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Abstract 

The catalytic enantioselective [1,2]-Wittig rearrangement of allylic ethers is currently unknown. This process 
constitutes a recognised challenge as it is traditionally considered to arise from a non-concerted reaction 
pathway via formation and recombination of radical pairs. This manuscript demonstrates a catalytic 
enantioselective solution to this challenge, and shows that [1,2]-Wittig products are generated via an alternative 
reaction cascade to traditional dogma. The developed process employs a chiral bifunctional iminophosphorane 
catalyst to promote an initial enantioselective [2,3]-sigmatropic rearrangement. A subsequent base promoted, 
stereoconvergent, ionic fragmentation-recombination that proceeds with high enantiospecificity and retention 
of configuration, formally equivalent to a Woodward-Hoffmann forbidden thermal [1,3]-sigmatropic 
rearrangement, generates [1,2]-Wittig products in up to 97:3 er. This unique chirality transfer process will have 
broad implications for fundamental stereocontrol in organic transformations.  

One-sentence summary: Chirality transfer in an ionic fragmentation-recombination event with retention of 
stereochemical information is demonstrated. 

Sigmatropic rearrangements are useful and reliable atom-economic reactions, with their ability to form 
carbon-carbon and carbon-heteroatom bonds through well-defined and predictable transition states (1) making 
these processes attractive for the synthesis of complex targets (2-4). Among this broad set of reaction processes, 
[2,3]- and [1,2]-sigmatropic rearrangements are of synthetic and mechanistic significance (5, 6). The 
rearrangement of allylic ethers under basic reaction conditions typically leads to product mixtures proposed to 
arise from the thermally allowed concerted [2,3]-sigmatropic Wittig rearrangement, alongside a competitive 
non-concerted [1,2]-Wittig rearrangement generally thought to arise from homolytic fragmentation of the 
anionic intermediate to form a geminate radical pair and their subsequent recombination (Fig. 1A) (7, 8). As 
representative examples, both Rautenstrauch (9) and Baldwin (10) have shown that treatment of benzyl allyl 
ether 1 with nBuLi gives rise to a mixture of [2,3]- and [1,2]-products 2 and 3 respectively, with increased 
[1,2]-product observed at higher temperatures. Although not widely recognised, sporadic control reactions 
have demonstrated the feasibility of converting [2,3]-Wittig products to [1,2]-Wittig products (formally via a 
[1,3]-rearrangement), although the generality, mechanism and configurational consequence has not been 
established (11-16). The concerted or dissociative (via ionic or radical intermediates) nature of both the [1,2]- 
and [1,3]-processes has been much debated. For example, Danheiser considered a concerted [1,3]-pathway to 
account for the inversion observed in the ring expansion of cis-cyclobutanol 4 (17).  However, Gajewski (18) 
and Cohen (19) both postulated a nonconcerted fragmentation pathway via an intermediate allylic anion that 
accounts for the observed in situ isomerism of cis-4 to trans-6, and that use of enantiomerically pure cis-4 or 
trans-6 leads to racemic products (Fig. 1B) (20). Applying the Woodward-Hoffmann rules indicates that a 
concerted [1,2]-rearrangement is forbidden, while a thermal [1,3]-rearrangement is symmetry allowed but 
geometrically challenging, with a suprafacial carbon shift expected to proceed with inversion of configuration 
at the oxygen bearing carbon (1). Interestingly, Houk has previously shown that anionic Cope and amino-Cope 
reactions proceed through a stepwise dissociation-recombination process (21), consistent with competitive 
non-concerted [1,3]-rearrangements observed in related systems (22, 23). Given the mechanistic ambiguity 
surrounding these processes the enantioselective [1,2]-Wittig rearrangement of allylic ethers is a recognised 
challenge and is currently unknown despite its synthetic potential (24). 

In this manuscript, the catalytic enantioselective [1,2]-Wittig rearrangement of allylic ethers is 
developed (up to 97:3 er) and is shown to proceed through a cascade process consisting of an initial 
enantioselective [2,3]-rearrangement (up to >99:1 er) promoted by a bifunctional iminophosphorane (BIMP) 
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catalyst. The resultant tertiary carbinol bearing an a-branched allylic substituent is transformed to the linear 
[1,2]-Wittig isomeric product with retention of configuration at the oxygen bearing carbon (equivalent to a 
Woodward-Hoffmann forbidden [1,3]-sigmatropic rearrangement) through a dissociative intramolecular 
fragmentation-recombination event with high enantiospecificity (Fig. 1C). Substitution reactions that proceed 
with retention of configuration are rare, although recognised for alcohols via an SNi mechanism that proceed 
via contact ion-paired intermediates (25-27). Traditionally the stereospecificity of nucleophilic substitution 
processes leads to inversion of configuration in SN2 reaction processes at secondary centres and partial or 
complete racemisation in SN1 processes at tertiary centres. However recent advances have showcased 
stereospecific substitution at tertiary and even quaternary centres in which stereochemical information is 
conferred despite ionization of a substrate (28-33). In this context, the high enantiospecificity of the observed 
chirality transfer protocol that leads to [1,2]-products with retention of configuration, while proceeding 
through an ionic fragmentation and recombination process, is significant and holds promise for the elucidation 
of alternative reaction pathways for generating chiral products with high enantioselectivity. 

 

Fig 1: A. Traditional mechanism and dichotomy between [2,3]- and [1,2]-Wittig rearrangements. B. Stereochemical ambiguity of [1,3]-
rearrangement reactions via concerted or fragmentary pathways. C. This work: the catalytic enantioselective [1,2]-Wittig 
rearrangement cascade.  

Reaction Development 

Building upon the observation that disubstitution at the allylic ether terminus typically leads to increased 
preference for [1,2]-rearrangement products (16), the use of bifunctional iminophosphoranes (BIMPs) as 
organocatalysts to promote the enantioselective [1,2]-rearrangement process was considered. Originally 
developed by Dixon, BIMPs have shown widespread use in a plethora of stereoselective transformations (34), 
possessing a Brønsted superbasic iminophosphorane with an H-bond donor to assert stereocontrol. 
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Rearrangement upon an oxindole skeleton was chosen given the prevalence of this motif in natural products 
and bioactive molecules (35-38). Following initial screening of the effect of N-substituent, BIMP catalyst, 
solvent and temperature variation (see SI for information) using N-trityl substituted allylic ether 8 and tBu-
BIMP catalyst 7 showed that rearrangement to 9 in mesitylene led to selective formation of the [1,2]-product 
in excellent yield and promising enantioselectivity (Fig. 2A, 92:8 er). As [1,2]-Wittig products are traditionally 
expected to be generated via a radical recombination mechanism the effect of adding 20 mol% of 4-NHAc-
TEMPO as an additive was probed. Formation of the [1,2]-product was not significantly inhibited, giving 9 in 
73% yield and improved 95:5 er, with no 4-NHAc-TEMPO adducts observed (39). The mass balance consisted 
of the aldol side product 10 (>95:5 dr, 75:25 er) that was isolated in 5% yield; addition of 1.0 equivalent of 4-
NHAc-TEMPO was also tested, affording 9 in a further reduced 59% yield but enhanced 97:3 er. Control 
experiments indicated that taking a 1:1 mixture of allylic ether 8 and N-trityl oxindole with tBu-BIMP 7 gave 
aldol product 10 in 71% yield (>95:5 dr, 75:25 dr), consistent with in situ formation of an oxindole derivative 
in the presence of 4-NHAc-TEMPO. Intrigued by these observations, in situ temporal reaction analysis 
monitored consumption of allylic ether 11 (40 mM) upon treatment with tBu-BIMP 7 (20 mol%) to give [1,2]-
Wittig product 13 in d8-toluene using 1H NMR spectroscopy (Fig. 2B). The rearrangement showed a first-order 
consumption in substrate 11 (that was racemic throughout the reaction process), with a transient mixture of 
diastereoisomeric [2,3]-rearrangement products 12 detected (δH = 5.15 and 4.87 ppm) that accumulated to a 
maximum concentration of ~15 mM and subsequently being transformed into the [1,2]-rearrangement product 
13, consistent with 12 being an intermediate in the generation of 13. On a synthetic scale, stopping the reaction 
of allylic ether 8 after 1 h gave, at 75% conversion, a 63:37 mixture of [2,3]-products 14 and [1,2]-product 9 
(96:4 er). Purification gave 14 (89:11 dr, both diastereoisomers 99:1 er) in 21% yield whose absolute 
configuration was determined by single crystal X-ray diffraction. The absolute configuration within 9 was 
confirmed by chemical synthesis (see SI for further information), indicating stereoconvergence in the 
rearrangement of diastereoisomers 14 to 9, consistent with a fragmentation process and retention of 
configuration at C(3). Separate control experiments validated the [2,3]-rearrangement products 14 as 
intermediates to the [1,2]-product 9 (Fig. 2C). Treating 14 (89:11 dr) under standard reaction conditions for 5 
h gave the [1,2]-product 9 in 60% yield and 99:1 er, while treatment with tBu-BIMP 7 alone gave 9 in 83% 
yield and 96:4 er. These experiments are consistent with the addition of 4-NHAc-TEMPO leading to enhanced 
enantiospecificity in the [1,3]-rearrangement although the precise origin of this enhanced selectivity has not 
been conclusively elucidated. Treatment of 14 with the achiral base DBU also promoted rearrangement, but 
with moderate conversion, giving 9 in 36% yield but with high enantioselectivity (96:4 er) consistent with 
DBU or tBu-BIMP 7 acting as a base and not influencing enantiospecificity in this [1,3]-rearrangement process. 
Consistent with this observation, monitoring the conversion of 14 (89:11 dr) to 9 upon treatment with racemic 
or enantiopure BIMP derivatives did not lead to significant rate differences (see SI for further information) 
implying no matched and mismatched reactant combinations. The [2,3]-product 14 could also be transformed 
into the [1,2]-Wittig product 9 when heated at 100 °C without the addition of base, albeit with reduced yield 
(31%) and enantioselectivity (92:8 er). Crossover experiments (Fig. 2D) using a 50:50 mixture of ethers 15 
and 16 either with tBu-BIMP 7 alone, or with the addition of 4-NHAc-TEMPO, resulted in only [1,2]-products 
17 and 18, consistent with an intramolecular process in operation, with enhanced product enantioselectivity 
observed in the presence of 4-NHAc-TEMPO.  
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Fig. 2: A. Initial observations of [1,2]-Wittig reaction products. a Reaction performed on 0.1 mmol scale. b all yields are isolated. c 
Determined by HPLC analysis on a chiral stationary phase. B. Monitoring of the reaction by in situ 1H NMR spectroscopy. [12] refers 
to combined concentration of two diastereoisomers. C. Preparation of enantioenriched [2,3]-intermediate and control experiments to 
validate intermediate. D. Crossover experiments indicate an intramolecular process. 
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Having identified a viable reaction pathway, the scope of the enantioselective [1,2]-Wittig cascade 
was examined (Fig. 3). Changing the C(3’)-alkyl substituent from methyl- to ethyl- was tolerated giving 19, 
while using a C(3’)-cyclopropyl substituted allylic ether as a radical probe generated only [1,2]-rearrangement 
product 20 (40% yield, 96:4 er) with the cyclopropyl ring intact (40). Increasing the steric hindrance through 
incorporation of a C(3’)-phenyl substituent resulted in moderate conversion, (see SI for further information), 
necessitating changing the N-trityl substituent to an N-benzyl for increased reactivity, giving 21 in 61% yield 
but reduced product enantioselectivity (73:27 er), consistent with screening studies that necessitated N-trityl 
substitution for optimal enantioselectivity (see SI for further information). A limitation of this process showed 
that both a (Z)-configured allylic ether and a dimethyl terminal allylic ether returned only starting material 
under the reaction conditions. Variation of the C(3’)-aryl substituent showed that the incorporation of halogens 
(4-F-, 4-Cl- and 4-Br-), electron-donating (4-Ph-, 4-Me-, 4-MeO-) as well as electron withdrawing (4-CF3-) 
substituents were tolerated, giving the [1,2]-rearrangement products 13, 18, 22-26 in high yields and 
enantioselectivity. The incorporation of 3-Me- and 2-Me substituents (27, 28) was also tolerated, although with 
lower yields for the 2-Me-substituted example. In addition, 2-naphthyl-, thiophen-2-yl and thiazol-2-yl-
substituted ethers all afforded the corresponding [1,2]-Wittig products 29-31 in 71% to 82% yields with 93:7 
to 94:6 er. Substituent variation within the 4-, 5- and 6-positions of the oxindole included the incorporation of 
halogen (5-F-, 5-Cl-, 5-I, 6-Br, 6-Cl-), electron-donating (5-Me-, 5-MeO-) and electron-withdrawing (5-O2N-) 
substituents that gave the corresponding products 17, 32-39 in 67% to 80% yield and up to 96:4 er. While N-
tritylation of 7-chloroisatin was unsuccessful, the N-benzyl analogue was prepared and tested, giving 7-Cl 40 
in 81% yield but reduced enantioselectivity (73:27 er).  
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Fig. 3: Substrate scope and limitations of the [1,2]-Wittig rearrangement; all ers determined by HPLC analysis on a chiral stationary 
phase; all yields are isolated yields. 
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To further probe the generality of this transformation, the effect of incorporating C(3’)-F or C(3’)-H 
substituents within the allylic ether terminus was investigated (Fig. 4A). In contrast to the parent C(3’)-methyl 
series, treatment of 41 and 43 with tBu-BIMP 7 at room temperature gave exclusively the corresponding [2,3]-
rearrangement products 42 (91:9 dr, 98:2 er) and 44 (72:28 dr, 98:2 er) with no formation of the [1,2]-product. 
To convert these enantioenriched [2,3]-products to the corresponding [1,2]-Wittig products increased reaction 
temperatures (≥100 ˚C for 42 and 44) and the addition of stoichiometric DBU (1 equiv.) was required. For 
example, stereoconvergence of the separable diastereoisomers (3S,1’S)- and (3S,1’R)-44 upon treatment with 
DBU in mesitylene at 120 ˚C was observed, with both giving (E,S)-[1,2]-Wittig product 45 in 94:6 and 93:7 
er respectively.  Solvent polarity has a significant effect upon the enantiospecificity of the [1,3]-rearrangement 
at these increased reaction temperatures (see SI for further information) with highest product enantioselectivity 
observed in solvents of low polarity (toluene and mesitylene) rather than polar solvents (DMF or MeCN). 
Rearrangement with retention of configuration is still observed, although addition of 4-NHAc-TEMPO does 
not lead to increased product er in this series (see SI for further information). Having demonstrated that high 
temperatures are required to promote the [1,3]-rearrangement of the initially formed [2,3]-products, a 
telescoped process to allow one-pot access to [1,2]-Wittig products was developed that utilised toluene as a 
solvent (Fig. 4B). Treatment of a range of allylic ethers with tBu-BIMP 7 promoted enantioselective [2,3]-
rearrangement, that was followed by the addition of DBU (1 equiv.) and heating to between 60 ˚C and 100 ˚C. 
Following this procedure, in the C(3’)-F series, inclusion of Ph, 4-MeC6H4-, 4-MeOC6H4 and 4-F3CC6H4-
substituted allylic ethers, as well as 4-Cl, 5-F, 5-NO2, 5-MeO and 6-Cl substituents within the oxindole were 
tolerated, giving the corresponding [1,2]-Wittig products (46-54) with good to excellent enantioselectivity 
(91:9 to 97:3 er). In the C(3’)-H series, variation of the aryl substituent within the allylic ether showed that Ph, 
4-MeOC6H4, 4-F3CC6H4, 4-FC6H4, 2-MeOC6H4, 1-naphthyl and 2-naphthyl-substitution, heteroaromatic 3-
thienyl and C(2’)-methyl substitution, alongside 4-Cl, 5-OMe and 6-Br substituents within the oxindole were 
tolerated, allowing the formation of enantioenriched [1,2]-Wittig rearrangement products 45, 55-65 (87:13 to 
95:5 er). Notably, lower product yields (41% to 73%) were observed in this one-pot process than noted in Fig. 
3, reflecting the propensity for competitive decomposition at the elevated reaction temperatures required to 
promote the [1,3]-rearrangement.  
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Fig. 4: A. Observations with C(3’)-F or C(3’)-H substitution; selective formation of [2,3]-rearrangement product and temperature 
required to promote [1,3]-rearrangement. B. Substrate scope and limitations of the telescoped [1,2]-Wittig process; all ers determined 
by HPLC analysis on a chiral stationary phase; all yields are isolated yields; tBu-BIMP 7 (20 mol %) used to prepare 62. 
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Mechanistic Considerations 

Having demonstrated the scope of this process, consideration to the mechanism of this cascade was given.  
Initial association of tBu-BIMP 7 to the oxindole carbonyl of substrate I by hydrogen-bonding is assumed to 
direct deprotonation of the allylic ether-BIMP complex II to give III, with subsequent concerted [2,3]-
sigmatropic rearrangement giving IV with high enantioselectivity. Subsequent protonation and catalyst release 
gives isolable V. A subsequent base (tBu-BIMP or DBU) catalysed anion-accelerated [1,3]-rearrangement that 
proceeds with retention of configuration at the carbinol centre generates [1,2]-Wittig product VI (Fig. 5A). 
Building on this framework, DFT analyses were used to probe three mechanistic possibilities for the 
unconventional [1,3]-rearrangement from either the neutral alcohol or anionic alkoxide; concerted [1,3]-
sigmatropic rearrangement, homolytic fragmentation followed by recombination, or anionic fragmentation and 
recombination (Fig. 5B) (41, 42). In these initial calculations the N-trityl group was truncated to an N-methyl 
and the ammonium counterion was omitted to reduce the complexity of the calculations; DFT calculations in 
both diastereoisomeric series were considered and showed similar energetic trends (see SI for further 
information), although for simplicity only those for the major diastereoisomer are illustrated. Extensive 
modelling was unable to locate a cyclic transition state without constraining the bond-forming and bond-
breaking distances, thus only an approximation to the cyclic process could be obtained via a constrained cyclic 
transition state. Although examples of [1,3]-sigmatropic rearrangements exist in the literature, most exhibit 
high activation barriers or occur with smaller, more flexible, or more sterically accessible systems than I (43-
49). Consideration of the reaction barriers/intermediate energy differences (see SI for further information) for 
the homolytic and ionic pathways from either the neutral alcohol or alkoxide revealed that those proceeding 
via the alkoxide 66 are significantly favoured, consistent with an anion-accelerated fragmentation process (14, 
18, 50). Furthermore, comparison of bond lengths of the breaking C-C bond within the neutral (1.6 Å) and 
deprotonated (1.7 Å) species indicate that significant bond lengthening is observed upon deprotonation, 
consistent with weakening of this bond as proposed by Evans (51). Overall, both the constrained cyclic 
transition state (ΔG‡ = 56.9 kcal·mol−1) and the homolytic diradical fragmentation/recombination pathway 
(ΔG‡ = 63.2 kcal·mol−1) were significantly disfavoured compared to an ionic fragmentation/recombination 
pathway (ΔG‡ = 2.0 kcal·mol−1). Fig 5B shows a free energy surface for the ionic fragmentation/recombination 
pathway from deprotonated intermediate 66 to product 67 (52, 53). This stepwise dissociative process proceeds 
through bond cleavage via TSA that generates a delocalised allylic anion and oxindole, that recombines in an 
effectively barrierless process to generate 67. The calculated low barrier to C-C cleavage was postulated to be 
a consequence of the computational omission of the assumed ammonium counterion ([tBu-BIMP-H]+ or 
[DBU-H]+) that would be expected to raise this barrier (18). Indeed, when this ionic fragmentation pathway 
was explored with [tBu-BIMP-H]+ included as the ammonium counterion the barrier to C-C bond cleavage via 
ionic fragmentation was raised to 7.8 kcal·mol−1 (see Fig. 5C).  This barrier is consistent with that calculated 
in a stepwise dissociation-recombination process in an anion-accelerated amino-Cope rearrangement (8.6 
kcal·mol−1) by Houk and Njardarson (21). The observed retention of configuration with high enantiospecificity 
within the products is consistent with the bond-breaking process to generate the allylic anion and oxindole, 
followed by recombination upon the re-face of the oxindole, occurring at a faster rate than conformational 
change and bond rotation to allow addition to the si-face of the oxindole that would lead to reduced 
enantioselectivity. Further evidence for an anionic pathway can be taken from the known reversibility of crotyl 
and allylic Grignard additions to aldehydes and ketones (54, 55). To experimentally probe the validity of this 
proposed anionic fragmentation pathway, taking isolated racemic [2,3]-rearrangement products that differed 
in the electronic effect of C(1’)-aryl substituents with tBu-BIMP 7 showed that inclusion of electron 
withdrawing substituents led to enhanced reaction rates (56). Hammett analysis (Fig. 5D) revealed a r value 
of +0.76 when plotted against the substituent constant σ−, consistent with the build-up of negative charge 
within the rate limiting transition state of the reaction and the proposed anionic fragmentation. Given the 
importance of understanding fundamental stereochemical chemical processes the enantiospecificity observed 
in this pathway will have broader implications for a plethora of other synthetic transformations. 
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Fig. 5: A. Plausible mechanisms for the [1,2]-Wittig cascade. B. DFT free energy pathway (B3LYP-D3(BJ)/Def2-
TZVP/IEFPCM(mesitylene)//B3LYP/6-31G(d)/IEFPCM(mesitylene)) for the ionic fragmentation/recombination of the deprotonated 
alcohol (S,S)-66 as well as the lowest energy transition states for the concerted cyclic process (constrained at the bond-forming and 
bond-breaking interactions) and the homolytic fragmentation. C. Pre-reaction complex and transition state for the ionic fragmentation 
of deprotonated alcohol (S,S)-66 catalysed by [tBu-BIMP-H]+ (B3LYP-D3(BJ)/Def2-TZVP/IEFPCM(mesitylene)//B3LYP/6-
31G(d)/IEFPCM(mesitylene)). D. Hammett analysis of the [1,3]-rearrangement. 
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