
QUANTUM STATES OF THE ‘ENIGMATIC’ 1-D HYDROGEN ATOM: 

DO THEY EXIST? 

Sucheta Ghosh and S P Bhattacharyya* 

School of Chemical Sciences, IACS, Kolkata, INDIA 

Abstract: The quantum states of hydrogen atom in one dimension can be obtained by a 

careful application of the well-known Frobenius method. The exercise is highly educative and 

brings to focus the subtle aspects of quantum mechanics. The allowed states turn out to be only 

of odd parity and non-degenerate, having energy given by En = −
ⅇ2

2n2a0
 , n = 1, 2, 3,..., and a0 

being the first Bohr radius, in exact correspondence with energy levels of 3-D H-atom. In view 

of odd parity of all states the spectrum of 1-D H-atom is expected to be dominated by weak 

electric quadrupole transitions. 

1. INTRODUCTION 

In undergraduate courses of Chemistry, quantum mechanics of one-dimensional systems 

occupy a prominent position. Quantum states of a particle in a one-dimensional potential well, 

rigid rotator on a plane, harmonic oscillator, etc. are taught to demonstrate the techniques of 

arriving at solutions of the Schrodinger equation (SE) posed as a boundary value problem, 

emphasizing at the same time the importance of all mathematical conditions imposed on the 

wavefunctions. It is almost mandatory in all such courses to venture a little beyond and discuss 

quantum mechanics of the hydrogen atom in three dimensions. The bound energy levels and 

wave functions of the hydrogen atom are key to the development of general ideas and 

understanding of the level structures of heavier atoms. The (SE) for H-atom in 3D is not 

separable in Cartesian system of coordinates. The standard textbook recipe has been to 

transform the energy eigenvalue equation from Cartesian (x, y, z) to spherical polar coordinates 

(r, θ, ϕ) and separate the angular and the radial parts Rnl(r) of the wave equation which are then 

analytically solved. The former turns out to be the spherical harmonics [Yl
m(θ, ϕ)] while the 

latter takes the form of the associated Laguerre polynomials. The total wave function 

Ψnlm(r, θ, ϕ) which is a product of the radial and angular parts of wave function [Ψnlm(r, θ, ϕ) 

= Rnl(r) Yl
m(θ, ϕ)] has a well-defined parity eigenvalue equal to (-1)l, l being the angular 

momentum quantum number in the nth quantum state of the atom with l assuming values 0, 1, 

2,…, n-1, n being the principle quantum number . The Coulomb potential V (r⃗) = −
ⅇ2

|r⃗⃗|
 is 
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inversion symmetric. Its signature, the parity, is a ‘good’ quantum number and the hydrogenic 

levels alternately belong to even and odd parity. We note, however, that V (r⃗) is singular at the 

origin (|r|⃗⃗⃗⃗⃗ = 0). The role of the singularity, if any, in shaping the radial wavefunctions is 

usually bypassed or underemphasized at the introductory level of the undergraduate courses 

in Chemistry. But several issues do come up and require careful handling while discussing the 

behavior of Ψ, in the neighborhood of |r⃗| = 0.  Whatever be the ‘parity’, the allowed quantum 

states have (2l + 1) fold degeneracy (the m-degeneracy, the magnetic quantum number ‘m’ 

taking integer values from -l to l in steps of 1) arising from the rotational symmetry of the 

hydrogen atom. There is also an extra l-degeneracy (e.g., 2s, 2p) not connected with the 

rotational symmetry. It has been often called an accidental degeneracy, the origin of which is 

a dynamical symmetry.(12) The hydrogenic energy levels turn out to be dependent only on the 

principal quantum number ( Enlm = −
R

n2 , n = 1, 2, 3,...) revealing the l and m degeneracies 

referred to. 

All these degeneracies and the separation problem of radial and angular motion disappear if 

the problem is reduced to one dimension, giving rise to the problem of finding the quantum 

states of the one-dimensional hydrogen atom. The Coulomb potential in one dimension is V 

(x⃗⃗) = −
ⅇ2

|x⃗⃗|
 . It has inversion symmetry just as V (r⃗) has in 3 dimensions. The singularity at the 

origin (x = 0), although reminiscent of the singularity at r = 0 in the 3-D hydrogen atom, is 

more problematic as it separates the available coordinate space into two regions ( x > 0 and x 

< 0 ). The ‘enigma’ of the hydrogen atom in one dimension originates from this singularity at 

x = 0.  

The following questions arise: 

(i) Is parity still a ‘good’ quantum number or does the singularity destroy parity? 

(ii) What is the energy level structure for the bound states, if any? Does the non-

degeneracy theorem still hold? What are the energy eigenvalues like? 

(iii) What is the symmetry of the ground state, if it exists? What are the symmetries of 

excited state, if they occur? 

(iv) What kind of spectrum (vis-à-vis the 3-D hydrogen spectrum) can be anticipated? 

(v) What is the experimental status of the problem? 

The one-dimensional hydrogen atom has been a controversial problem with a fairly long 

history, but its importance in understanding how the calculus of quantum mechanics operates 

in singular potentials, can hardly be overestimated. In this article, we briefly trace the history 

https://doi.org/10.26434/chemrxiv-2023-pcfjc ORCID: https://orcid.org/0009-0009-8250-1485 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2023-pcfjc
https://orcid.org/0009-0009-8250-1485
https://creativecommons.org/licenses/by/4.0/


of hydrogen atom in one dimension and elucidate how the standard Frobenius method (a 

generalized series expansion method) can be applied to this system vitiated as it is, by the 

singularity at the origin. As expected, the conditions that the wave function 𝛹(𝑥) must be single 

valued and continuous with continuous first derivative, 𝛹 remaining finite everywhere 

(including the singular point) and vanishing at the outer boundaries’ (𝑥 = ±∞) play a key role 

in shaping the energy eigenfunctions and the corresponding energy eigenvalues.  

2. A BRIEF HISTORY OF 1-D HYDROGEN ATOM 

The one-dimensional hydrogen atom has been at the center of controversies and debate ever 

since Loudon (1952)(1) published his theoretical work on the system. Since then, it has been 

debated if the system has an infinite or a finite energy ground state, whether there are energy 

degeneracies, violating the one-D non-degeneracy theorem, whether the states are localized 

(symmetry broken) on either side of the singularity (x = 0) or delocalized across the origin, 

and are parity eigenstates as well. There is no unequivocal or concrete experimental evidence 

on the existence of the hydrogen atom in one dimension and its spectral signatures; but there 

have been several attempts to define limiting experimental conditions (e.g., high magnetic 

field) which may lead to the realization of the one-dimensional H-atom and recording of its 

spectrum. Calculations of Landau & Lipshitz,(5) which dealt with giving an estimate of the 

strength of such magnetic field, emphasize that the highest available magnetic fields in the 

laboratory is almost negligible compared to the range of the magnetic field strength required 

to approach the condition for the realization of the one-D H-atom.(6) Some experiments on 

quasi-one-D polymer chains, which resembles the system of the one-D H-atom, reported 

optical absorption spectra with the dominance of the ground state.(7) There are other such 

examples, such as semiconductor quantum wires(8) and carbon nanotubes,(9),(10) which reported 

various forms of the absorption spectra. However, these results are inadequate to characterize 

the exact experimental form of the absorption spectrum of one-D H-atom, as the conditions for 

its realization are still elusive. Thus, the one-D H-atom has largely remained a theoretical 

problem to test various theoretical techniques of handling quantum mechanical problems of the 

present kind. The result of all these investigations do not seem to have converged to a generally 

accepted conclusion about the nature of quantum states supported by the 1-D Coulomb 

potential, or their number. More significantly, the spectral signature of the 1-D H-atom, if it 

exists, is not yet known. Among the theoretical investigations, the series expansion method,(2) 

Fourier transform method,(3) Supersymmetric method(4) and insertion of cut-off potential to the 

one-D potential function method(2),(6) seem to suggest that the 1-D H-atom can exist in an 
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infinite number of discrete quantum states with exactly the same energy levels as found in the 

3-D hydrogen atom, the reduction in the dimension (from 3 to 1) notwithstanding. However, 

these results are confined to research journals and reviews and are not easily accessible or 

comprehensible to chemists or students of chemistry, who could ultimately play a crucial role 

in the eventual experimental realization of the 1-D H-atom, if it exists. It is primarily this 

objective, that has guided us in exploring the problem and writing this article.   

 

3. COULOMB SINGULARITY AND THE QUANTUM STATES OF H-ATOM IN 3-

DIMENSION 

We have already mentioned that the H-atom problem is separable in spherical polar coordinates 

(r, θ, ϕ). The transformation of the energy eigenvalue equation HΨ(x, y, z) = EΨ(x, y, z) to 

H(r, θ, ϕ)Ψ(r, θ, ϕ) = EΨ(r, θ, ϕ) begins by writing down the form of the ∇2 in the (r, θ, ϕ) 

system: 

∇2=
1

r2

∂

∂r
r2 ∂

∂r
+

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

(r sin θ)2

∂2

∂ϕ2                            3.1 

The eigenvalue equation for the quantum states of the H atom, then, becomes 

−
ℏ2

2m

1

r2

∂

∂r
r2 ∂Ψ(r,θ,ϕ)

∂r
+

L2

2mr2 Ψ(r, θ, ϕ) −
ⅇ2

r
Ψ(r, θ, ϕ) = EΨ(r, θ, ϕ)                 3.2 

where, L2 represents the square of the angular momentum operator which appears naturally 

from the angular derivatives in the ∇2 operator. Since the potential energy term (−
ⅇ2

r
) is 

spherically symmetric we can begin by writing Ψ(r, θ, ϕ) as follows, 

Ψ(r, θ, ϕ) = χ(r)Yl
m(θ, ϕ)                                                 3.3 

where, Yl
m(θ, ϕ)′s are the spherical harmonics – they are eigenfunctions of both L2 and Lz 

operators which commutes with H. When (3.3) is introduced in (3.2) we get the following 

equation for the radial function χ(r): 

−
ℏ2

2m

1

r2

ⅆ

ⅆr
r2 ⅆχ(r)

ⅆr
+

ℏ2l(l+1)

2mr2 χ(r) −
ⅇ2

r
χ(r) = Eχ(r)                            3.4 

(Note, that we switched over to total derivative in place of partial derivative in r as χ(r), free 

of angular dependence) Equation (3.4) can be reduced to a one-dimensional form by taking 

χ(r) =
R

r
 whence, 

−
ℏ2

2m

ⅆ2R(r)

ⅆr2 + (
ℏ2l(l+1)

2mr2 −
ⅇ2

r
) R(r) = ER(r)                                    3.5 

The bracketed term in equation (3.5) can be considered as an effective one-dimensional 

potential Weff(r) in which the electron moves. The equation has singularities at r = 0, ∞ and 

the standard boundary condition requires us to set χ(r) = 0 at both the singularities. Let us take 
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the case of l ≠ 0 first. We note that at very small values of r, the 
ℏ2l(l+1)

2mr2  R term will far outweigh 

the Coulomb term (−
ⅇ2

r
) in Weff(r) which can, therefore, be neglected along with the ER(r) 

term in Equation (3.5) at very small values of r, i.e., close to the nucleus or the inner singular 

points. In the close neighborhood of the nucleus of equation (3.5) for the radial wave equation 

is reduced to the very simple form, 

−
ℏ2

2m

ⅆ2R(r)

ⅆr2 =
ℏ2l(l+1)

2mr2 R(r)                                                 3.6 

Equation (3.6) can be solved by the substitution of R(r) = rγ which leads to the condition (3.7). 

γ(γ − 1) = l(l + 1)                                                      3.7 

That means γ can assume two values γ = l + 1 and −l, since  

χ(r) =
R(r)

r
 

For γ = −l, χ(r) blows up to infinity for any value of l (including l = 0) as r → 0 and fails to 

satisfy the condition that χ(r) vanishes or remains finite at the boundary (r = 0). The root γ =

−l is, therefore, rejected. The other root γ = l + 1 leads to  

R(r) = A. rl+1,                                                           3.8  

χ(r) =
R

r
= A. rl                                                       3.8a 

with χ(r) smoothly vanishing at the singular point r = 0 for any non-zero l-value. 

The situation for l = 0 is different. In this case the centrifugal term disappears and we must 

retain the Coulomb term(−
ⅇ2

r
R) in equation (3.5). The resulting equation can be solved by 

making the substitution: 

R(r) = a1r + a2r2 + ⋯                                                3.9 

The wave function for l = 0 assumes the form 

χ(r) =
R

r
= a1 ≡ Ar0     (A = a1)                                      3.10 

within a very small sphere around r. Equation (3.10) has the same form as equation (3.8a). Thus, 

at the coordinate origin (the inner singularity) the radial wavefunction vanishes in the form of 

a power law,  

i) χl(r) = Arl (l > 0) 

and,                                               ii)         χl(r) = a1 (constant) (l = 0) 

The difference in the behavior of χl(r) near r = 0 for l = 0, and l > 0 appears queer at the first 

sight, but can be physically understood in the following way. 
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The centrifugal force acting on the electron produces an effective repulsive potential 
ℏ2l(l+1)

2mr2  

which severely limits the classically accessible region around r = 0. This region around r = 0 

is, however, accessible to a quantum particle via tunnelling. The wave function χ in this region 

however, decreases rapidly according to the power law (χ~rl), the damping being stronger for 

higher l values. For l = 0 there is no centrifugal barrier and the electron (s electron) can 

therefore approach the nucleus infinitesimally closely. 

The behavior of the radial function R(r) infinitely away from the nucleus is determined by the 

equation (3.5) with both the centrifugal and the coulomb terms set to zero. The resulting 

equation is, 

ⅆ2R

ⅆr2 = −
2mE

ℏ2 R                                                           3.11 

For, E < 0, (or E = |E|) the only solution that vanishes as r → ∞ is, 

R = Cexp(−(2m|E|1∕2r))                                                 3.12 

In the intermediate region (0 < r < ∞) one can model the wavefunction in the form, 

R = ξl+1e−ξ(2ϵ)1/2
{A0 + A1ξ + A2ξ2 + ⋯ } = ξl+1e−ξ(2ϵ)1/2

∑ Anξn∞
n=0               3.13 

where, we have made the substitution ξ =
mⅇ2

ℏ2 r and  ϵ =
ℏ2

mⅇ2
|E|                                            3.14 

The first term fixes the form of R as ξ → 0, the second term determines how R behaves in the 

large ξ region and the power series in a way interpolates between the limiting forms taken by 

R in the interior and the exterior singularities. When ‘R’ of equation (3.13) is ploughed back in 

equation (3.8), and coefficients of the like powers of 𝜉 are equated we arrive at the recursion 

formula for the coeffiecients of the power series. 

An+1 =
2[1 − (n + l + 1)(2ϵ)1/2]

l(l + 1) − (n + l + 1)(n + l + 2)
 

The condition that the power series gets truncated into a polynomial is clearly, 

1 − (n + l + 1)(2ϵ)
1
2 = 0 

which leads to the quantized energy levels of the H atom in 3 dimensions: 

En = −
me4

2ℏ2(n + l + 1)2
 

The ‘parity’ of the bound quantum states of the hydrogen atom is not, however, generated from 

the radial wave function – it is rooted in the angular wave function. It can be easily shown that 

the reflection through the origin of the coordinate system leads to(11),(12)  

Yl
m(θ, ϕ) →

Invⅇrsion
Yl

m(π − θ, ϕ + π) = (−1)lYl
m(θ, ϕ) 
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The parity of an allowed quantum state of hydrogen atom is thus determined by its angular 

momentum quantum number. The determination of quantum states of the one-dimensional 

hydrogen atom can now be attempted in a similar manner. It turns out that the problem is more 

complicated and subtle in one-dimension. 

 

4. THE SE FOR 1-D H-ATOM AND ITS SOLUTIONS 

4.1 THE GROUND STATE 

The Schrodinger equation for the stationary bound states of the one-dimensional hydrogen 

atom is 

−
ℏ2

2me

ⅆ2Ψn(x)

ⅆx2 −
ⅇ2

|x|
Ψn(x) = EnΨn(x)                                        4.1.1 

where, Ψn(x) is the wave function of the nth stationary state with the discrete energy (E < 0), 

mⅇ being the mass of the electron.  

Figure 1: The one-D Coulomb potential   

Due to the singularity in the potential energy V (x⃗⃗) = −
ⅇ2

|x⃗⃗|
 (See figure 1 which displays V(x) 

as a function of x) at x = 0, we will first look for solutions Ψ(x) in the region x > 0, by invoking 

the standard Frobenius method(13) . It is convenient in this context to make few substitutions to 

transform equation (4.1.1) into a dimensionless form. With this end in view, let us first multiply 

both sides of equation (4.1.1) by −
2me

ℏ2  , and set γ2 = −
2meEn

ℏ2 ,  β =
meⅇ2

ℏ2γ
 and ξ = 2γx, thus 

transforming equation (4.1.1) into the following form, 
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ⅆ2Ψ(ξ)

ⅆξ2 − [
1

4
−

β

ξ
]  Ψ(ξ) = 0,  (x > 0, ξ > 0)                            4.1.2 

In the limit, 𝜉 → ∞ (x → ∞), the asymptotic form of the wave equation (4.1.2) becomes: 

ⅆ2Ψ∞(ξ)  

ⅆξ2  = 
1

4
Ψ∞(ξ)                                                 4.1.3 

and is solved by, 

       Ψ∞(ξ) ~ e−
ξ

2                                                     4.1.4 

The general form of the solution in the region ξ > 0 (x > 0) can be written in the form 

Ψ(ξ) = e−
ξ

2 f(ξ)                                                 4.1.5 

where, f(ξ) is a function that needs to be determined. Substituting equation (4.1.5) in (4.1.2), 

we arrive at the differential equation that the targeted function f(ξ) must satisfy, which is, 

ξ
ⅆ2f

ⅆξ2 − ξ
ⅆf

ⅆξ
+ βf = 0                                             4.1.6 

Before proceeding with the task of solving equation (4.1.6), we must investigate how Ψ(ξ) 

should behave in the neighborhood of ξ = 0 (x = 0). Let us note that equation (4.1.2) can be 

written in the form 

ⅆ2Ψ0

ⅆξ2 =
1

4
Ψ0 −

β

|ξ|
Ψ0                                            4.1.7 

where, Ψ0 represents the form of Ψ at or near ξ = 0. Choosing Ψ (ξ ~ 0) = ξα (α being a real 

parameter) which is then substituted for Ψ0 in equation (4.1.7), we arrive at following relation 

for determining α : 

α(α − 1)ξα−2 =
1

4
ξα − βξα−1                                    4.1.8 

Equating the coefficients of  ξα−2 (the lowest power of ξ ) on both sides of equation (4.1.8) 

yields α = 0 or 1. Of these two values, α = 0 can be rejected as it leads to 
ⅆ2Ψ0

ⅆξ2  blowing up to 

an infinitely large value due to the third term on the right-hand side of equation (4.1.7), making 

Ψ0 also infinite. The choice α = 1, however, does not lead to a blow up. The correct form of 

Ψ(ξ) from ξ = 0 to ∞, that keeps Ψ(ξ) finite at or near ξ = 0 and also makes it vanish at the 

right boundary (ξ ~ ∞) is therefore ψ(ξ) = e−
ξ

2 ξ g(ξ) , where g(ξ) may be chosen as a power 

series in ξ. 

g(ξ) = ∑ anξn∞
n=0                                                4.1.9 

The form of f(ξ) in equation (4.1.6) can therefore, be taken as  

f(ξ) = ξg(ξ) = ξ ∑ anξn∞
n=0 = ∑ anξn∞

n=1                         4.1.10 

Substituting f(ξ) of equation (4.1.10) in (4.1.6) we get 
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ξ ∑ ann(n − 1)ξn−2∞

n=1
− ξ ∑ annξn−1∞

n=1
+ β ∑ anξn∞

n=1 = 0         4.1.11 

 Equating the coefficients of ξn on both sides of (4.1.11) produces the following recursion 

relation for the coefficients an of the power series for f(ξ): 

an+1 =
n−β

n(n+1)
an, n = 1,2,3, … (ξ > 0)                          4.1.12 

In order that the infinite series generated by the recursion relation (4.1.12) does not diverge but 

truncates at a finite number of terms converting it into a polynomial of degree ‘n’, the energy 

E of which β is a function must have such values that: 

β = n or β2 = n2                                              4.1.13 

which immediately leads to the discrete energy levels, 

En = −
meⅇ4

2n2ℏ2 , n = 1,2,3, …                                  4.1.14 

The quantum states supported by the one-dimensional Coulomb potential are linked to their 

energies. The corresponding wavefunctions Ψn(ξ) (n = 1,2,3) are easily found to be: 

Ψn(ξ) = Nn(e−ξ∕2) ξ ∑ ak+1ξk , (ξ > 0)
n−1

k=0
                        4.1.15 

with the ak‘s generated from the recursion relation (4.1.12). It turns out now, that the right 

branch of the ground state wavefunction Ψ1,R(ξ) has the same energy eigenvalue as that of the 

hydrogen atom in the 3-dimension  

E1 = −
meⅇ4

2ℏ2 = −
ⅇ2

2a0
                                            4.1.16 

with 𝑎0 being the first Bohr radius; but unlike the 1s wavefunction Ψ1 has a node, i.e., it has a 

value equal to zero at the centre of the potential (x = 0): 

ψ1(x) = N1e
−

x

a0 ⋅
2x

a0
 ,     (x ≥ 0, n = 1)                           4.1.17 

It needs to be stressed that Ψ(ξ) or Ψ(x) obtained so far, is localized on the right-hand side of 

the origin and as such lack symmetry. We can extend the calculation to the left-hand side of 

the configuration space by introducing only the change ξ ≤ 0. (See Appendix I for further 

details) 

The ground state wave function ψ1(ξ) (ξ < 0) is found to be localized on the left of the origin 

and has the energy E1 = −
ⅇ2

2a0
 . We designate it as Ψ1L(ξ), where 

Ψ1L(ξ) = N1(ξ)e
ξ

2 = N1 (−
2x

a0
) e

−
|x|

a0 , (ξ ≤ 0, x ≤ 0)                    4.1.18   

Like Ψ1R(x), Ψ1L(x) too has a node at the origin and the two-degenerate and localized 

wavefunctions, Ψ1R and Ψ1L, together must describe the physical ground state of the hydrogen 
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atom in one dimension. The symmetric (+) combination Ψ1
(+)(x) =

1

√2
 ( Ψ1,R(x) +

 Ψ1,L(x) ) clearly vanishes everywhere, so that the even parity ground state of the problem 

does not exist as a physical state. The antisymmetric (-) combination of the two localized 

degenerate wavefunctions has the same energy (−
ⅇ2

2a0
) but has odd parity and describes the 

correct physical ground state that is an eigenstate of both the Hamiltonian and parity operator. 

This state designated as Ψ1
(−)(x) is, 

Ψ1
(−)(x) = 4N1e

−
|x|

a0 ⋅
x

a0
= Ne

−
|x|

a0 (
x

a0
)                              4.1.18   

N being the normalization constant. The profile of Ψ1
(−)(x) is displayed in figure 2. Thus, the 

1-D H-atom has a finite energy bound ground state having odd parity as opposed to the ground 

state of H-atom in 3 dimensions, which is of even parity. It is not a nodeless ground state as 

expected in a 1-D system, but is definitely non-degenerate. The singularity at the origin has 

thus stamped its signature on the wave function for the ground state. Are there excited bound 

states as well with definite parity? Are they degenerate? We analyze these issues in the section 

that follows. 

Figure 2: The ground state wave function 𝛹1
(−)(𝑥) of the H-atom in one dimension plotted as 

a function of x (−∞ ≤ 𝑥 ≤ ∞). Note that the wave function has a zero value at 𝑥 = 0, but a 

non-zero slope.  
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4.2  THE EXCITED STATES  

The procedure adopted to calculate the ground state wave-function (n = 1) and energy (E1) can 

be extended to higher values of n (n = 2, 3, … etc) as well. The left (x < 0) and right (x > 0) 

localized components of the eigenfunctions of the energy operator for n = 2 and n = 3 (the 

first and the second excited states of the system) are reported in Table 1 along with their 

respective energy eigenvalues. ΨnL and ΨnR can be seen to have the same energy eigenvalue 

En = −
ⅇ2

2n2a0
 for a particular value of n. They are degenerate but lack parity and are therefore 

physically unacceptable as eigenfunctions in an inversion symmetric potential. However, their 

symmetric and antisymmetric combinations (Ψn
(+)

 and Ψn
(−)

) have even and odd parity, 

respectively in each case. They are physically acceptable, although apparently degenerate in 

energy as displayed in Table 2. 

 

TABLE 1: The left (x < 0) and the right (x > 0) components of Ψn(x) (n = 2,3) along with 

their energies En (n = 2, 3).  

n 𝚿𝐧𝐋(𝐱) −𝐄𝐧 𝚿𝐧𝐑(𝐱) 

2 
−N2e

−
|x|

2a0 [
x

a0
+

x2

a0
2 ] 

e2

8a0
 N2e

−
|x|

2a0 [
x

a0
−

x2

a0
2] 

3 
−N3e

−
|x|

3a0 [
2x

3a0
+

4x2

9a0
2 +

4x3

81a0
3] 

e2

18a0
 N3e

−
|x|

3a0 [
2x

3a0
−

4x2

9a0
2 +

4x3

81a0
3] 

TABLE 2: The symmetric and the antisymmetric combination of ΨnL and ΨnR producing the 

even (Ψn
(+)

) and odd (Ψn
(−)

) parity eigenfunction of the system for n = 2, 3.   

n 𝚿𝐧
(−)

(𝐱) −𝐄𝐧 𝚿𝐧
(+)

(𝐱) 

2 
2N2e

−
|x|

2a0 ⋅
x

a0
 

e2

8a0
 −2N2e

−
|x|

2a0 ⋅
x2

a0
2 

3 
2N3e

−
|x|

3a0 [
2x

3a0
+

4x3

81a0
2] 

e2

18a0
 −8N3e

−
|x|

3a0 ⋅
x2

a0
2 

Ψn
(+)

 and Ψn
(−)

 (n = 2, 3) have clear parity labels, but other mathematical restrictions on the 

wavefunctions must now be considered. Ψn
(+)

 and Ψn
(−)

 (n > 1) clearly vanish at x = ±∞ and 

are finite at all the interior points. They are also continuous at all points including x = 0, and 

linearly independent. We may, however reject the even parity eigenfunctions (Ψn
(+)

, n > 1) and 

accept only the odd parity eigenfunctions (Ψn
(−)

, n > 1) on the mathematical ground that the 
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first derivative of  Ψn
(−)

(x) is continuous at x = 0 (the singular point) while the first derivative 

of Ψn
(+)

(x) may not so be. This fact can be demonstrated in a slightly roundabout way. Let us 

consider the SE for the one-D H-atom for the quantum state Ψn
(−)

  (n > 1):         

ⅆ2Ψn
(−)

ⅆx2 = (E −
ⅇ2

|x|
) Ψn

(−)
                                                4.2.1 

Integrating both sides of equation (4.2.1) between the infinitesimal limits ±ϵ we have, 

∫ (Ψn
(−)

)
′′

ⅆx
ϵ

−ϵ

= ∫ (E −
ⅇ2

|x|
) Ψn

(−)
ⅆx

ϵ

−ϵ

                                    4.2.2 

The integral on the right-hand side vanishes as the integrand is odd with respect to inversion at 

x = 0. Accordingly, we can write, 

lim
ϵ→0

∫ (Ψn
(−)′′

(x)) ⅆx
ϵ

−ϵ

= lim
ϵ→0

(Ψn
(−)′

(ϵ) − Ψn
(−)′

(−ϵ)) = lim 
ϵ→0

Ψn
(−)

(ϵ)              4.2.3 

 ensuring the continuity of Ψn
(−)′

at x = 0. Had we used the corresponding equation for Ψn
(+)′′

, 

the integrand on the right-hand side of equation (4.2.2) could not be equated to zero on the 

ground of symmetry. We are therefore, led to conclude that the discrete bound quantum states 

of the H-atom in one dimension exists for infinitely many integer values of n (= 1,2,3, ….). 

They are all of odd parity and satisfy all the mathematical requirements that Ψ(x) must satisfy. 

Ψ2
(−)

(x) and Ψ3
(−)

(x) are displayed in the figure 3(a) and 3(b). The still higher states can be 

calculated similarly. 

Figure 3(a, b): 𝛹2
(−)

(𝑥) and 𝛹3
(−)

(𝑥) respectively has been depicted 

The odd parity of all the bound states suggests that the transition moment integral mediated by 

the electric dipole moment operator ⅆ = ex vanishes in, 
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Dnn′ = NnNn ∫ Ψn
(−)

(ex)Ψ
n′
(−)

ⅆx
∞

−∞
= 0                                 4.2.4 

The transition moment integrals mediated by the electric quadrupole moment operator ex2 may, 

however, be nonzero (See Appendix II for further details). The spectrum of the one-D H-atom 

is, therefore expected to be dominated by electric quadrupole transitions while the spectrum of 

3-D Hydrogen atom is essentially electric dipole driven spectrum. Experimental spectral data 

alone can confirm this prediction, which is unavailable at this moment. 

5. CONCLUSION  

The one-D hydrogen atom has infinite number of discrete bound states with energy                             

En = −
meⅇ4

2n2ℏ2  (n = 1, 2, 3, … ), which can be obtained by the judicious application of the 

Frobenius method, and the enforcement of all mathematical conditions on the wave function. 

The energy eigenfunctions have finite values everywhere, including the singular point (x = 0) 

vanishing at x → ±∞, and are of the odd parity. The spectrum is thus expected to be shaped 

dominantly by the much weaker electric quadrupole transitions.    

 

APPENDIX-I 

The ξ ≤ 0 counterpart of equation (4.1.2) becomes: 

ⅆ2Ψ(ξ)

ⅆξ2 − [
1

4
+

β

ξ
]  Ψ(ξ) = 0,  ξ ≤ 0                                        I.1 

so that the asymptotic form of Ψ as ξ → −∞ becomes, 

Ψ∞(ξ) ~ e
ξ
2 ≡  e−

|ξ|
2 , (ξ ≤ 0) 

 

It is straight forward to find that f(ξ) for ξ < 0 satisfies the differential equation: 

ξ
ⅆ2f

ⅆξ2 − ξ
ⅆf

ⅆξ
− βf = 0                                                   I.2 

The power series solution for f(ξ), then leads to the following recursion relation for the 

expansion coefficients, 

an+1 =
n+β

n(n+1)
an, n = 1,2,3, … (ξ < 0)                                 I.3 

The truncation condition for the power series expansion now becomes 

β = −n or β2 = n2                                                   I.4 
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so that, we get the same discrete energy levels for the ξ < 0 region as obtained for the ξ > 0 

region: -   

En = −
meⅇ4

2n2ℏ2 =  −
ⅇ2

2n2a0
, n = 1,2,3, …                                  I.5 

APPENDIX-II 

The transition moment integral (Dnn′) mediated by the electric dipole moment operator (ex) 

can be shown to be zero, for the odd parity bound states, by considering the transition from 

n = 1 to n′ = 2 state, for example, as 

Dnn′ = ∫ Ψ1
(−)

(ex)Ψ2
(−)

ⅆx
∞

−∞
= ∫ {N1e

−
|x|

a0 (
x

a0
)} (ex) {N2e

−
|x|

2a0 ⋅
x

a0
} ⅆx

∞

−∞

          II.1 

which can further be written in a simplified form as, 

Dnn′ = N1N2e ∫ e
−

3|x|

2a0 (
x3

a0
2) ⅆx

∞

−∞

                                          II.2 

The integral can be solved for the left side of the configuration space by considering only the 

changes for x < 0 in the above integral. The integral, thus results to zero as it is shown, 

Dnn′ = N1N2e [− ∫ e
−

3|x|

2a0 (
x3

a0
2)

0

∞

ⅆx + ∫ e
−

3|x|

2a0 (
x3

a0
2)

∞

0

ⅆx] = 0                     II.3 

At the same time, the transition moment integral (Qnn′) mediated by the quadrupole operator 

moment (ex2) can be shown to be non-zero, for the same set of odd parity bound states, 

Qnn′ = ∫ Ψ1
(−)(ex2)Ψ2

(−)
ⅆx

∞

−∞
= ∫ {N1e

−
|x|

a0 (
x

a0
)} (ex2) {N2e

−
|x|

2a0 ⋅
x

a0
} ⅆx

∞

−∞

            

         = N1N2e ∫ e
−

3|x|

2a0 (
x4

a0
2) ⅆx

∞

−∞

                                                                          II.4 

In the same way, as the case of the electric dipole operator, when we introduce the changes for 

x < 0 in the evaluated transition moment integral for the electric quadrupole operator, it does 

not vanish to zero as it can be shown as, 

Qnn′ = N1N2e [∫ e
−

3|x|

2a0 (
x4

a0
2)

0

∞

ⅆx + ∫ e
−

3|x|

2a0 (
x4

a0
2)

∞

0

ⅆx] ≠ 0                          II.5 

which further justifies the expected domination of the spectrum by the electric quadrupole 

transitions. 
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