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Abstract 

The search for new materials can be laborious and expensive. Given the challenges that mankind 

faces today concerning the climate change crisis, the need to accelerate materials discovery for 

applications like water-splitting could be very relevant for a renewable economy. In this work, we 

introduce a computational framework to predict the activity of oxygen evolution reaction (OER) 

catalysts, in order to accelerate the discovery of materials that can facilitate water splitting. We 

use this framework to screen 6155 ternary-phase spinel oxides and have isolated 33 candidates 

which are predicted to have potentially high OER activity. We have also trained a machine learning 

model to predict the binding energies of the *O, *OH and *OOH intermediates calculated within 

this workflow to gain a deeper understanding of the relationship between electronic structure 

descriptors and OER activity. Out of the 33 candidates predicted to have high OER activity, we 

have synthesized three compounds and characterized them using linear sweep voltammetry to 

gauge their performance in OER. From these three catalyst materials, we have identified a new 

material, Co2.5Ga0.5O4, that is competitive with benchmark OER catalysts in the literature with a 

low overpotential of 220mV at 10mAcm-2 and a Tafel slope at 56.0 mV dec-1. Given the vast size 
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of chemical space as well as the success of this technique to date, we believe that further 

application of this computational framework based on the high-throughput virtual screening of 

materials can lead to the discovery of additional novel, high-performing OER catalysts.  

Main 
 

While hydrogen does represent a promising form of green energy storage, the sluggish kinetics of 

the water splitting reaction limits the efficiency and the practical implementation of electrolytic 

water splitting and green hydrogen production on an industrial scale1–3. The current state-of-the-

art materials for OER catalysis often contain materials like IrO2 and RuO2
2,3. RuO2 for example, 

typically has overpotentials between 250-350mV at 10mA/cm2 of current density and Tafel slopes 

between 50-70 mV.dec-1 in basic conditions of 1M KOH35,46,51. However, IrO2 and RuO2 are rare 

and expensive, necessitating the development of cheaper catalysts that are comparable to them on 

both metrics. 

 

Spinels can potentially replace IrO2 and RuO2 with earth-abundant metal oxide catalysts capable 

of catalysing OER2–5. The crystal structure of spinel oxides is made up of oxygen anions arranged 

within a cubic close-packed sublattice while metallic cations are positioned within the tetrahedral 

and octahedral interstitial sites between the anions6,7. The basic composition of a ternary-phase 

spinel oxide is AxB3-xO4, where A and B are two different metals6,7. In this structure, the 

distribution of both metals across both coordination geometries can be represented by the formula 

(Ax-εB1-x+ε)Tet(AεB2-ε)Oct  where Tet refers to tetrahedrally coordinated cations, Oct refers to 

octahedrally coordinated cations and ε refers to the inversion parameter (ε = 0 – x)7 (Figure 1B). 

If ε equals 0, the structure is a normal spinel, and if ε equals x, the structure is an inverse spinel7. 

The presence of transition metals in both the AO4 and BO6 structural units likely allows both of 

them to contribute to OER activity. This could potentially increase the structural diversity and 

tunability of spinel oxide catalysts for OER catalysis, making them an interesting system to study. 

 

In recent years, spinels have proven to be a rich source of earth abundant metal oxide catalysts 

capable of catalyzing OER efficiently5. Most spinel oxides reported for OER tend to be Fe-based 

or Co-based, with some examples of highly active spinel oxides being NiFe2O4, CoFe2O4 and 

CuCo2O4
5.  For example, Liu and coworkers fabricated NiFe2O4 nanospindles on an Fe3Ni foam 

substrate that exhibited an overpotential of 262 mV at a current density of 10mA.cm-2, as well as 

a Tafel slope of 39.5mV.dec-1 8. Lu and coworkers synthesized CoFe2O4 nanoparticles on carbon 

nanorods that had an overpotential of 240mV at 10mA.cm-2 as well as a Tafel slope of 45 mV.dec-

1 9. Yadav and coworkers synthesized 3D CuCo2O4 nanoflowers on a carbon cloth substrate that 

had an overpotential of 288mV at 10mA.cm-2 and a Tafel slope of 64.2 mV.dec-1 10. The efficacy 

of these catalysts demonstrate that spinels could be a promising source of new materials for OER 

catalysis. However, while considerable work has been done so far to discover new spinel oxide 

catalysts for OER, the entire possible chemical space of spinels has yet to be explored. There could 

potentially be more efficient spinel oxide catalyst compositions that haven’t been discovered yet. 

 

It is not feasible to explore the entire chemical space experimentally, due to the immense number 

of permutations possible with each element in the periodic table. According to one estimate by 

Walsh and coworkers, the number of possible ternary phase inorganic materials that can be 

synthesized out of 103 elements in the periodic table is greater than 32 million, even after 
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constraining this space by imposing charge neutrality and electronegativity rules11. However, it is 

possible to explore a greater fraction of this space computationally, in order to narrow down 

possible candidates before synthesizing them in a lab. This approach towards materials discovery 

has had a significant impact in fields as diverse as catalysis12,13, Li-ion batteries14,15, 

thermoelectrics16,17 , organic light-emitting diodes18, and transparent conducting oxides19. Within 

the field of catalysis, there have been high-throughput computational studies that have aimed to 

discover new OER catalysts. For example, Xu and coworkers utilized a bandcenter descriptor to 

screen 3d spinel oxides for OER activity13. Ulissi and coworkers screened 2600 equimolar Ir-

containing bimetallic oxides for acid-stable OER catalysts and identified 14 possible candidates 

predicted to be stable under acidic conditions12. Nørskov and coworkers screened 47814 nonbinary 

metal oxides in the Materials Project and identified 68 possible acid-stable OER catalysts20. In 

each of these studies, computational screening was used to predict the stability or activity of OER 

catalysts. However, to the best of our knowledge, no study has successfully utilized a high-

throughput computational screen to discover novel, highly-active OER catalysts that have been 

experimentally demonstrated to compete with current benchmark catalysts reported in the 

literature. In this paper, we discuss a high-throughput computational workflow that enabled us to 

achieve this goal. 

 

In this study, we built a computational workflow to screen for new highly active spinel oxides for 

OER in basic pH conditions. A computational database of ternary-phase spinel oxide materials 

comprised of 52 elements in the periodic table is first constructed. These elements include alkaline, 

alkaline-earth, transition (with the exception of artificial Tc), post-transition and some lanthanide 

metal elements(La, Ce, Nd, Gd and Lu) and are circled in Figure S1. Every possible combination 

of elements that could be constructed from this list was explored, for an overall spinel system 

AxB3-xO4 where A and B are two different metallic elements. For each system AxB3-xO4, three 

different values of x (x = 0.5, x = 1, x = 1.5) are chosen in order to screen for three unique 

compositions A0.5B2.5O4, AB2O4 and A1.5B1.5O4. Both normal spinel (ε = 0) and inverse spinel (ε 

= x) structures for each specific composition were explored. Once this database was created, the 

thermodynamic stability of these materials was assessed to isolate materials that are likely to exist 

in nature. Following that, the theoretical overpotential of OER on the surface of these materials 

was computed. We used the results of these computations to create a machine learning model to 

predict OER activity using electronic structure descriptors of bulk metal, bulk oxygen, surface 

metal, surface oxygen and adsorbate oxygen atoms as features. This allowed us to further probe 

the relationship between electronic structure descriptors and OER activity. The trends observed in 

the results of this high-throughput computational screen were applied to synthesize three catalysts, 

Co2.5Ga0.5O4, Co1.5Ga1.5O4 and Co1.5Al1.5O4 and characterize them for OER activity. We 

discovered that Co2.5Ga0.5O4 had an overpotential of 220mV at a current density of 10mA/cm2 and 

a Tafel slope of 56.0 mV.dec-1, making it a new highly active OER catalyst successfully discovered 

using this novel computational workflow. The success of this workflow at predicting a real catalyst 

highly active for OER implies that it can be adapted to discover new highly active OER materials 

belonging to other classes of materials as well. 
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High Throughput Computational Workflow 
A computational database of 6155 ternary-phase spinel oxides was first created from 52 transition, 

post-transition, alkaline, alkaline earth and lanthanide metal elements. For each combination of 

metal elements, three different ratios of metals were explored: A0.5B2.5O4, AB2O4 and A1.5B1.5O4. 

Both normal and inverse spinels of each permutation of materials were also considered, leading to 

six different spinel structures: (A0.5B0.5)Tet(B2)OctO4, (B)Tet(A0.5B1.5)OctO4, (A)Tet(B2)OctO4, 

(B)Tet(AB)OctO4, (A)Tet(A0.5B1.5)OctO4 and (B)Tet(B0.5A1.5)OctO4. The spinel oxide Fe3O4 belonging 

to the Fd3m spacegroup was used as a prototype structure for every single combination of elements 

except those utilizing Mn; for spinel oxides containing Mn in the octahedral positions, Mn3O4 was 

used as a prototype structure instead in order to account for the Jahn-Teller distortion of 

octahedrally coordinated Mn3+ ions21. DFT calculations were subsequently performed to relax the 

structure of each compound and obtain its ground state energy.  

 

In the next step of the high-throughput workflow, the thermodynamic stability of each composition 

was assessed. First, the energies of the normal and the inverse spinel structures of each composition 

were compared to determine the most probable ground-state configuration of each composition, 

with the more stable one being chosen for the next step. Then, we constructed a convex hull based 

on the bulk energies of all known materials encompassing the phase space of the elements that 

constitute each spinel oxide composition. The Open Quantum Materials Database was used to 

construct the phase space of the elements that constitute each compound22,23. The thermodynamic 

stability of each composition was subsequently determined by calculating the distance of the bulk 

energy of each composition from this convex hull. The total energy of each compound was 

compared to a linear combination of possible decomposition products that lie on the convex hull 

Figure 1: A) Scheme describing the computational workflow to identify new catalysts for OER. In this workflow, 

Co2.5Ga0.5O4 was discovered as a highly-performing spinel oxide catalyst. B) Diagram describing the structure of a 

spinel oxide AB2O4, where A is tetrahedrally coordinated and B is octahedrally coordinated 
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of the phase space in order to calculate this distance from the convex hull 15,24. If the difference 

between the energies was within 0.030 eV/atom (30meV/atom), the compound would be 

considered thermodynamically stable25. 

 

Figure 2: Heat map outlining the stability of compositions A) AB2O4 , B) A0.5B2.5O4 and C) A1.5B1.5O4 Stable spinels in this study are 

considered to have formation energies below 0.03eV/atom with respect to the convex hull D) Frequency plot of all thermodynamically 

stable materials based on the calculated theoretical overpotential. Materials deemed to have a low theoretical overpotential (less than 0.5eV) 

marked in dark blue E) Frequency of each metallic element amongst thermodynamically stable spinels for which theoretical overpotentials 

for OER were also calculated. Elements making up low overpotential compounds (less than 0.5eV) are also labelled in dark blue. 
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 The heat maps in Figures 2A-2C show the formation energies of the different spinel oxide 

compositions. The higher density of formation energies below 0.030 eV/atom demonstrates that 

the AB2O4 spinel composition is generally the most stable composition type, followed by 

A0.5B2.5O4 and then A1.5B1.5O4. This is probably because in the latter two compositions, at least 

one of the cations should occupy both tetrahedral and octahedral sites in the spinel oxide structure. 

This cation should be able to assume both +2 and +3 oxidation states and should not have any 

strong preference for tetrahedral or octahedral coordination geometry. This constraint would limit 

the number of possible stable compositions for both A0.5B2.5O4 and A1.5B1.5O4 compositions 

relative to AB2O4. It can be observed that spinel oxides containing 3d metal cations are typically 

more stable than spinel oxides containing 4d and 5d metal cations. Mn, Co and Fe-containing 

spinels, in particular, are more likely than other metal cations to have formation energies that are 

within 0.030 eV of their convex hulls. This makes Mn, Co and Fe-containing spinels more likely 

to exist in nature25. This observation can first be partly rationalized by the fact that Mn, Co and Fe 

are stable in the +2 and +3 oxidation states26. Furthermore, according to Kocevski and coworkers, 

Mn, Co and Fe ions do not have a strong preference for either tetrahedral or octahedral sites in 

spinels and are frequently seen in either of them27. Therefore, Co, Mn and Fe containing spinel 

structures have a greater amount of flexibility in accommodating a wider variety of other cations 

as a result, making them more ubiquitous than other elements; an observation that was further 

corroborated by the calculations performed in this work27. After this step had been performed, 395 

materials were identified as being potentially thermodynamically stable. They were selected for 

the final step of this high-throughput computational screen, where their OER activity was 

estimated.  

 

In the final step of this workflow, the catalytic activity of each of these 395 spinel oxide materials 

is predicted by calculating the theoretical overpotential using the computational hydrogen 

electrode method proposed by Nørskov and coworkers28. The computational hydrogen electrode 

method estimates the Gibbs free energies of the first two reaction steps of the adsorbate evolution 

mechanism (AEM) by calculating the binding energies of the *O, *OH and *OOH intermediates 

of OER. To calculate these energies, we created slabs of each material and then fixed *O, *OH 

and *OOH molecules on top of the metal sites of the slab surface. All possible slab surfaces with 

a maximum absolute Miller index of one were first created using Pymatgen29–31. Higher index 

surfaces were not included in this step to keep the computational cost reasonable. The surface 

energies of all these slabs were calculated and the slab with the lowest surface energy was 

identified. Next, *O, *OH and *OOH molecules were fixed onto the surface of the slab with the 

lowest surface energy. The adsorption energy of each of these intermediates was calculated and 

used to determine the theoretical overpotential of OER on the surface of each material. Out of all 

395 materials calculated, only calculations corresponding to 269 materials had successfully 

converged.  

 

The distribution of the calculated theoretical overpotentials of the compounds is plotted in Figure 

2D. Out of the 269 materials for which these theoretical overpotential calculations were 

successfully performed, 33 compounds show potential to be useful OER catalysts with 

theoretical overpotentials below 0.5eV. Spinel oxides like CuCo2O4 and CoFe2O4 that are known 

in the literature to be highly active for OER were also present amongst these 33 compounds5,9,10. 

This further confirms the efficacy of this screen at discovering real materials that catalyze OER 

efficiently. To better understand the impact of elemental composition on catalytic activity, a 
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frequency plot of the elements in all calculated compounds is plotted with respect to theoretical 

overpotential in Figure 2E. It seems that Cobalt forms the largest number of catalytically active 

spinel oxides for OER, since they have the greatest number of low overpotential (<0.5eV) 

compounds compared to others. This insight corroborates existing trends in the literature on the 

use of spinel oxides for OER since most spinels reported for OER are either Co or Fe-based5. 

 

We then use the results of these OER calculations to train a machine learning model to predict 

the binding energies of the *O, *OH and *OOH intermediates of OER. 

 

Predicting *O, *OH and *OOH Binding Energies Based On Electronic 

Structure Descriptors 

Now that we have demonstrated that the success of this computational workflow at discovering 

new catalysts, we have decided to use the database created by this workflow to train a machine 

learning model to predict the binding energies of *O, *OH and *OOH intermediates. The objective 

of this task is to use this model to identify patterns, based on DFT-calculated electronic structure 

descriptors, that could aid with the swift screening of OER catalysts. Electronic structure 

descriptors have been successfully used in previous studies as a computationally inexpensive 

means of predicting OER activity69-72. The bulk 3d band center in metallic catalysts and the bulk 

O2p bandcenter in perovskites have been shown to be predictive of OER activity in previous 

studies. However, the main weakness of solely using bulk descriptors is the likelihood that surface 

effects end up getting ignored. Stoerzinger and coworkers demonstrate this reality when they 

showed that OER activity on the surface of RuO2(100) and RuO2(101) was higher than their (110) 

and (111) counterparts in basic conditions due to the higher concentration of coordinatively 

unsaturated sites73. Any comprehensive assessment of the link between OER activity and 

electronic structure descriptors would have to include electronic structure descriptors associated 

with both bulk and surface atoms as well.  Inspired by a recent study by Lunger and coworkers 

which concluded that the Bader charge and the O2p bandcenter of surface oxygen was predictive 

of *O, *OH and *OOH binding energies on the surface of perovskite slabs, we decided to use the 

bandcenters and Bader charges of the atoms in each slab as features for our model71. We first 

calculated the O2p bandcenters of the surface oxygen, bulk oxygen and adsorbate oxygen atoms, 

the M3d bandcenters of the surface metal and bulk metal atoms and the Bader charges of the 

surface oxygen, bulk oxygen, adsorbate oxygen, surface metal and bulk metal atoms. These 

descriptors were then used as training data for a random-forest regression model. This model was 

able to predict the binding energies of *O, *OH and *OOH intermediates quite accurately, with an 

R2 score of 0.83 (Figure 6A). 

The relative importance of each feature for the prediction of binding energies was then extracted 

from the random forest model. The Bader charge of adsorbate oxygen was the most important 

feature of all of them, with the O2p bandcenter of the adsorbate oxygen atom coming at a distant 

second(Figure 6B). The significance of electronic structure features associated with adsorbate 

oxygen for OER is corroborated by previous work by Nørskov and coworkers, which demonstrated 

a link between the O2p bandcenter of adsorbate oxygen and the calculated theoretical 

overpotential69. 
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We then further examine the relationship between the two most important features identified by 

our random-forest model, the Bader charge and the O2p bandcenter of adsorbate oxygen, and the 

binding energies of *O, *OH and *OOH. We plot the relationship between the binding energies 

of *O and *OH and demonstrate that any increases in the Bader charge of adsorbate oxygen can 

be associated with an increase in the binding energies of the *O, *OH and *OOH intermediates. 

Furthermore, increases in the distance between the O2p bandcenter and the Fermi level are 

associated with decreases in the binding energies of *O (Figure 6C) and *OH (Figure S13). We 

then plot ∆𝐸𝑂 −  ∆𝐸𝑂𝐻 against both the oxygen bandcenter and the Bader charge of the adsorbate 

oxygen in the *O intermediate (Figure 6D). We see that the relationship between ∆𝐸𝑂 −  ∆𝐸𝑂𝐻 

and the Bader charge of oxygen resembles that of a volcano plot; ∆𝐸𝑂 −  ∆𝐸𝑂𝐻  increases when 

going from a Bader charge of -1.4e- to -0.5e- before decreasing against from -0.5 e- to -0.1 e-. 

∆𝐸𝑂 −  ∆𝐸𝑂𝐻 decreases as the O-2p bandcenter moves further away from the Fermi level, a 

relationship that can be corroborated by Nørskov and coworkers69. Since the optimal ∆𝐸𝑂 −  ∆𝐸𝑂𝐻 

would be between 1.5 – 1.7 eV, the ideal catalyst is likely to have an oxygen Bader charge between 

-0.3e- and -0.6e- and an O-2p bandcenter between 2eV and 4eV below the Fermi level. Screening 

for catalysts based on both descriptors is likely to lead to the identification of more highly active 

catalysts for OER. 

Figure 6: A) A graph created to illustrate the efficacy of the random forest model by comparing calculated binding energies with predicted binding 

energies. The model has an R2 score of 0.83 for both the training and 0.78 for the test set.with a median absolute error of 0.16eV. B) A bar graph 

illustrating the relative importance of all the features used to predict the binding energies of *O, *OH and *OOH. The Bader charge of the 

adsorbed oxygen was plotted against the C) binding energy of *O and D) the difference in energy between O* and *OH, with the colorbar 

representing the bandcenter of the O2p band of adsorbate oxygen. 
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Synthesis and Characterization of Compounds 

Out of the 33 possible candidates predicted to have theoretical overpotentials below 0.5 eV, three 

Co-based spinel oxides, Co1.5Al1.5O4, Co2.5Ga0.5O4, Co1.5Ga1.5O4, were selected for synthesis and 

experimental characterization. They were synthesized via electrodeposition onto a carbon paper 

substrate. In order to obtain compounds that have a similar composition to these predicted 

materials, stoichiometric mixtures of the salts Co(NO3)2, Ga(NO3)3 and Al(OH)(C2H3O2)2 were 

dissolved in the electrolyte solution used for electrodeposition in all three cases. Co3O4 was also 

synthesized for benchmarking purposes since it is well-known to be active for OER49. After 

synthesizing these materials, their morphologies and chemical compositions were characterized 

with SEM and energy dispersive X-ray spectroscopy (EDS) mapping. The SEM images of all four 

catalysts (Figure 3) reveal the presence of an amorphous material evenly deposited on the surface 

of the carbon substrate. EDS maps (Figures S2 – S5) of Co3O4 and Co-Al oxide indicate that all 

the constituent elements of both materials are uniformly distributed. In contrast, the elements in 

the Co-Ga oxide samples show greater heterogeneity in their distribution over the surface of the 

material. This seems to indicate the presence of another phase. 

 

To further investigate the structure of the synthesized catalysts, all four materials were 

characterized by XRD as shown in Fig. 4A. The major peaks corresponding to the spinel phase are 

found at 31.3°,  36.9°, 44.8°, 59.4° and 65.2°, which are the characteristic peaks of Co3O4
32. The 

peaks at 44.8° and 55.0° found in all four spectra can be attributed to the carbon paper substrate 

(Figure S11). The presence of the spinel peaks in all four spectra demonstrates that spinel oxides 

have been successfully synthesized in all four cases. However, in addition to the peaks 

corresponding to the spinel oxide and the carbon substrate phases, new peaks corresponding to a 

different phase also appear in the Co-Ga and Co-Al oxide spectra. These can be attributed to β-

Ga2O3 in Co-Ga oxide spectra and θ-Al2O3 in the Co-Al oxide spectrum32,33. Since neither Ga2O3 

nor Al2O3 are redox-active, they are unlikely to make any significant contribution to OER 

activity34,35. 

Figure 3: SEM images of all four catalysts with two different resolutions. The four images on the top show zoomed out 

images of catalysts presumed to be a) Co3O4, c) Co1.5Al1.5O4 c) Co2.5Ga0.5O4 and g) Co1.5Ga1.5O4. The images at the 

bottom show zoomed in images of the same catalysts thought to be b) Co3O4, d) Co1.5Al1.5O4 f) Co2.5Ga0.5O4 and h) 

Co1.5Ga1.5O4 
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The composition of the synthesized materials was characterized with XPS (Figures S6-S9). The 

high-resolution Co2p spectra of each of these materials (Figure 5b) show evidence of spin-orbit 

splitting into 2p3/2 and 2p1/2 components at ~780eV and ~795 eV respectively, with shake-up 

satellites for each of these components present at ~790eV and ~805eV36. Each of these spectra 

resembles the Co2p spectra of Co3O4, further corroborating the results of the XRD that have 

demonstrated the successful synthesis of cobalt spinel oxide36. In order to determine the 

stoichiometry of each of these catalysts, the Co2p2/3 spectra were deconvoluted based on the 

Co2p2/3 peak fitting parameters by Biesinger et al. and the ratio between the areas of the peaks 

associated with the Co2+ and Co3+oxidation states were calculated36,37. Since both Ga and Al are 

not stable in the +2 oxidation state, they are both likely to displace Co3+ if successfully 

incorporated into the spinel oxide structure. Thus, comparing the Co2+ and Co3+ ratio will help 

determine the stoichiometry. The ratios of the peak areas of Co2+ to Co3+ are 1:2, 1:0.7, 1:1.5 and 

1:1 in the Co3O4, Co-Al, and the two Co-Ga catalysts respectively. This indicates that the exact 

structural formulae of the catalysts are Co3O4, Co1.7Al1.3O4, Co2.5Ga0.5O4 and GaCo2O4. 

Catalytic Characterization  

After the synthesis and structural characterization of these catalysts, they were electrochemically 

characterized for OER activity by linear sweep voltammetry (LSV) in a 1M KOH solution (Figure 

5B). The overpotential in this report is defined as the iR-corrected potential at 10mA/cm2
geo minus 

1.23V, where geo represents the geometric surface area. At 10mA/cm2
geo of current density, Co3O4 

has the lowest overpotential of all the catalysts at 170mV, followed by Co1.7Al1.3O4 at 193mV, 

Co2.5Ga0.5O4 at 220mV and finally GaCo2O4 at 270mV. However, while Co2.5Ga0.5O4 has a higher 

Figure 4: XRD and XPS spectra of all four compounds. A) XRD spectra of all four catalysts. The spinel phase is present in all 

four catalysts, and in Co2.5Ga0.5O4, Co1.5Ga1.5O4 and Co1.5Al1.5O4, the phases of Ga2O3 and Al2O3 are present as well. b) Co 2p 

XPS spectra of i) Co3O4 ii) Co2.5Ga0.5O4 iii) Co1.5Ga1.5O4 iv) Co1.5Al1.5O4. In order to determine the composition, the Co 2p3/2 

peak was deconvoluted. The peaks coresponding to Co2+ and Co3+ are labelled in each XPS diagram 
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overpotential than either Co3O4 or Co1.7Al1.3O4, it also has a much lower Tafel slope at 56.0 

mV.dec-1 than either catalyst(Figure 5C). This allows Co2.5Ga0.5O4 to start outcompeting the rest 

of the catalysts at around 1.55VRHE.  

The LSV plot of each catalyst was further corrected using the estimated electrochemically active 

surface area (ECSA) of each catalyst in order to determine the intrinsic activity of each material 

for OER(Figure S10). Co3O4 has the highest ECSA out of all four catalysts, followed by 

Co1.7Al1.3O4, Co2.5Ga0.5O4 and then GaCo2O4. After adjusting for the ECSA of all catalysts (Figure 

5A), Co2.5Ga0.5O4 starts outcompeting Co3O4 even earlier, at about 1.52VRHE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Benchmarking Catalysts Against State-of-the-Art Materials 

 
The catalysts explored in this report were then compared to 38 other benchmark catalysts in the 

literature in order to assess their performance(Figure 5c)8–10,38–47,47–56,56–61. The catalysts explored 

in this report were compared to four families of catalysts: Non-spinel Co catalysts (marked as 

Others), spinel oxide catalysts, Ni-Fe catalysts and Ru/Ir-based catalysts. While Co1.7Al1.3O4 has 

Figure 5: A) ECSA-adjusted iR-corrected LSV curves of all catalysts outlining the current density at different potentials (vs RHE). 

Linear sweep voltammetry (LSV) measurements are performed in 1M KOH solution at pH 14 B) iR-corrected LSV curved of all 

catalysts C) Tafel Slopes of all catalysts shown on this semilog plot. Co2.5Ga0.5O4 has the lowest Tafel slope of all the catalysts D) 

Benchmarking catalysts in this study with other state-of-the-art catalysts reported in the literature. A more detailed breakdown of each 

reference catalyst can be seen in Table S5 
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a low overpotential at a current density of 10mA/cm2, its high Tafel slope compared to the 

benchmark catalysts examined makes it uncompetitive. The performance of the GaCo2O4 catalyst 

with respect to its overpotential and Tafel slope was also uncompetitive compared to the 

benchmark catalysts. On the other hand, Co2.5Ga0.5O4 is as competitive as some of the better 

benchmark materials within the Ni-Fe family of catalysts on both the overpotential and Tafel slope 

metrics. It has also outperformed all the Co, spinel oxide and Ru catalysts examined in this report, 

with respect to both its overpotential and its Tafel slope. The high performance of Co2.5Ga0.5O4 

demonstrates the efficacy of this high-throughput computational workflow at discovering 

promising OER catalysts.  

Conclusions 

In this work, a high-throughput computational framework was developed in order to screen for 

novel low-cost materials for OER in basic conditions. Out of the 6155 binary spinel oxides that 

were investigated for this work, 33 were predicted to have low theoretical overpotentials below 

0.5eV. This made them ideal candidates for further study through experiment. Based on an analysis 

of the results of the overpotential screen, Ga and Al-doped Co3O4 were investigated using LSV to 

determine their OER activity. The data indicated that Ga0.5Co2.5O4 was highly active for OER, 

surpassing many other state-of-the-art catalysts that have been reported in the literature. This 

catalyst is, to the best of our knowledge, novel and has not been investigated for OER before. 

These results further demonstrate the strength of this computational framework for facilitating the 

discovery of novel materials for OER.  

Methods 

DFT Calculation Details 

DFT calculations were performed to optimize the structure of each spinel oxide in this database 

and calculate their energies. Every DFT calculation in this study was performed with the Vienna 

ab-initio Simulation Package (VASP). The Projector-Augmented Wave (PAW) method was used 

to model the core electrons62. The Perdew-Burke-Ernzerhof functional which utilizes the 

generalized gradient approximation approach was used to describe the exchange-correlation 

effects63. For spinel oxides containing 3d metal elements with the exception of Zn, spin-polarized 

DFT calculations were performed; for all other materials non spin-polarized calculations were 

performed instead. The Hubbard U correction was employed for materials containing 3d transition 

metals; the exact values used in this study are described in Supplementary Table S4. The energy 

cut-off used in these calculations was 520eV.  

 

In the first step of this screen, three structural optimizations were performed on the bulk structure 

of each spinel oxide within this constructed dataset before the energy of each structure was 

determined. A gamma-centered k-point mesh with a density of 8000 k-points/number of unit cell 

atoms was generated for each material using Pymatgen29. Both the shape of the unit cell and the 

positions of the atoms were allowed to fluctuate until the energy convergence criterion of 10-5 eV 

between each self-consistent field iteration step and the force convergence criterion of 0.01 eV Å-

1 were met. Once the relaxation steps had been concluded, the shape of the unit cell and the 

positions of the atoms were fixed in order to evaluate the energy of each structure. The Brillouin 
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zone was integrated using the tetrahedron method with Blöchl corrections for this energy 

calculation64. 

Creating slabs and calculating the binding energies of the *O, *OH and *OOH intermediates 

When creating all slabs using Pymatgen, the width of each slab was set at 6Å and the vacuum 

space was set at 20Å. The energies of each slab were then calculated using DFT. Once the slab 

energies had been calculated, the surface energy of each slab was calculated using the following 

formula31: 

 

𝐸𝑠𝑢𝑟𝑓 =  
𝐸𝑠𝑙𝑎𝑏 − 𝑛𝐸𝑏𝑢𝑙𝑘

2𝐴
  

Where Esurf is the surface energy, Eslab is the calculated energy of the slab, Ebulk is the energy (per 

atom) of the bulk structure, n is the number of atoms in a unit cell and A is the surface area of the 

slab. The slab with the lowest surface energy was then isolated and utilized for the final step of 

this screen. 

VASP was used in the DFT calculations of slab energies. The top two layers of atoms in each slab 

were allowed to relax for two steps while the bottom layers were frozen. A gamma-centered k-

point mesh with a density of 1000 k-points/number of unit cell atoms was generated for each 

material using Pymatgen29. In each structural optimization step, the atoms in the top two layers 

were allowed to relax until the energy convergence criterion of 10-5eV and the force convergence 

criterion of 0.1eV Å-1 were met. Once the relaxation steps had been concluded, the positions of all 

atoms in each slab was fixed in order to evaluate the energy of the slab, where the tetrahedron 

method with Blöchl corrections was used to integrate the Brillouin zone64. The energy cutoff used 

in these slab calculations was 400eV. The slab surface with the lowest surface energy was used to 

calculate the binding energies of the *O, *OH and *OOH intermediates. 

 

The binding energies of the *O, *OH and *OOH intermediates were then calculated by adsorbing 

each molecule on top of the metal sites on the relaxed surfaces of the slab with the lowest surface 

energy. The top two layers, along with the molecules, are allowed to relax for two steps while the 

bottom layers are kept fixed. The energies of each slab were calculated based on the same 

parameters used to calculate the surface energies in the previous step. The adsorption energies of 

the OER intermediates on each slab are subsequently calculated using the following equations28: 

∆𝐺𝑎𝑑𝑠 =  ∆𝐸𝑎𝑑𝑠 +  ∆𝐸𝑍𝑃𝐸 − 𝑇∆𝑆𝑎𝑑𝑠 

 

∆𝐸𝑎𝑑𝑠 =  𝐸𝑠𝑙𝑎𝑏+𝑂𝑥𝐻𝑦 − 𝐸𝑠𝑙𝑎𝑏 − 𝑥𝐸𝑂 − 𝑦𝐸𝐻 

 

𝐸𝑂 =  𝐸𝐻2𝑂 − 𝐸𝐻2
 

 

𝐸𝐻 =  
1

2
𝐸𝐻2

 

 

Where ∆𝐺𝑎𝑑𝑠 is the adsorption energy of the adsorbate(*O, *OH or *OOH), ∆𝐸𝑎𝑑𝑠 is the electronic 

adsorption energy of the adsorbate, ∆𝐸𝑍𝑃𝐸 is the zero-point vibrational energy difference between 

adsorbed and gaseous species, 𝑇∆𝑆𝑎𝑑𝑠is the entropy difference between the gaseous and adsorbed 

species, 𝐸𝑠𝑙𝑎𝑏 is the energy of the clean slab, 𝐸𝑠𝑙𝑎𝑏+𝑂𝑥𝐻𝑦 is the energy of the slab with the adsorbate 
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species on the surface, 𝐸𝑂 is the energy of an oxygen atom, 𝐸𝐻 is the energy of a hydrogen atom, 

𝐸𝐻2𝑂 is the energy of a water molecule and 𝐸𝐻2
 is the energy of a hydrogen molecule. 

 

Calculating the Theoretical Overpotential Based on Binding Energies 

 

Figure S12 shows the different steps of the adsorbate evolution mechanism (AEM) proposed for 

water oxidation and the equations necessary to calculate each step of the mechanism. According 

to the computational hydrogen electrode model proposed by Nørskov and coworkers, steps 1 and 

2 are typically the potential limiting steps of the AEM mechanism of OER28,65. Therefore, in order 

to calculate the theoretical overpotential, ΔG1 and ΔG2 must be calculated based on the binding 

energies of the intermediates calculated in the previous section. 1.23eV shall then be subtracted 

from the larger of the two energies in order to calculate the theoretical overpotential65.  

 

Creating the Machine Learning Model 

 

The random forest model was created using the Python package scikit-learn. Features such as the 

bandcenters of the oxygen and metal atoms were calculated, relative to the Fermi level, based on 

the formula below: 

𝜀 =  
∫ 𝜀𝜌 𝑑𝜀

𝜀𝑚𝑎𝑥

𝜀𝑚𝑖𝑛

∫ 𝜌 𝑑𝜀
𝜀𝑚𝑎𝑥

𝜀𝑚𝑖𝑛

 

Where 𝜀 refers to the bandcenter, 𝜀 refers to the energy level, 𝜌 refers to the density of states at 

that energy level, 𝜀𝑚𝑎𝑥 refers to the maximum energy level within this range of integration and 

𝜀𝑚𝑖𝑛 refers to the minimum energy level within this range of integration. 

 

The Bader charge was calculated using a Bader charge analysis code provided by the Henkelman 

group74. The average bandcenters and Bader charges of all atoms were used to train the random 

forest model. The hyperparameters of the random forest model were tuned using Bayesian 

optimization. In addition to the features mentioned above, an additional feature identifying the 

type of intermediate was also added, but was excluded from the final analysis since this did not 

add any valuable scientific insight. 

 

Synthesis and Characterization 

Chemicals. All chemicals, including Cobalt (II) nitrate hexahydrate (Co(NO3)2·6H2O, 98%), 

Gallium(III) nitrate hydrate (Ga(NO3)3·xH2O, 99%), Aluminum acetate (Al(OH)(C2H3O2)2, 99%), 

potassium hydroxide (KOH, 90%) were purchased from Sigma-Aldrich. Carbon paper (AvCarb 

MGL 190) substrates were purchased from the Fuel Cell Store. All chemicals were used without 

further purification. Millipore water (18.2 MΩ cm) was used in all experiments. 

Synthesis of Co3O4 catalysts and metal cation doped Co3O4 catalysts on carbon paper 

substrates. These catalysts were synthesized using an electrodeposition method in a standard three 

electrode cell consisting of carbon paper as working electrode, carbon rod as a counter electrode 

and saturated calomel electrode(SCE) as reference electrode at the room temperature. 

Co(NO3)2·6H2O (0.1 M) was dissolved in water as the electrolyte. Carbon paper with the size of 

0.5 cm × 0.5 cm was then immersed into the electrolyte for the electrodeposition of Co3O4-species. 

Electrodeposition was performed at a potential range of -1.0 to +0.2 V/SCE for 50 scans using an 
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Autolab PGSTAT302N workstation. During the deposition process, the stirring rate was kept 

constant at 1000 rpm. After that, the catalyst was calcined under vacuum at 250 °C for 1 hour and 

then annealed in air at 350 °C for 4 hours. The loading mass is about 1.6 mg. The Co1.5Ga1.5O4, 

Co2.5Ga0.5O4, and Co1.5Al1.5O4 catalysts were synthesized following a process similar to that of the 

Co3O4 catalyst, with addition of Co(NO3)2·6H2O (0.05 M and 0.083 M), Ga(NO3)3·xH2O (0.05 M 

and 0.017 M), and Al(OH)(C2H3O2)2 (0.05 M) precursors. The geometric surface area of the 

samples was ~0.25cm2. In order to confirm the identity of these compounds, they were further 

characterized with XPS, XRD and SEM. SEM was performed using a Hitachi SU7000. XRD was 

performed using a Bruker D8; all materials were exposed to Cu-Kα radiation (λ=0.15406nm) and 

the data was collected with a point step of 0.02°. The XPS spectra in this study were analysed 

using the ThermoAvantage software. All XPS spectra were calibrated based on the position of the 

C1s peak in each spectrum, and the  

Electrochemical characterization. Electrochemical data was collected using a three-electrode 

system connected to an electrochemical workstation (Autolab PGSTAT302N) SCE and a carbon 

rod were used as reference and counter electrodes, respectively. 1 M KOH without saturated O2 

was used as the electrolyte. Cyclic voltammetry (CV) measurements at 50 mV/s were performed 

for 3 cycles prior to recording linear scan voltammetry (LSV) at 5 mV/s for each sample.  

Electrochemically Active Surface Area (ECSA) determination: The ECSA of each catalyst was 

determined by measuring the electrochemical double-layer capacitance (Cdl) of each catalyst from 

the scan-rate dependence of the CV plot. Four different CV measurements were performed at a 

potential window between 0.72 to 0.82 V (vs the reversible hydrogen electrode) on each catalyst 

at scan rates of 20,30, 40 and 50 mV/s respectively. The Cdl was estimated at the average potential 

within this range by calculating the slope of the linear fit at that point. A specific capacitance (Cs) 

of 40 μF/cm2 was used to calculate the ECSA of the catalyst using the following equation: 

𝐸𝐶𝑆𝐴 =
𝐶𝑑𝑙

40𝜇𝐹/𝑐𝑚2 𝑐𝑚𝐸𝐶𝑆𝐴
2                   

The LSV of each plot was subsequently normalized by dividing the current density in each plot 

with the calculated ECSA of each catalyst. 

Potential Calibration and iR correction: The potentials versus SCE (ESCE) were calibrated 

versus RHE (ERHE)  using the following equation: 
  

𝐸𝑅𝐻𝐸 = 𝐸𝑆𝐶𝐸 + 𝐸𝑆𝐶𝐸
0 +

2.30 · 𝑅 · 𝑇

𝑧 · 𝐹
· 𝑝𝐻 

Where R is the ideal gas constant(8.314 J mol-1 K-1), T is the temperature (298K), F is the Faraday 

constant (96485  C/mol electrons) , z is the number of electrons (1 mol) transferred, E0
SCE is the 

standard potential of the SCE reference electrode that has been calibrated versus RHE. The pH is 

14. 

The potentials of the LSV were corrected by subtracting iRS, where i is the current measured at 

the corresponding potential and Rs is the bulk and solution resistances. The resistance RS was 

calculated by fitting electrochemical impedance data in the 0.1-1Hz range with the Randles circuit 

model. The RS for each catalyst is given in Table S6 of the SI. 
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