selected set as inversely related to the average of the pairwise 

similarities of the molecules in the selected sub-set (the “y axis” in Fig. 5A), we see that iSIM 

(with the iRR metric), at worst, finds sets that are as diverse as those found by MaxMin with the 

standard pairwise RR. This happens at the very early stages, when we have only picked a handful 

of molecules, but then quickly the iSIM results become more diverse. This is no surprise since, by 

definition, iSIM is constructed to reproduce the average of the pairwise comparisons. Hence, the 

iSIMDiv algorithm is directly maximizing this measure of chemical diversity. 
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A 

B C 
Figure 6: MaxMin (bmax, yellow), iRR (isim, blue), and sqrt_iRR (sqrt_isim, green) results for 

the diversity sampling of the CHEMBL214 dataset represented with RDKIT fingerprints: A) 

pairwise similarity of the Selected set, B) minimum similarity between elements of the Selected 

set, C) maximum similarity between elements of the selected set. 

 

If at the “global” or “coarse” level of the selected set it is clear that iSIMDiv produces more 

diver sets, it is also interesting to study the “local” relations among the selected molecules. For 

instance, as shown in Fig. 6B, iSIMDiv is the algorithm that first finds a pair of “orthogonal” 

molecules in the data, that is, a pair of molecules with 0 similarity between them. On the other 

hand, we also see in Fig. 6C that iSIMDiv tends to produce selected sets where the closest pair of 

molecules is more similar to each other than the closest pair of molecules selected by MaxMin. 

This is in line with the properties of MaxMin, since this method tries to maximize the minimum 

distance between the new added molecule and those already selected. As a way to bridge the local 

gap between MaxMin and iSIMDiv we propose a version of iSIM that attempts to minimize not 

the sum of similarities, but the sum of the square roots of the similarities. This sqrt_iSIM can be 

easily calculated at the same cost as iSIM: for any iSIM variant, after calculating the sums of the 

columns of the molecular representations and generating the analogues of the a, d, and b + c 
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indicators, we take their square roots and we use those in the same expression for the similarity 

indices. For example, in the case of iRR, we would be minimizing: 

 
 

 
1

2 1
sqrt _ RR 1

1

m

q q

q

i k k
m N N 

 

  (19) 

As can be seen in Fig. 6C, minimizing this new objective function results in selected sets 

that are much locally closer to MaxMin, in the sense of having almost maximally dissimilar pairs 

of closest molecules. However, as reflected in Fig. 6A, this new sampling strategy also produces 

sub-sets that are more globally diverse than MaxMin (albeit, not as diverse as those generated by 

iSIMDiv). In other words, by making changes to the objective function calculated within the iSIM 

framework, we can control the global and local properties of the sampled sets. Plots showing same 

trends on the chemical diversity selection method for more databases, fingerprint representations 

and similarity indexes are included in the SI.  

Another way of modifying the iSIM objective diversity metric that allows a faster diversity 

selection is what we called iSIMRevDiv: iSIM reversed diversity selection. In this algorithm we 

start with all the points, and we iterate to find the molecule that, if removed, the remaining set will 

result the in the lowest similarity value. This process is then repeated until the number of desired 

molecules is reached. iSIMRevDiv will be extremely useful in cases where more than 50% of the 

set wants to be picked. Figures 7 show the iSIM and computing time comparison between the 

iSIMDiv and iSIMRev methods for the CHEMBL214 database represented with RDKIT 

fingerprints and using iRR metric. Figure 7A shows how when the diversity selection is started 

from the outlier, both forward and reversed iSIM diversity selection methods will yield the same 

average pairwise similarity results, which enables the user to use any of the two methods depending 

on the data percentage that wants to be picked. Figure 7B shows computing times, and further 

supports the idea that for selections over 50% of the data the iSIMDivRev will be less 

computationally costly with the same high-quality results.  
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  A B 

Figure 7: A) iSIMDiv and iSIMRevDiv selections for different data percentages (1-99%, in 1% 

steps) for the CHEMBL214 dataset represented with RDKIT fingerprints and selected by iRR 

index. B) Computing time variation of the diversity selection methods with the data percentage 

selected.  

 

To further analyze the comparison of the iSIM diversity selection both forward and 

reversed ways, random fingerprints dataset were generated, and the results were consistent with 

the ones previously observed (see Figure S6). The fact that diversity selection can be done in a 

reversed way, puts iSIM diversity selection a foot in front of typical algorithms like MaxMin were 

the computation of a pairwise similarity is required.  

With the aim of comparing visually all diversity selection methods proposed in this work, 

Principal Component Analysis (PCA)44,45 and t-Distributed Stochastic Neighbor Embedding (t-

SNE)46 plots were generated identifying the 10% most diverse subset according to each of the 

methods. For the PCA in Figure 8 it is appreciated how iSIMDiv and iSIMRevDiv cover more of 

the two-dimensional space of the first principal components scores than the commonly used 

MaxMin algorithm and sqrt_iSIMDiv, which is consistent with our previous results. On Figure 9, 

the plots are very similar, which enforces that the proposed diversity selection methods are at the 

level of quality of the MaxMin.   
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Figure 8: Principal component analysis scoring plots of the two first components for the 

CHEMBL214 dataset represented by RDKIT binary fingerprints by diversity selection methods. 

iSIM related methods use iRR similarity index as metric.  
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Figure 9: t-SNE plots for the CHEMBL214 dataset represented by RDKIT binary fingerprints by 

diversity selection methods. iSIM related methods use iRR similarity index as metric.  

 

4.3 Clustering  

 As a final proof-of-principle demonstration of the versatility of the iSIM framework, we 

look at the clustering of molecular libraries. While there are many ways in which the notion of 

comparing multiple elements at the same time could be applied to clustering problems, perhaps 

the most natural one is in the context of hierarchical agglomerative (HA) algorithms. Note that 

iSIM can be used as a linkage criterion in the sense that at any given point we can choose to 

combine the two sets that produce the largest iSIM value for their union. In more mathematical 

terms, given sets 1 2, ,..., Kc c c , we combine clusters i, j such that:  ,, arg max SIMp q p qi j i c c . 
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This is the criterion that we used in Fig. 10 to cluster the CHEMBL214 (n = 3317) and 

CHEMBL2835 (n = 615) libraries (using iSM and MACCS fingerprints). We can also use the 

computed iSIM values to determine the optimum number of clusters in the data. If we follow the 

evolution of iSIMk (the iSIM of the cluster formed in the kth step) we see that this quantity will 

tend to decrease with increasing k, but it will tend to reach some “stability” when an optimum 

separation of the data is achieved. In other words, we look for the largest value of k for which the 

quantity 1SIM SIMk ki i   is as close to 0 as possible. 

 

 

 
Figure 10: Dendrograms from hierarchical clustering of molecules in the CHEMBL214 (top) and 

CHEMBL2835 (down) libraries using iSM on MACCS fingerprints. Number of elements in each 
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cluster indicated in brackets. Coloring corresponds to the final 10 clusters. Dashed red line 

represents the optimal number of clusters cut-off (25 for CHEMBL214, 41 for CHEMBL2835). 

 

Finally, clustering can be used to navigate through the molecular library, identifying 

representative structures associated to different basins in chemical space. For example, in Fig. 11 

we show the medoids of the CHEMBL214 and CHEMBL2835 libraries in the case in which one 

selects 10 clusters in each of them. Note how our clustering is able to identify well-defined regions 

of chemical space that correspond to distinct scaffolds and functional groups. These structures, 

however, should not be mistaken for the most diverse structures in the original library. (A common 

practice in some fields tends to identify the cluster centroids with a diverse representation of the 

set.) For instance, if we calculate the iSIM for the set of medoids when one has a number of clusters 

equal to the 10% of the total number of points, we get 0.766 and 0.810 for CHEMBL214 and 

CHEMBL2835, respectively, which is far from a maximally-diverse set. That is, if the iSIMDiv 

and MaxMin tend to sample the data by increasing chemical diversity, the sampling through the 

medoids of the clusters offers a more “uniform” picture of the original set. 
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Figure 11: Medoids of each of the 10 colored clusters in the CHEMBL214 (top) and 

CHEMBL2835 (down) libraries using iSM on MACCS fingerprints.  

 

5. Conclusions 

 iSIM has the ability of performing the comparisons of multiple objects at the same time, 

either if they are represented by binary fingerprints or real-value descriptors. The analytical 

mathematical operations behind iSIM, and the evidence from randomly generated data and real 

molecule libraries, show that the same exact value of average pairwise comparisons can be 

achieved for similarity indexes with the denominator equal to the length of the fingerprint, like RR 

and SM. In cases where the denominator is not equal to the length of the fingerprint, like JT, iSIM 

still provides an exceptional approximation to the pairwise comparison average, highlighting the 

robustness of the mediant approximation theorem. This brings the two key advantages of iSIM: 

the much more attractive linear scaling O(N) compared to the traditional pairwise indices, and the 

greater simplicity (no need to define coincidence thresholds and weight functions) compared to 

our previous extended similarity indices.  

 We showed that iSIM can be used to calculate complementary similarity of each of the 

molecules in the library and a ranking can be done to identify and visualize molecules as part of 

high-density or low-density regions. Different diversity selection methods using the proposed 

framework can be done depending on the necessity. iSIMDiv and iSIMRevDiv methods were 

developed to have two alternatives that output the same diversity results but differ in computing 

times depending on the percentage of data to select, adapting to the user’s necessities. The iSIM 

metric can also be modified depending on the diversity selection is wanted to be globally or locally 
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coerced, which can be done taking the square root of the iSIM counters to select data that will have 

a lower maximum pairwise similarity. Remarkably, all the proposed diversity selection methods 

have the same or better quality as the commonly used MaxMin. Another application of our work 

is hierarchical clustering, as we can use iSIM as clustering objective function to be maximized 

when combining two molecules/clusters. The change in iSIM for the new cluster per clustering 

step can also be used as a metric to determine the optimal number of clusters. Overall, iSIM 

provides a flexible and easy-to-use framework to analyze molecular libraries, but that could be 

easily adapted to any problems that use comparisons between objects (metabolomics, MD 

simulations, etc.). 
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