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ABSTRACT:	Earth-abundant	metal	catalyzed	double	bond	transposition	offers	a	sustainable	and	atom	economical	route	
towards	the	synthesis	of	internal	alkenes.	With	emphasis	specifically	on	internal	olefins	and	ethers,	the	isomerization	of	allylic	
amines	has	been	particularly	underrepresented	in	the	literature.	Herein,	we	report	an	efficient	methodology	for	the	selective	
isomerization	of	N-allylic	organic	compounds	including,	amines,	amides,	and	imines.	The	reaction	is	catalyzed	by	a	neutral	
PCNHCP	Cobalt(I)	pincer	complex	and	proceeds	via	a	π-allyl	mechanism	that	includes	an	unusual	1,2-methyl	migration.	The	
isomerization	 occurs	 readily	 at	 80	 °C	 and	 it	 is	 compatible	with	 a	wide	 variety	 of	 functional	 groups.	 The	 in-situ	 formed	
enamines,	 could	 additionally	 be	 used	 for	 a	 one-pot	 inverse-electron-demand	 Diels-Alder	 reaction	 to	 furnish	 a	 series	 of	
diversely	substituted	hetero-biaryls,	which	is	further	discussed	in	this	report.	

INTRODUCTION 
Alkenes	 are	 ubiquitous	 in	 wide	 variety	 of	 natural	 and	
industrial	 products.	 The	 selective	 transposition	 of	
terminal	carbon-carbon	bond	to	internal	ones	has	been	
investigated	 for	 decades	 mainly	 with	 precious	 metal	
catalysts	 (e.g.,	 Pd,	 Ru	 and	 Ir).1	 Recently,	 significant	
efforts	have	been	made	to	replace	those	precious	metals	
with	their	earth-abundant	congeners	such	as	iron,	cobalt,	
and	nickel.2	Using	these	metals	has	resulted	in	hall-mark	
examples	 of	 earth-abundant	 metal	 catalyzed	 double	
bond	 migration	 (Figure	 1),	 where	 the	 emphasis	 has	
mainly	 been	 on	 olefins	 and	 allyl	 ethers.1a,	 1d,	 2a,	 3	 By	
contrast,	 double	 bond	migration	 from	 an	N-allyl	motif	
has	been	underrepresented	in	the	literature	despite	its	
presence	in	a	variety	of	natural	products,	agrochemicals,	
and	industrially	relevant	compounds.3a,	4		
	 The	 isomerization	 of	N-allylic	 framework	 enables	 a	
selective	 and	 atom-economical	 pathway	 to	 highly	
polarized	 N-(1-propenyl)	 or	 generally	 N-vinyl	 inter-
mediates,3a	whose	 enamines,	 enamides	 and	 aza-dienes	
are	 commonly	 used	 in	 cycloadditions,5	 cyclopropa-
nations,6	 heterocycle	 synthesis,7	 halofunctionali-
zations,8	 and	 transition	 metal	 catalyzed	 C–C	 bond	
forming	 reactions.9	 In	 addition,	 the	 transition-metal	
catalyzed	 tandem	 isomerization	 of	 N-allylic	 double	
bonds	followed	by	functionalization	of	the	in-situ	formed	
N-vinyl	 intermediate	 offers	 access	 to	 highly	
functionalized	 molecules	 that	 would	 be	 otherwise	
difficult	to	synthesize	via	other	methods.10	Furthermore,	
the	added	benefit	of	N-allyl	isomerization	is	that	in	these	
reactions	 the	 regio-	and	stereoselectivity	 is	often	well-
defined.3a,	11		
	 Because	 of	 their	 synthetic	 utility,	 Otsuka	 and	 co-
workers	 reported	 in	 the	 1980’s	 the	 first	 Co(I)-hydride	
catalyzed	isomerization	of	two	allylamines	to	their	
 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure	 1.	 State-of-the-art	 Iron(0)	 and	 Cobalt(I)	 catalyst	 for	
alkene	isomerization.		

corresponding	 trans-enamines.12	 Stille	 on	 the	 other	
hand,	 demonstrated	 the	 ruthenium,	 rhodium,	 and	 iron	
catalyzed	 isomerization	 of	 allylamides	 to	 enamides,	
although	 different	 reaction	 conditions	 were	 necessary	
for	 each	metal.13	 Later,	 the	 scope	 and	 stereoselectivity	
was	greatly	improved	by	Krompiec	and	co-workers	who	
used	 noble	 metal	 containing	 catalysts.3a,	 14	 Following	
these	early	examples,	several	recent	studies	reported	the	
stereoselective	 isomerization	 of	 allyl	 amines	 and	 allyl	
amides.1a,	 4a,	 4b,	 15	Most	 notably,	 Trost	 and	 co-workers	
reported	 the	 isomerization	 of	 highly	 substituted	 N-
allylamides	 to	 Z-enamides	 by	 utilizing	 a	 cationic	
ruthenium	 catalyst,16	 while	 Schoenebeck	 and	 co-
workers	used	an	air	stable	Pd(I)	dimer	for	the	E-selective	
synthesis	 of	 enamides.17	 Besides	 these	 hallmark	
examples,	 there	are	only	a	 few	studies	who	 report	 the	
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transition-metal	catalyzed	isomerization	of	allyl	 imines	
to	azadienes,18	which	is	an	interesting	building	block	for	
the	 cycloaddition	 reactions.	 Overall,	 most	 of	 these	
reactions	 are	 catalyzed	 by	 precious	 metals,	 leaving	
ample	 opportunity	 to	 develop	 earth-abundant	
alternatives.	 Furthermore,	 no	 universal	 strategy	 has	
been	developed	that	allows	the	isomerization	of	general	
N-allylic	substrates	such	as	allylamines,	allylamides	and	
allylimines,	with	 a	 single	 catalyst,	 again	 leaving	 ample	
chemical	space	for	such	protocols	to	be	developed.		
	 Recently,	 our	 group	 reported	 efficient	 alkene	
isomerization	 catalyzed	 by	 well-defined	 iron(0)	 and	
cobalt(I)	PCNHCP	pincer	complexes	that	proceeded	either	
by	an	alkyl-	 (Fe)	or	allyl-type	(Co)	mechanism	(Figure	
1).19	 Building	 upon	 the	 success	 of	 these	 isomerization	
catalysts,	herein,	we	report	that	the	cobalt	PCNHCP	pincer	
complex	 [(PCNHCP)CoCH3]	 (Co-Me)	 is	 an	 excellent	
universal	 catalyst	 for	 the	 selective	 isomerization	 of	
allylamines,	 allylamides,	 allyl-aldimines,	 and	 allyl-
ketimines	(Figure	1).	In	addition,	the	resulting	enamines	
were	 used	 in	 a	 one-pot	 sequential	 procedure	 for	 the	
inverse-electron-demand	 Diels-Alder	 reaction	 that	
enables	facile	synthesis	of	diversely	substituted	hetero-
biaryls,	which	is	further	discussed	in	this	report.	
 

 

RESULTS AND DISCUSSION 
Given	 our	 previous	 experiences	 in	 alkene	
isomerization,	 and	 the	 availability	 of	 a	 well-defined	
cobalt(I)	 PCNHCP	 pincer	 complexes,	 we	 sought	 to	
establish	if	[(PCNHCP)CoMe)]	(Co-Me)	could	efficiently	
isomerize	 N-allyllic	 substrates.	 To	 the	 best	 of	 our	
knowledge,	there	has	been	only	one	report	on	cobalt	
catalyzed	 isomerization	 of	 allylamines,12	 while	 no	
universal	protocol	 is	available	 to	 isomerize	all	 three	
sets	 of	 N-allylic	 substates.	 We	 started	 our	
investigation	into	N-allylic	isomerization	with	Co-Me	
as	 catalyst	 (5	 mol%),	 N,N-dibenzylallylamine	 as	 a	
model	 substrate,	 and	 toluene-d8	 as	 solvent	 at	 80	 ˚C.	
Gratifyingly,	the	allylamine	completely	isomerized	to	
the	corresponding	enamine	with	exceptional	stereo-
selectivity	(E/Z:	37:1).	A	short	optimization	protocol	
revealed	 that	 the	 resulting	 enamine	 could	 also	 be	
obtained	in	excellent	yields	with	2	mol%	of	catalyst.	
(Table	 S1).	 Using	 the	 optimized	 conditions,	 we	
explored	 a	 diverse	 set	 of	 electronically	 or	 sterically	
differentiated	allylamines	(Table	1).	As	evident	from	
Table	 1,	 allylamines	 substituted	 with	 alkyl,	 aryl,	
cycloalkyl,	 heterocycles,	 diallyl,	 and	 triallyls	
substituents	 are	 all	 well	 tolerated,	 and	 their	
isomerization	 proceeded	 smoothly	 with	 excellent	
stereoselectivity.	 Sterically	 encumbered	 substrates	
such	as	N,N-dicyclohexyl	or	N,N-diphenyl	allylamines,	
or	 a	 combination	 therefor,	 all	 provided	 the	

corresponding	 enamines	 (5f–5h)	 in	 excellent	 yield,	
although	slightly	higher	temperatures	were	required	
for	 isomerization	 of	 N,N-diphenyl	 allylamine.	
Interestingly,	 heteroatom-substituted	 allylamines	
were	also	well	tolerated	(5j–5l)	and	the	isomerization	
proceeded	 with	 complete	 conversion	 although	 the	
isolation	of	 resulting	enamine	resulted	 in	somewhat	
moderate	yields.		

Besides	enamines,	we	were	also	 interested	 if	Co-
Me	could	be	used	to	isomerize	N-allylamides,	since	the	
resulting	enamides	are	extensively	utilized	in	various	
organic	 transformations.5c,	 5d,	 20	 Although	 several	
methods	are	available	for	their	synthesis,21	transition	
metal	 catalyzed	 isomerization	 is	 one	 of	 the	 most	
convenient	 and	 atom-economical	 routes.4a,	 4b,	 16-17	
Consequently,	we	set	out	to	test	the	isomerization	of	
N-allylamides	with	our	previous	established	reaction	
protocol	(Table	1).	Gratifyingly,	the	isomerization	of	
N-allyl-N-methylbenzamide	 proceeded	 readily	 at	 80	
°C	 and	 produced	 the	 corresponding	 enamide	 with	
excellent	stereoselectivity	(Table	1;	6a).	Changing	the	
nature	of	the	benzamide	to	include	electron-donating	
(e.g.,	−Me,	−OMe,	or	−NMe2)	or	electron	withdrawing	
substituents	(e.g.,	−CN	or	−CF3),	did	not	affect	the	yield	
nor	stereoselectivity	of	the	reaction	(Table	1;	6b−6f).	
Likewise,	 changing	 the	 substituent	 pattern	 at	 the	
arene-ring	 did	 not	 affect	 yield	 nor	 stereoselectivity	
(Table	 1;	 6g	 and	 6h).	 To	 investigate	 how	 sterics	
parameters	 influence	 the	 isomerization	reaction,	we	
modified	 the	N-methyl	 substituent	 to	 either	 benzyl,	
phenyl,	or	cyclohexyl.	 In	all	cases	the	corresponding	
enamide	 (6i−6k)	 were	 obtained	 in	 good	 yields	 (>	
94%)	with	moderate	 to	 excellent	E-stereoselectivity	
(E/Z	 >=	 6:1).	 Even	 N-allyl-N-methyl-picolinamide	
could	 be	 isomerized	 with	 excellent	 E-selectivity	
(Table	1;	6l	E/Z:	20.4:1).	These	results	demonstrate	
that	 our	 recently	 reported	 Co-Me	 complex	 is	 a	
excellent	 catalyst	 for	 the	 stereoselective	
isomerization	of	N-allylamines	and	N-allylamides.	

Driven	 by	 the	 successful	 isomerization	 of	 these	
substrates,	we	sought	 to	provide	easy	access	 to	1,3-
azadienes	 via	 isomerization	 of	 N-allylimines.	 While	
useful	substrates	 in	organic	syntheses,	accessing	the	
1,3-azadiene	motif	is	difficult	and,	frequently	relies	on	
base-mediated	 isomerization	 of	 allylimines	 that	
proceeds	with	poor	yields	and	selectivity.22	Recently	a	
different	route	was	reported	by	Trost	and	co-workers	
who	accessed	the	azadiene	via	a	palladium	catalyzed	
oxidative	 allylic	 alkylation.23	 To	 the	 best	 of	 our	
knowledge	 there	 has	 been	 no	 report	 on	 first-row	
transition	metal	catalyzed	one-bond	isomerization	of	
N-allylimines.
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Table	1.	Isomerization	of	N-allylamines	and	N-allylamides	catalyzed	a	neutral	Co(I)-Me	catalyst.a	

aReactions	were	performed	with	2-5	mol%	catalyst,	0.15	mmol	substrate,	in	400	µL	toluene-d8	for	6-24	hours	at	80–90	˚C.	Yields	and	stereoselectivity	
(E	vs.	Z)	were	determined	by	1H	and	13C	NMR	spectroscopy.	

To	 test	 the	 isomerization	 of	 N-allylimines,	 we	
selected	 phenyl	 aldimine	 as	 benchmark	 substrate	
with	Co-Me	as	catalyst.	Using	the	optimized	reaction	
conditions	(vide	supra)	the	corresponding	2-aza-1,3-
dienes	(7a)	was	obtained	in	94%	yield.	Compared	to	
the	isomerization	of	N-allylamines	and	amides,	the	E-
stereoselectivity	is	only	moderate	(E:Z	=	2.2:1),	which	
is	expected	for	such	substrates.	Further	exploring	the	
substrate	 scope	 revealed	 that	 electronically	
differentiated	 phenyl	 aldimines	 are	 isomerized	
efficiently,	 where	 both	 electron	 donating	 (e.g.,	 -Me,	
−OMe	and	−NMe2)	or	electron	withdrawing	(e.g.,	−CN	
or	 −CF3)	 substituents	 are	 well	 tolerated	 (Table	 2;	
7b−7f).	 Furthermore,	 ortho	 substitution	 on	 the	
phenyl	ring	(7g)	did	not	 impede	the	transformation.	
Similarly,	 the	 tri-substituted	 aryl	 (7j)	 and	1-napthyl	
(7k)	 allylimines	 were	 also	 tolerated,	 albeit	 longer	
reaction	 times	 were	 necessary	 to	 obtain	 complete	
conversion	 of	 the	 substrate.	 To	 our	 delight,	 non-
aromatic	(7l)	and	hetero-aromatic	(7h,	7i)	allylimines	
were	 efficiently	 isomerized	 to	 the	 corresponding	 2-
aza-1,3-dienes	in	good	to	moderate	yield.	Finally,	we	
were	also	able	to	extend	this	methodology	to	include	
N-allylketimines.	 Akin	 to	 their	 imine	 congeners,	
similar	 yields	 and	 stereoselectivities	 were	 obtained	
(Table	 2;	 8a−8l),	 although	 slightly	 higher	
temperatures	(90	°C)	were	required	to	complete	the	
reaction.	

	 Considering	 the	 importance	 of	 2-aza-1,3-
dienes	 as	 substrates	 in	 organic	 chemistry,	 the	
isomerized	 products	 can	 be	 readily	 converted	 into	
other	 six-membered	 heterocycles,23	 via	 an	 inverse-
electron-demand	Diels-Alder	cycloaddition	 (Scheme	
1A).	 The	 one-step	 formation	 of	 pyridine	 containing	
motifs	would	be	a	valuable	asset	 in	 the	 synthesis	of	
natural	products	and	pharmaceuticals.	We	performed	
this	 cycloaddition	 with	 electron	 deficient	 2-aza-1,3-
diene	 7a	 and	 enamine	 11	 in	 the	 presence	 of	
MgBr2·Et2O	as	promotor.	 Subsequent	oxidation	with	
Pd/C	 resulted	 in	 the	 formation	 of	 various	 hetero-
biaryls	as	single	regioisomers	in	low	to	moderate	yield	
(9a-9c).	 Note	 that	 in	 the	 study	 by	 Trost	 and	 co-
workers,	similar	yields	were	obtained	for	a	multi-step	
synthesis.	 Realizing	 that	 enamine	 coupling	 partner	
could	also	be	accessed	via	our	isomerization	protocol,	
we	envisioned	developing	a	one-pot	procedure	where	
both	 the	 2-aza-1,3-diene	 and	 the	 enamine	 starting	
materials	 are	 obtained	 via	 our	 cobalt	 catalyzed	
isomerization	 protocol.	 To	 test	 the	 one-pot	
cycloaddition,	 N-allyl	 morpholine	 and	 phenyl	
aldimine	 were	 mixed	 in	 a	 J-Young	 tube	 and	 the	
reaction	 was	 heated	 at	 80	 ˚C	 with	 5	 mol%	 Co-Me	
catalyst.	Unfortunately,	only	the	phenyl	aldimine	was	
completely	converted	to	the	2-aza-1,3-diene,	with	less	
than	 5%	 conversion	 of	 the	 N-allylamine.	 Even	
increasing	the	reaction	time	and	catalyst	loading	did	
not	 improve	 the	 conversion	 of	 N-allylamine	 to	 the	

One-bond Allylamide Isomerization

One-bond Allylamine Isomerization

5a: 85%, E/Z 36.5:1 5b: 87%, E/Z 100:0 5c: 88%, EE/EZ/ZZ 100:0:0 5d: 98%, EEE/EEZ/EZZ/ZZZ 14.7:2.5:1:0 5e: 82%, E/Z 22.6:1 5f: 91%, E/Z 13.2:1

5g: 86%, E/Z 18.2:1 5h: 86%, E/Z 3.9:1 5i: 92%, E/Z 35.0:1 5j: 66%, E/Z 100:0 5k: 38%, E/Z 9.8:1 5l: 54%, E/Z 10.3:1

6a: 93%, E/Z 29.6:1 6b: 96%, E/Z 14.9:1 6c: 94%, E/Z 14.5:1 6d: 96%, E/Z 8.9:1 6e: 90%, E/Z 11.0:1 6f: 87%, E/Z 6.2:1

6g: 94%, E/Z 23.6:1 6h: 95%, E/Z 16.2:1 6i: 96%, E/Z 6.1:1 6j: 94%, E/Z 52.8:1 6k: 95%, E/Z 6.8:1 6l: 90%, E/Z 20.4:1
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corresponding	 enamine.	 Most	 likely,	 strong	
coordination	 of	 2-aza-1,3-diene	 to	 the	 cobalt	 metal	
centers	 prevents	 further	 isomerization	 of	 the	 N-
allylamine.	Indeed,	when	first	N-allyl	morpholine	was	
added	to	a	mixture	of	Co-Me	in	toluene-d8,	complete	
isomerization	was	 observed	 as	 reported	 in	 Table	 1.	
Subsequent	addition	of	the	N-allylaldimine	resulted	in	
quantitative	 formation	 of	 2-aza-1,3-diene,	 as	 judged	
by	 1H	NMR	spectroscopy.	With	both	substrates	now	
available	 through	 cobalt	 catalyzed	 isomerization,	 a	
sequential	one-pot	procedure	was	developed	for	the	
synthesis	of	diversely	substituted	2-phenyl	pyridines	
(Scheme	1B).	To	illustrate,	in	a	one-pot	procedure,	N-

allyl	morpholine	was	isomerized	with	5	mol%	Co-Me	
catalyst	 at	 80	 ˚C.	 Subsequent	 addition	 of	 the	 aryl	
aldimine	to	the	same	reaction	mixture	resulted	in	the	
formation	of	the	2-aza-1,3-diene	product.	To	facilitate	
the	 Diels-Alder	 reaction,	 MgBr2·Et2O	 was	 added	
followed	 by	 Pd/C	 to	 furnish	 the	 desired	 pyridine-
biaryl	 as	 a	 single	 regio-isomer	 as	 product	 (Figure	
S123-124).	This	methodology	is	wide	applicable	and	
can	be	used	to	access	both	electron	rich	and	electron	
poor	 2-phenylpyridines	 (10a–10c)	 in	 moderate	 to	
excellent	yields	(Scheme	1B).	

	

Table	2.	Isomerization	of	N-allylaldimines	and	N-allylketimines	catalyzed	by	a	neutral	Co(I)-Me	catalyst.a		

aReactions	were	performed	with	5	mol%	catalyst,	0.15	mmol	substrate,	in	400	µL	toluene-d8	for	6-24	hours	at	80–90	˚C.	Yields	and	stereoselectivity	
(E	vs.	Z)	were	determined	by	1H	and	13C	NMR	spectroscopy

Mechanistically,	 we	 have	 previously	 shown	
that	 the	 isomerization	 reaction	 occurs	 via	 a	 π-allyl	
mechanism	 that,	 included	 an	 unprecedented	
reversible	1,2-migration	of	the	methyl	substituent	on	
cobalt	to	the	NHC	carbon.	We	envisioned	that	such	a	
mechanism	is	also	operable	for	the	isomerization	of	N-
allyllic	 substrates	 to	generate	 the	 respective	N-vinyl	
products.	However,	 in	 the	case	of	N-allylimines,	 two	
intermediates	 are	 possible	 during	 the	 isomerization	
process:	(i)	an	all-carbon-π-allyl	Co(III)	complex	and	
(ii)	a	2-aza-π-allyl	Co(III)	complex,	that	are	most	likely	
in	equilibrium.	Our	experiments	indicate	that	for	the	
N-allylimines,	2-aza-1,3-dienes	are	the	sole	product	of	
the	reactions	with	no	trace	of	the	1-azadienes,	which	
suggest	that	the	reaction	follows	through	all-carbon-
π-allyl	Co(III)	intermediate.	

CONCLUSION 
In	 conclusion,	we	have	 established	 the	 versatility	 of	
neutral	Co(I)-Me	complex	as	an	efficient	catalyst	for	
the	 isomerization	 of	 N-allyl	 substrates.	 The	
isomerization	of	N-allylamines,	N-allylamides,	and	N-
allylimines	 exhibited	 excellent	 E-stereoselectivity,	
occurred	 under	 moderate	 conditions	 and	 is	
compatible	with	a	wide	variety	of	 functional	 groups	
that	include	electron-donating,	electron-withdrawing	
and	 heteroaromatics	 substituents.	 Furthermore,	 the	
Co(I)-Me	 catalyzed	 isomerization	 protocol	 could	 be	
extended	 to	 a	 sequential	 one-pot	 inverse-electron-
demand	 Diels-Alder	 reaction	 to	 give	 access	 to	
diversely	substituted	2-phenylpyridines.	To	 the	best	
of	our	knowledge,	 the	herein	 reported	methodology	
represents	the	first	example	of	a	single	catalyst	that	is	
able	 to	 tackle	 the	 isomerization	 of	 any	 kind	 of	 N-

7a: R = H, 94%, E/Z 2.2:1
8a: R = Me, 92%, E/Z 2.0:1

7b: R = H, 91%, E/Z 2.1:1
8b: R = Me, 93%, E/Z 1.8:1

7c: R = H, 93%, E/Z 2.5:1
8c: R = Me, 95%, E/Z 2.8:1

7d: R = H, 94%, E/Z 2.3:1
8d: R = Me, 91%, E/Z 3.8:1

7e: R = H, 87%, E/Z 2.1:1
8e: R = Me, 93%, E/Z 1.5:1

7f: R = H, 90%, E/Z 2.5:1
8f: R = Me, 93%, E/Z 2.4:1

7g: R = H, 92%, E/Z 2.2:1
8g: R = Me, 97%, EE/EZ/ZE/ZZ 9.2:2.9:2.1:1

7k: 82% ,EE/EZ/ZE/ZZ 13.9:6.9:2.6:1 8k: 89%, E/Z 2.5:1 7j: 95%, E/Z 1.9:1 7l: 36%, E/Z 4.8:1 8l: 90%, E/Z 2.1:1 

7h: R = H, 91%, E/Z 2.1:1
8h: R = Me, 91%, E/Z 2.1:1

7i: R = H, 76%, E/Z 2.1:1
8i: R = Me, 89%, E/Z 2.4:1 8j: 70%, E/Z 1.7:1 

One-bond Allylaldimine and Allylketimine Isomerization
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allyllic	 substrate	 under	 mild	 reaction	 conditions.	
Current	 efforts	 are	 directed	 to	 develop	 Z-selective	
protocols	and	to	enable	the	isomerization	of	di-,	and	

tri-substituted	 alkenes,	 which	 are	 currently	
problematic.	

	

Scheme	1.	Inverse	electron-demand	[4+2]	Diels-Alder	cycloaddition	for	hetero-aryl	synthesis.	One-pot	sequential	reactivity	
for	hetero-aryl	synthesis.	
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