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ABSTRACT:  Cross-coupling catalysts typically react and unite functionally distinct partners via sequential inner-sphere elementary 
steps: coordination, migratory insertion, reductive elimination, etc. Here we report a single catalyst that cross-couples styrenes and 
benzyl bromides via iterative outer-sphere steps: metal-ligand-carbon interactions. Each partner forms a stabilized radical intermedi-
ate yet hetero-coupled products predominate. The system is redox neutral and thus avoids exogenous oxidant, resulting in simple and 
scalable conditions. Numerous variations of alkene hydrobenzylation are made possible, including access to the privileged hetero-
dibenzyl (1,2-diarylethane) motif and challenging quaternary carbon variants. 

 Alkene alkylation can occur by polar, radical and metal co-
ordinative mechanisms, where relative rates, regioselectivities 
and efficiencies depend on the alkene substituent pattern.1 Among 
radical methods, metal hydride hydrogen atom transfer (MHAT) 
cross-coupling has emerged as an effective strategy to append al-
kyl groups to alkenes, even to generate quaternary carbons, with 
consistent Markovnikov selectivity, chemoselectivity and toler-
ance of multiple alkene substitution patterns.2 Prior methods have 
relied on radical capture of classic π-electrophiles (Fig. 1a, left)3 
or on dual catalysis to engage σ-electrophiles, whereby the 
MHAT catalytic cycle intersects a secondary cycle: nickel,4 chro-
mium,5 copper6 or iron7 (Fig 1a, right).8 We recently reported this 
latter cross-coupling—iron-iron dual catalysis—to enable com-
plex fragment coupling by a putative MHAT/ SH2 fragment mech-
anism (Figure 1b). As in the seminal report by MacMillan,9,10 an 
SH2 pathway was suggested by 1) a marked increase in diastere-
oselectivity that accompanied addition of the iron porphyrin co-
catalyst, as well as 2) side products that indicated radical interme-
diates and 3) absence of an open valence cis- to the carbon ligand 
on iron that might otherwise indicate C–C bond formation by re-
ductive elimination. This is similar to the reasoning that suggests 
iron hydrides can functionalize alkenes by an MHAT mechanism, 
which might itself be considered a metal hydride SH2 reaction. 
  Here we identify a single iron porphyrin catalyst that ap-
pears to mediate both alkene MHAT and capture of the resulting 
radical in an alkyliron SH2 (Fig 1c). This is an unusual and, to our 
knowledge, unprecedented type of alkene cross-coupling where a 
single metal catalyst mediates iterative outer-sphere bond-form-
ing elementary steps, i.e. the catalytic metal center does not form 
a bond to the alkene in either bond-forming step.11 Each alkene 
carbon would react with an iron catalytic intermediate where sin-
gle electron density resides on a reacting ligand, as suggested pre-
viously.12 Among the products of these cross-couplings are ben-
zyl heterodimers,13 privileged motifs among drug substances that 
are difficult to access from two benzyl fragments,13p-u especially 
to generate the quaternary carbons demonstrated here. 
 Our prior work required both Fe(acac)3 and Fe(TPP)Cl ( Fig 
1c) to couple all-alkyl alkenes and benzyl bromides. The pro-
posed intermediate, Fe(acac)2–H, has been posited to undergo 

 
Figure 1. Prior work contrasted to current work; proposed cata-
lytic cycles and representative substructures.  
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rapid MHAT with alkenes, in which its formation—not its con-
sumption—is rate limiting and its instability drives reaction with 
even hindered alkenes.14 The iron porphyrin, in turn, has been pro-
posed to form reactive alkyliron complexes12 subject to SH2 by 
alkyl radicals.9,10 The Fe(acac)3 catalyst, however, required an air 
atmosphere to turn over the Fe2+ intermediate, a common problem 
in MHAT (see below).8 We wondered if Fe(TPP)Cl itself might 
form an iron hydride that could undergo MHAT15 with more re-
active alkenes, but turn over by engagement of the benzyl halide 
coupling partner16 (Figure 1c) instead of O2.17 Styrenes were cho-
sen as test substrates because their resulting benzyl radicals might 
be formed by MHAT from reasonably stable  Fe–H bonds.18 This 
design, however, involved the intermediacy of two semi-persis-
tent radicals that might lead to uncontrolled homo-coupling19 and 
statistical mixtures (see below). 
 Unfortunately, Fe(TPP)Cl (entry 1) only delivered a 14% 
yield of heterodimer 1a along with 6% of a styrene homodimer 
1c (12% of its theoretical maximum: a 1:1 ratio of homo- to -het-
erodimer). After a lengthy exploratory campaign (see SI), effec-
tive conditions were developed that 1) employed the novel iron 
catalyst [Fe(T4CPP)Cl] (see Fig 1c), 2) did not require oxygen 
and 3) delivered 87% of 1a (5:1 ratio with 1b), effectively out-
competing the C• dimerization pathway, despite use of a 1:1 sub-
strate ratio. The T4CPP ligand proved unique: replacement with 
a sulfonic acid could not recapitulate the effect of the carboxylic 
acid; Fe(acac)3 alone was completely ineffective (entries 4 and 5), 
consistent with its inability to turnover by BnBr. Addition of base 
(NaHCO3, entry 4 and 5) proved essential, possibly a result of 
carbonate-silane coordination to increase Si–H hydricity,20 
quench of strong acid,7 iron ligand exchange or ligand deprotona-
tion. Notably, the reaction could tolerate air, but O2 was not nec-
essary for catalyst turnover. This stands in contrast to prior work 
in which O2,21 TBHP22 or N-fluoro-collidinium23 additives reoxi-
dized catalysts.8 NaBH4 could replace phenylsilane (entry 7)15,24 
for large scale applications. The redox neutrality of this new sin-
gle-catalyst system allows facile scaling without the constraints 
of mass-transfer control between the liquid phase and gas head-
space. In contrast, higher material throughput of an O2-dependent 
dual-iron reaction7 required scaling-out to multiple runs at 0.1 
mmols. Entry 2 scaled to 1 mmol with no change in yield (see SI). 
Table 1. Variations away from optimal conditions. 

 
Entry Variationa %1ab %2 %3 

1 Fe(TPP)Cl not Fe(T4CPP)Cl 14 1 6 
2 none 87 8 2 
3 Fe(acac)3  nd nd nd 
4 Fe(T4SPP)Cl not Fe(T4CPP)Cl 10 5 2 
5 no NaHCO3 36 3 2 
6 CsHCO3 not NaHCO3 45 5 2 
7 NaBH4 not PhSiH3 65 5 9 
8 2 mol% Fe(T4CPP)Cl 52 7 2 

aT4CPP = tetra(4-carboxyphenyl)porphyrin; TPP = tetra-
phenylporphyrin; T4SPP = tetra(4-sulfoxyphenyl)porphyrin; bby 
1H NMR; theoretical yield of 1a, 2 and 3 are 100%, 50% and 50%. 

Table 2. Variation of conjugated alkene.a 

 
a0.2 mmol alkene and 0.2 mmol bromide, unless otherwise 
noted; 1H NMR yield (isolated yield); brun under air, not argon; 
c0.4 mmol alkene; d0.24 mmol alkene.  

 The cross-coupling proved general to promote selective het-
erodimerization of different benzyl radicals across a wide variety 
of commercially available materials. To the best of our 
knowledge, only polymerization reactions have merged styrenes 
and benzyl bromides, two widespread building blocks. In these 
polymerization examples, benzyl radicals add to a styrene termi-
nus (β-position), whereas in Table 2, the benzyl bromide connects 
to the internal carbon (α-position) exclusively. A variety of sub-
stituents are well tolerated in the reaction, even electron with-
drawing groups that can accelerate β-addition. Cyclic styrenes 
performed particularly well, despite increased steric hindrance; 
even tetrasubstituted alkenes are productive. Hetereocycles were 
less effective when directly conjugated to the alkene (see SI for a 
list of unsuccessful partners), but a tetrahydropyridine (precursor 
to 2n) was among the best performing substrates. 
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Table 3. Variation of arylmethyl bromidea 

 
a0.2 mmol alkene and 0.2 mmol bromide  
Table 4. Unconjugated alkenes and natural product scaffolds.a 

a0.4 mmol alkene and 0.2 mmol bromide, unless otherwise noted; 
b0.5 mmol alkene c0.6 mmol alkene 

Ortho- substitution did not have a major impact on yield, even 
from 2,6-dichloro-α-methylstyrene, where di-planarity of the 
arene-alkene π-system is obstructed severely, suggesting that con-
jugation is not required for efficient MHAT. Similarly, Z- and E-
β-styrenes reacted with comparable efficiency, even though the 
cis-alkene is rotated out of conjugation (see also Table 4). 
    The benzyl bromide scope (Table 3) showed broad effi-
ciency for coupling with α-methylstyrene to form quaternary car-
bons, even with ortho-substitution adjacent to the bromomethyl 
coupling site. As in the styrene scope, electron-rich and -deficient 
partners worked well. Hetereocycles, however, were restricted to 
low Lewis basicity/ low nucleophilicity motifs to prevent self-al-
kylation and coordinative deactivation of the iron catalyst.25 It is 
noteworthy that common methods to access 1,2-diarylethanes13 
do not lead to quaternary carbons, and the less-common Ku-
mada26a or Negishi26b approaches rely on stoichiometric, neo-pen-
tyl organometallics. In contrast, the quaternary carbons produced 
in Table 3, can be formed under mild conditions and in protic 
solvent.  
 As suggested by the efficiency of o,o'-disubstituted styrenes 
and (Z)-β-methyl-styrene, conjugation did not appear necessary 
for iterative MHAT and coupling. Indeed, only minor changes to 
conditions (CsHCO3 and MeOH cosolvent, see Table 4 and SI) 
allowed electron-neutral alkenes to be engaged by the single cat-
alyst system. As is common in MHAT reactions,8 1,1-disubsti-
tuted alkenes performed better than all substitution patterns, 
whereas monosubstituted alkenes performed the worst. Neverthe-
less, aryl- and even alkyl iodides were tolerated, as were amides, 
esters, ketones and even aldehydes, highlighting the chemoselec-
tivity of the cross-coupling. Additionally, the outer-sphere nature 
of both alkene functionalization steps allowed hindered alkenes 
to be engaged with reasonable efficiency: a rare feat in cross-cou-
pling methodology.  
 To avoid confirmation bias, we entertained alterative mech-
anistic scenarios to explain C–C bond formation in the cross-cou-
pling: 1) direct C• C• heterodimerization with suppression of one 
C• concentration by persistent Fe(II);27 2) polar (SN2) C–C bond 
formation;13q-s 3) coordination / migratory insertion; 3) radical 
(SH2) bond formation.9 The sum of the data, however, points to 
SH2 between a substituted benzyl radical and a primary alkyl iron.  
 For example, β-pinene as substrate leads to a 3:2 mixture of 
unrearranged and rearranged (U:R) hydrobenylated products 
(Figure 5a), indicative of radical ring opening. The corresponding 
anionic or organometallic pathways to ring opening are unlikely: 
protic solvent would immediately quench a tert-alkyl carbanion 
and steric repulsion from gem-dimethyls would preclude iron por-
phyrin approach syn to the cleaving cyclobutane bond. Further-
more, benzyl dimerization occurs in high yield when alkene is ex-
cluded (Figure 5b), consistent with Fe(II) reduction of the benzyl 
bromide and ruling out XAT as a C–Br homolysis pathway. The 
intermediacy of benzyl bromide-derived radicals are also signaled 
by clear benzaldehyde byproduct peaks in the 1H NMR. We con-
sidered that the styrene-derived radical may be generated revers-
ibly to suppress styrene homodimers, but according to deuterium 
labeling MHAT occurs irreversibly (Figure 5c) suggesting that 
SH2 outcompetes radical-radical dimerization. Similarly, we 
thought selective heterodimerization might occur by C• C• colli-
sion if the concentration of benzyl bromide-derived radical were 
suppressed27 by iron and a hindered styrene-derived radical were 
incapable of dimerization.28 However, the diastereoselectivity of 
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an unambiguous radical-radical dimerization29 (1.5 : 1 dr) (Figure 
5d) differed significantly from the iron-catalyzed hydrobenzyla-
tion (4 : 1 dr), suggesting that the C–C bonds form by different 
mechanisms.9,30 Furthermore, direct radical-radical coupling re-
quired excess primary benzyl partner to achieve appreciable het-
erocoupling, which occurred in low yield and low selectivity. 
Preference for a heterodimer using iron catalysis likely reflects 
the different stabilities of 1°, 2° and 3° C–Fe complexes10: equi-
libria would disfavor tert-alkyl iron porphyrin complexes, which 
homolyze above 0 °C.31,32 Taken together, polar and alkene coor-
dination pathways, as well as C• C• bond formation, appear un-
likely mechanisms, whereas MHAT / SH2 governed by the single 
Fe(T4CPP)Cl catalyst fits the data well and enables high prefer-
ences for heteroselectivity. 

 
Figure 2. Experiments relevant to mechanism of C–C bond for-
mation. 
 
 Conclusion. We have identified an iron porphyrin catalyst 
[Fe(T4CPP)Cl] that is effective to cross-couple alkenes with ben-
zyl bromides via radical intermediates, even when two benzyl 
radicals of similar stability are formed as intermediates. This "rad-
ical sorting" strategy10 has proven effective in dual catalysis 

systems with intersecting cycles; disclosed here is compression of 
reactivity into a single catalyst. In addition, no prior method has 
coupled two different benzylic radicals, which can undergo com-
petitive background homodimerization. The basis for the unique 
behavior of Fe(T4CPP)Cl versus Fe(TPP)Cl is unclear but may 
relate to its aggregation state and/or its partition between different 
elementary steps in the catalytic cycles. This investigation is un-
derway. Fe(T4CPP)–H must also cause an alkene MHAT faster 
than a hydrogen evolution reaction (HER) between two iron hy-
drides,8 possibly by polarization of the intermediate Fe–H bond 
to provide it protic character. We cannot conclusively rule out 
HAT from a ligand-bound hydrogen,33 although isotope labeling 
of related ligand classes has not uncovered evidence of metal to 
carbon migration of hydride.8,34 Because the alkene reduces the 
Fe3+–H to Fe2+ and the benzyl bromide oxidizes Fe2+ to Fe3+, the 
catalytic cycle is redox neutral overall and thus circumvents the 
need for exogenous oxidant. The coupling scope includes mono-, 
di-, tri- and tetrasubstituted alkenes among conjugated and uncon-
jugated alkenes alike. When styrenes are used as substrates, two 
similar benzyl radicals are produced as intermediates, yet the het-
erodimeric products predominate. The hypothesis that best fits the 
data involves sequential MHAT and SH2 steps (see Figure 1) me-
diated by the same iron porphyrin catalyst.15 In contrast to pre-
cious metal catalysts, alkenes are functionalized by these base 
metal complexes without the need for either carbon to coordinate 
the metal center. As a result, these systems represent powerful 
platforms for the synthesis and modification of natural products 
in which alkenes are often crowded and unreactive towards tradi-
tional metal complexes.  
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