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Abstract  
 
Synthetic cannabinoids, a subclass of new psychoactive substances (NPS), are lab-made 

substances that are chemically similar to those found naturally in the cannabis plant. 

Many of these substances are illicitly manufactured and have been associated with 

severe health problems, prompting a need to development analytical methods capable of 

characterizing both known and previously undetected compounds. This work focuses on 

a novel Structures for Lossless Ion Manipulations (SLIM) IM-MS approach to 

differentiation and structural characterization of synthetic cannabinoid metabolites, 

specifically MDA-19/BUTINACA, JWH-018, and JWH-250 isomer groups. These different 

compound classes are structurally very similar, differing only in the position of one or a 

few functional groups; this yielded similarity in measured collision cross section (CCS) 

values. However, the high resolution of SLIM IM provided adequate separation of many 

of these isomers, such as sodiated JWH-250 metabolites N-4-OH, N-5-OH, and 5-OH 

which displayed CCS of 187.5, 182.5, and 202.3 Å2, respectively. In challenging cases 

where baseline separation was precluded due to nearly identical CCS, such as for JWH-

018 isomers, simple derivatization by dansyl chloride selectively reacted with the 6-OH 

compound to provide differentiation of all isomers using a combination of CCS and m/z. 

Finally, the opportunity to use this method for structural elucidation of unknowns was 

demonstrated using SLIM IM mobility-aligned MS/MS fragmentation. Different MDA-

19/BUTINACA isomers were first mobility separated and then could be individually 

activated, yielding unique fragments for both targeted identification and structural 

determination. Overall, the described SLIM IM-MS/MS workflow provides significant 

potential as a rapid screening tool for characterization of emerging NPS such as synthetic 

cannabinoids and their metabolites. 
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Introduction 
 
 Synthetic cannabinoids are a subset of new psychoactive substances (NPS) that 

stimulate the same cannabinoid receptors as naturally occurring cannabis compounds 

like Δ9-tetrahydrocannabinol (THC).1–3 However, where THC is considered a partial 

agonist, the synthetic cannabinoids act as direct agonists which leads to potentially higher 

toxicity.1 This unpredictable toxicity has resulted in higher rates of abuse and adverse 

effects, frequently prompting hospitalization.2,3 Clandestine laboratories continue to 

develop and synthesize these compounds, often marketed as “legal highs” which can 

evade detection by standard drug screens.3 However, a growing concern is the expanding 

molecular diversity of these substances, because it is known that the in vivo activity of 

both naturally occurring and synthetic substances differs significantly based on their 

chemical structure.4,5 As such, it has become imperative to develop analytical techniques 

capable of identifying those cannabinoids, as well as their metabolites, in a variety of 

sample types. 

 Because of their wide-ranging potency, confident identification of specific 

cannabinoids in biological samples is a critical step towards linking toxicity with 

symptoms.6,7 Laboratory-based testing of samples, which might include urine, blood, oral 

fluid, or hair, has primarily been accomplished using mass spectrometry-based methods 

coupled to either gas chromatography (GC-MS)8–11 or liquid chromatography (LC-MS).12–

18 Investigation of cannabinoid metabolites is also especially important, as their relatively 

quick metabolism often precludes detection of parent compounds in urine. Several 

studies have reported on GC- and/or LC-MS analysis of metabolites from a range of 

synthetic cannabinoids, either through collection of urine samples following use of those 

substances or via simulated metabolism (i.e., with human liver microsomes or by fungal 

metabolism).19–21  

In addition to MS-based methods, ion mobility spectrometry (IMS) has historically 

been considered the technique of choice for screening of illicit drugs at various security 

checkpoints, and this has been recently demonstrated for the analysis of cannabis 

products. Commercial standalone IMS instruments have been used to measure reduced 

mobility (K0) for dozens of NPS substances including synthetic cannabinoids.22,23 

Measurement of residue on hands,24 portable/handheld detection in plant extracts,25 
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screening of suspect materials in jails and prisons,26,27 and metal-organic framework 

decorated paper-based sensors28 constitute just a few recent examples of IMS applied to 

current challenges in cannabinoid analysis. But where more comprehensive separations 

and chemical/structural information are required, IMS has also been coupled with mass 

spectrometry (i.e., IM-MS); this has been especially beneficial for resolving 

isobaric/isomeric cannabis substances. Several different IM-MS techniques have been 

explored including traveling wave (TWIMS),29,30 drift tube (DTIMS),31,32 and differential 

mobility (DMS).33,34 Structures for Lossless Ion Manipulations (SLIM) is another form of 

IMS recently developed at Pacific Northwest National Laboratory (PNNL) and 

commercialized by MOBILion Systems. The technology provides long-path (>10 m) 

traveling wave-based IM separations by using serpentine paths patterned on printed 

circuit boards.35–39 SLIM has seen application in several areas including proteomics40–43 

and metabolomics,44–48 but herein we report the first instance of SLIM IM for 

characterization of synthetic cannabinoid isomers. 

 

2. Experimental Methods 

2.1 Materials 

Standards of all synthetic cannabinoid metabolites (MDA-19 N-(4-hydroxybenzoyl) 

metabolite, MDA-19 N-(5-hydroxyhexyl) metabolite, 4-cyano CUMYL-BUTINACA 

metabolite 10, APP-BUTINACA phenylpropanoic acid metabolite, JWH-018 4-

hydroxyindole metabolite, JWH-018 N-(5-hydroxypentyl) metabolite, JWH-018 6-

hydroxyindole metabolite, JWH-250 N-(4-hydroxypentyl) metabolite, JWH-250 N-(5-

hydroxypentyl) metabolite, and JWH-250 5-hydroxyindole metabolite) were purchased 

from Cayman Chemical (Ann Arbor, MI) as 1 mg/mL solutions in methanol or acetonitrile. 

Dansyl chloride, sodium carbonate, and sodium bicarbonate were purchased from Fisher 

Scientific. All solvents (water with 0.1% formic acid, methanol, and acetonitrile) were 

Fisher Scientific Optima LC-MS grade.  

 

2.2 Sample Preparation 

All working samples were prepared at 1 μg/mL of synthetic cannabinoid metabolite, 

either individually or as mixtures, in 50:50 (v/v) water (0.1% formic acid)/methanol. 
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Derivatization reactions were performed using dansyl chloride as previously.49 Briefly, 100 

μL of a 1 mg/mL solution of dansyl chloride (in acetonitrile) was combined with 100 μL of 

an aqueous sodium bicarbonate buffer (100 mM) with a pH of 9, adjusted using sodium 

carbonate. Working samples of the synthetic cannabinoid metabolite(s) (10 μL each) were 

then added and vortexed for 15 seconds. The samples were incubated at 60 °C for 3 

minutes, followed by gentle drying under nitrogen at room temperature. Finally, the dried 

product was reconstituted in 1 mL of mobile phase A (90:10 (v/v) water (0.1% formic 

acid)/methanol.  

 

2.3 Instrumentation 

 Accurate DTCCSN2 values were collected using an Agilent 6560 drift tube (DT) IM-

QTOF coupled to 1290 Infinity II UHPLC (Santa Clara, CA). Samples were introduced via 

direct injection (10 µL) with an LC flow rate of 500 μL/min (50:50 (v/v) water (0.1% formic 

acid)/methanol). Ionization was performed with an Agilent Jetstream (AJS) ESI source in 

positive mode, and the MS data were acquired using full scan mode. The drift tube was 

maintained at approx. 3.95 Torr nitrogen and approx. 27 °C, and the electric field strength 

was 18.5 V/cm. CCS values were measured using the established single-field method 

based on beta and t-fix values for the Agilent Tune Mix ions.50 All measurements were 

made in triplicate to report repeatability (in terms of standard deviation). Further details of 

this system have been published elsewhere.51 

 High-resolution IM measurements were performed using a MOBIE HRIM SLIM 

(MOBILion Systems, Inc., Chadd’s Ford, PA) coupled to an Agilent 6546 QTOF and 

Agilent 1290 UHPLC (Santa Clara, CA). Samples were introduced via direct injection (10 

µL) with an LC flow rate of 500 μL/min (50:50 (v/v) water (0.1% formic acid)/methanol). 

Ionization was performed with an Agilent Jetstream (AJS) ESI source in positive mode. 

The SLIM device was maintained at 2.50 Torr nitrogen gas and 25 °C. Prior to IM 

separations, ions were accumulated onboard for 40 ms with a 30 kHz and 30 Vpp sine 

traveling wave (TW). SLIM IM separations (13 m) were performed using a separation TW 

of 20 kHz and 35 Vpp. MS/MS was performed by mass isolation in the quadrupole and 

fragmentation in the collision cell, with optimized collision energies of 5 and 25 V for 

protonated and sodiated ions, respectively. All measurements were made in triplicate to 
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report repeatability (in terms of standard deviation). Additional details of the parameters 

used in the ionization source region and SLIM separation device can be found in Table 

S1. 

 
2.4 Data Acquisition and Processing 

DT IM-QTOF data acquisition was performed using Agilent MassHunter B.09.00 

(Build 9.0.9044.0) and visualized/processed in Agilent IM-MS Browser 10.0.1 (Build 

10.0.1.10039). SLIM data acquisition was performed using Agilent MassHunter 

Acquisition Version 11.0 (Build 11.0.221.1) and MOBILion EyeOn software (0.0.2.2619-

release-1.5.14.3). All SLIM data was first converted from the MOBILion .mbi file format 

into Agilent .d file format using the EyeOn software, and then pre-processed using the 

PNNL PreProcessor 4.0 (2022.02.18) (Richland, WA) with a drift bin compression of 3:1, 

spike removal of 2, and CCS conversion.52 Further data visualization/processing was then 

performed using Agilent IM-MS Browser 10.0.1 (Build 10.0.1.10039). SLIMCCSN2 

measurements were initially made by calibrating the SLIM system using the Agilent Tune 

Mix ions (hexakis(fluoroalkoxy)phosphazines, HFAPs), which allowed for conversion of 

arrival time to CCS using the PNNL PreProcessor. Briefly, this process involves plotting 

of experimental arrival times versus reduced DTCCSN2, which are then fit using a trinomial 

function. To account for observed systematic bias, a simple linear correction factor was 

applied, based on rescaling to the average bias within the class;48 this provided ‘corrected’ 

SLIMCCSN2 values, which are all displayed in the main manuscript text. Uncorrected values 

are included in the Supporting Information Tables S2-4. Microsoft Excel was used to 

create all figures and to calculate the percentage CCS bias as described by Rose et al.48 

 

3. Results and Discussion 

3.1 SLIM IM-Based Measurement of Collision Cross Section (SLIMCCSN2)  

Three groups of synthetic cannabinoid metabolite isomers were chosen for this 

study because they exhibit structural differences only in the arrangement of their 

functional groups (e.g., hydroxyl, carbonyl, and methyl groups): (a) JWH-018 isomers 

(C24H23NO2, MW 357.173 Da); (b) JWH-250 isomers (C22H25NO3, MW 351.183 Da); and (c) 

MDA-19 isomers (C21H23N3O3, MW 365.174 Da). For example, the JWH-018 metabolites 
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all differ in the position of a single hydroxyl group. Structures for all compounds, indicating 

those isomeric differences, are shown in Figure S1. SLIM-based arrival times for the 

protonated and sodiated species of each metabolite were used to calculate collision cross 

section (SLIMCCSN2) after first calibrating with the Agilent Tune Mix ions.48,53,54 For 

comparison, DTCCSN2 values were also measured using a drift tube IM (DTIM) instrument, 

as this is widely accepted as a direct measurement technique for CCS. Moderate 

agreement was observed between SLIMCCSN2 and DTCCSN2 values, with all protonated 

and sodiated values agreeing to within 1.1% and 1.5%, respectively (Tables S2-S3). 

However, there was a systematic bias observed in which SLIM values were on average 

0.66% and 0.77% lower than DT values for the protonated and sodiated species, 

respectively. This concurs with other reports from traveling wave (TW)-based systems 

using generic calibrants (i.e., Agilent Tune Mix ions), including with SLIM-based 

systems.48 However, as recently suggested by Rose et al.,48 in lieu of performing class-

specific CCS calibration (which is often not possible without commercial availability of a 

wide array of standards), a calibration strategy involving a correction factor can be 

applied. Upon employing this strategy, we observed that the majority of SLIMCCSN2 values 

agreed with the corresponding DTCCSN2 values to within only ≤0.4% (Tables 1-2). 

Additionally, the SLIMCCSN2 values showed good repeatability across replicate 

measurements, with all compounds displaying relative standard deviations (RSD) of 

≤0.2%.  
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Table 1. Experimental DTCCSN2 and corrected SLIMCCSN2 for the protonated species, [M+H]+, for all 

metabolites. Chemical formulae and theoretical m/z are also included. 

Metabolite Formula 
[M+H]+ 

m/z 

DTCCSN2 
(Å2) 

SLIMCCSN2 
(Å2) 

ΔCCS 

(%) 

JWH-018 4-hydroxyindole  

C24H23NO2 358.181 

189.0 ± 0.1 189.0 ± 0.2 0.02% 

JWH-018 N-(5-hydroxypentyl)  187.0 ± 0.1 188.2 ± 0.2 0.66% 

JWH-018 6-hydroxyindole  192.4 ± 0.1 192.3 ± 0.4 -0.07% 

JWH-250 N-(4-hydroxypentyl)  

C22H25NO3 352.191 

187.6 ± 0.1 187.6 ± 0.2 0.02% 

JWH-250 N-(5-hydroxypentyl)  187.6 ± 0.1 187.9 ± 0.4 0.18% 

JWH-250 5-hydroxyindole  191.5 ± 0.1 191.2 ± 0.3 -0.18% 

MDA-19 N-(4-hydroxybenzoyl)  

C21H23N3O3 366.182 

196.1 ± 0.1 195.5 ± 0.1 -0.32% 

MDA-19 N-(5-hydroxyhexyl)  189.3 ± 0.1 189.5 ± 0.1 0.13% 

4-cyano CUMYL-BUTINACA  186.4 ± 0.1 ND  

APP-BUTINACA phenylpropanoic acid 187.3 ± 0.1 186.5 ± 0.4 -0.42% 

 

Table 2. Experimental DTCCSN2 and corrected SLIMCCSN2 for the sodiated species, [M+Na]+, for all 

metabolites. Chemical formulae and theoretical m/z are also included. 

Metabolite Formula 
[M+Na]+ 

m/z 

DTCCSN2 
(Å2) 

SLIMCCSN2 
(Å2) 

ΔCCS 

(%) 

JWH 018 4-hydroxyindole  

C24H23NO2 380.163 

206.4 ± 0.1 206.2 ± 0.1 -0.11% 

JWH 018 N-(5-hydroxypentyl)  193.9 ± 0.1 193.1 ± 0.1 -0.43% 

JWH 018 6-hydroxyindole  206.3 ± 0.1 209.1 ± 0.1 1.35% 

JWH 250 N-(4-hydroxypentyl)  

C22H25NO3 374.173 

184.3 ± 0.1 187.5 ± 0.2 1.74% 

JWH 250 N-(5-hydroxypentyl)  183.8 ± 0.1 182.5 ± 0.4 -0.71% 

JWH 250 5-hydroxyindole  203.7 ± 0.1 202.3 ± 0.2 -0.67% 

MDA-19 N-(4-hydroxybenzoyl)  

C21H23N3O3 388.164 

211.1 ± 0.1 210.0 ± 0.3 -0.52% 

MDA-19 N-(5-hydroxyhexyl)  190.8 ± 0.1 190.0 ± 0.2 0.03% 

4-cyano CUMYL-BUTINACA  195.7 ± 0.1 195.0 ± 0.2 -0.36% 

APP-BUTINACA phenylpropanoic acid 194.8 ± 0.1 194.2 ± 0.1 -0.32% 

 

3.2 SLIM IM-Based Separation of Isomers 

To investigate the capabilities of the SLIM HRIM technique in differentiating the 

different metabolites, a comprehensive analysis of individual isomers and equimolar 
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mixtures was performed (Figure 1). Instrumental resolving power (CCS/ΔCCS) 

approached Rp ~ 200, which was expected to allow mobility separation of isomers with 

ΔCCS ≥ 0.5%.55 The JWH-018 compounds were best separated as sodiated species, 

with the 5-OH isomer baseline resolved from the others; however, the similarity in 

structure between the 4-OH and 6-OH isomers precluded their baseline separation 

(Figure 1A). Analysis of the protonated species allowed separation of the 6-OH isomer, 

but significant overlap was observed for the 4-OH and 5-OH metabolites (Figure S2A), 

whose SLIMCCSN2 values of 189.0 and 188.2 Å2 differed by only 0.4%; as such, neither 

adduct resulted in definitive resolution of all three isomers. On the other hand, the JWH-

250 compounds were nearly baseline resolved as sodiated species (Figure 1B), while the 

N-4-OH and N-5-OH isomers overlapped as protonated species (Figure S2B) with 

SLIMCCSN2 values of 187.6 and 187.9 Å2 yielding ΔCCS <0.2%. Lastly, the MDA-19 

isomers were well resolved in a mixture as protonated species (Figure 1C), although 4-

cyano CUMYL-BUTINACA was not observed in the protonated form; its sodiated form 

showed clear resolution from the N-5-OH isomer (Figure S2C). 

To improve separation for those challenging isomers, simple derivatization 

reactions were investigated. Such reactions are commonly used to improve ionization, 

volatility, and/or chromatographic retention in many GC-/LC-MS applications, but more 

recently have also been explored by our group as IM ‘shift reagents’ with the goal of 

improving resolution.56,57 One such derivatizing reagent, dansyl chloride, has been 

demonstrated to selectively react with phenolic alcohols such as those found in several 

of these cannabinoid metabolites.49 This derivatization reaction was applied to the JWH-

018 isomers, for which the reaction might only be expected to proceed for 4-OH and 6-

OH, because the 5-OH compound lacks a phenolic alcohol group (Figure S3). The 

reaction product was clearly identified for the 6-OH species as its [MDC+H]+ ion at m/z 

591.233 (Figure 2A), however no product was observed for the 4-OH compound 

presumably due to steric hindrance preventing the reaction. Both 4-OH and 5-OH were 

still only observed as their unreacted protonated and sodiated ions. But importantly, 

where the 4-OH and 6-OH species were not fully IM resolved previously (Figure 1A), this 

reaction selectively proceeds for the 6-OH and allows baseline resolution of all isomers 

(Figure 2B); the sodiated species of unreacted 4-OH and 5-OH remain separated by 
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mobility and the reaction product of 6-OH is differentiable by mass. In addition, the 

derivatization increased the ionization efficiency as evidenced by the higher abundance 

of the product in comparison with its unreacted equivalent.  

Figure 1. Optimized SLIM IM separations for individual compounds and mixtures of the (A) JWH-018 

isomers as sodiated species, (B) JWH-250 isomers as sodiated species, and (C) MDA-19 isomers as 

protonated species. 
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Figure 2. (A) Mass spectrum showing the successful dansyl chloride derivatization of JWH-018 6-

hydroxyindole with major product ion at m/z 591.233; the underivatized JWH-018 N-(5-hydroxypentyl) and 

JWH-018 4-hydroxyindole have [M+H]+ and [M+Na]+ peaks at m/z 358.181 and 380.163, respectively. (B) 

The [M+Na]+ species shows baseline separation between JWH 018 4-hydroxyindole and JWH 018 N-(5-

hydroxypentyl), while the dansyl chloride derivatized JWH-018 6-hydroxyindole separated based on both 

unique m/z (591.233) and CCS (250.9 Å²). 
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isomer pairs, to demonstrate the unique appearance of a single new mobility peak in 

each. This is evidenced for JWH-018 isomers in Figure 3A, where the dimers of 4-OH 

and 5-OH isomers individually show CCS of 283.7 and 262.5 Å2, respectively, while their 

mixture also shows a unique peak at CCS 272.4 Å2. Similar comparisons of 4-OH/6-OH 

and 5-OH/6-OH are shown in Figures 2B-C, where an intermediate mobility peak appears 

in the mixture, presumably due to heterodimerization not present in the individual 

samples. Mixing all three isomers together yielded a mobility spectrum with six resolvable 

features, corresponding to three homodimers and three heterodimers (Figure 2D).  

Table 3. Experimental DTCCSN2 and corrected SLIMCCSN2 for the sodiated dimers, [2M+Na]+, for all 

metabolites. Chemical formulae and theoretical m/z are also included. 

Metabolite Formula 
[M+Na]+ 

m/z 

DTCCSN2 
(Å2) 

SLIMCCSN2 
(Å2) 

ΔCCS 

(%) 

JWH 018 4-hydroxyindole  

C24H23NO2 737.336 

281.7 ± 0.1 283.7 ± 0.4 0.71% 

JWH 018 N-(5-hydroxypentyl)  261.9 ± 0.1 262.5 ± 0.1 0.25% 

JWH 018 6-hydroxyindole  290.8 ± 0.1 290.6 ± 0.2 -0.08% 

JWH 250 N-(4-hydroxypentyl)  

C22H25NO3 725.357 

271.4 ± 0.1 272.7 ± 0.2 0.49% 

JWH 250 N-(5-hydroxypentyl)  259.1 ± 0.1 261.1 ± 0.2 0.76% 

JWH 250 5-hydroxyindole  267.6 ± 0.1 267.9 ± 0.2 0.12% 

MDA-19 N-(4-hydroxybenzoyl)  

C21H23N3O3 753.338 

281.6 ± 0.1 280.1 ± 0.2 -0.54% 

MDA-19 N-(5-hydroxyhexyl)  268.4 ± 0.1 267.3 ± 0.1 -0.39% 

4-cyano CUMYL-BUTINACA  264.5 ± 0.1 262.8 ± 0.3 -0.63% 

APP-BUTINACA phenylpropanoic acid 275.0 ± 0.1 273.6 ± 0.3 -0.50% 
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Figure 3. Sodiated dimers were observed for the JWH-018 isomers when run individually, and as paired 

mixtures: (A) 4-OH/5-OH, (B) 4-OH/6-OH), and (C) 5-OH/6-OH. Each individual compound displays only a 

single dimer mobility peak, however when run in mixtures new mobility peaks corresponding to 
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heterodimers are observed. (D) The mixture of all three isomers yields differentiable homodimers and 

heterodimers. 

 

3.4  SLIM Ion Mobility-Aligned Tandem MS (SLIM IM-MS/MS) Studies 

 While the above SLIM IM-MS methods have proven useful for differentiation of 

several groups of known cannabinoid isomers, especially when commercial standards 

are available for comparison of CCS, structural characterization and identification of true 

unknown metabolites in complex mixtures can further benefit from including tandem mass 

spectrometry (MS/MS). Because the current instrument platform (MOBIE SLIM/Agilent 

6546) performs mobility separations prior to mass isolation in the quadrupole and 

fragmentation in the collision cell, fragment ions can be easily matched to their precursor 

via mobility alignment. To demonstrate the selectivity of this approach for structural 

characterization and identification of cannabinoid metabolites, all compounds (individually 

and as mixtures) were subjected to SLIM IM-MS/MS analysis. Individual fragmentation 

spectra for protonated MDA-19 isomers are shown in Figure 4. Because the three 

compounds were mobility-separated, their MS/MS spectra could be individually 

interrogated and displayed unique product ions. As such, each could be easily resolved 

according to the following transitions: (1) MDA-19 N-4-OH: CCS 196, m/z 366 → 121; (2) 

MDA-19 N-5-OH: CCS 189, m/z 366 → 105; and (3) APP-BUTINACA : CCS 187, m/z 366 

→ 201.  
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 Figure 4. (A) Protonated MDA isomers were well resolved in a mixture by SLIM IM. Structural analysis 

could be performed by ion mobility-aligned MS/MS fragmentation for each individual IM feature. This 

demonstrated unique fragments for (B) MDA-19 N-4-OH at m/z 121, (C) MDA-19 N-5-OH at m/z 105, and 

(D) APP-BUTINACA at m/z 201. 
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CONCLUSION 

Several classes of synthetic cannabinoid metabolite isomers, differing only in the 

position of one or a few of their functional groups, were successfully differentiated using 

a combination of high-resolution SLIM IM, selective derivatization reactions, dimerization, 

and mobility-aligned MS/MS. The unique challenges in identifying these compounds 

highlighted the need for such a multidimensional approach (i.e., SLIM IM-MS/MS). This 

approach allowed not only targeted separation, but also provided structural information 

(especially via MS/MS fragmentation) that could be used in future applications to identify 

potentially novel synthetic cannabinoids and their metabolites. Future studies will 

investigate the ability of this workflow to identify and quantify cannabinoid metabolites in 

biological samples (i.e., urine). 
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