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Abstract 22 

Extracting knowledge from complex and diverse chemical texts is a pivotal task for both 23 

experimental and computational chemists. The task is still considered to be extremely challenging 24 

due to the complexity of the chemical language and scientific literature. This study fine-tuned 25 

ChatGPT for five intricate chemical text mining tasks: compound entity recognition, reaction role 26 

labelling, metal-organic framework (MOF) synthesis information extraction, nuclear magnetic 27 

resonance spectroscopy (NMR) data extraction, and the conversion of reaction paragraph to action 28 

sequence. The fine-tuned ChatGPT demonstrated impressive performance, significantly reducing 29 

the need for repetitive and extensive prompt engineering experiments. It achieved exact accuracy 30 

levels ranging from 69% to 95% on these tasks with minimal annotated data. For comparison, we 31 

fine-tuned open-source pre-trained large language models (LLMs) such as Llama2, T5, and BART. 32 

The results showed that the fine-tuned ChatGPT excelled in all tasks. It even outperformed those 33 

task-adaptive pre-training and fine-tuning models that were based on a significantly larger amount 34 

of in-domain data. Given its versatility, robustness, and low-code capability, leveraging fine-tuned 35 

LLMs as toolkits for automated data acquisition could revolutionize chemical knowledge 36 

extraction. 37 

 38 

Main 39 

Chemical text mining is a crucial foundation in chemical research. It creates extensive 40 

databases that provide access to physicochemical properties and synthetic routes for experimental 41 

chemists. Additionally, it accumulates rich data and insights for computational chemists to use for 42 

modelling and predicting. More than just extracting information from chemical texts, the rule-43 

based transformation of chemical text is particularly interesting. For instance, synthetic procedures 44 
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can be converted into action sequences1 or programming languages2-4. This allows them to be 45 

understood and executed by robotic systems for automated syntheses.  46 

Converting structured data from intricate scientific literature is a challenging task, especially 47 

due to the complexity and heterogeneity of chemical language. As a result, a number of text-mining 48 

tools have been developed. For instance, ChemDataExtractor5,6 was created to extract chemical 49 

entities and their associated properties, measurements and relationships. ChemRxnExtractor7 was 50 

designed to extract the product and label associated reaction roles such as reactant, catalyst, solvent, 51 

and temperature. Historically, the focus has been on designing models and algorithms specific to 52 

certain tasks, often using regular expressions with rule-based syntax or dictionary-matching. These 53 

tools require extensive domain knowledge and sophisticated data processing, which limits their 54 

versatility.  55 

Recently, large language models (LLMs), represented by ChatGPT released in November 56 

2022, have shown the potential of Artificial General Intelligence (AGI). LLMs, such as GPT-3.5 57 

and GPT-4, can generate logical insights or content that meets requirements based on human 58 

instructions. We are entering a new era where AGI and medicinal chemists might work together. 59 

There have been assessments of ChatGPT's chemistry capabilities, including tasks like synonym 60 

transformation, property prediction, retrosynthesis, and molecule design8-10. However, LLMs tend 61 

to "hallucinate", meaning they generate unintended text that misaligns with established facts and 62 

real-world knowledge11,12. Moreover, objectively evaluating the results of open-ended questions 63 

remains a significant challenge. 64 

At this juncture, LLMs may struggle to accurately answer factual and knowledge-based 65 

questions. However, using LLMs for knowledge extraction tasks should greatly alleviate 66 

hallucination and fully leverage their powerful text comprehension and processing capabilities, 67 
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making them promising universal tools for chemical text mining. For instance, Zheng et al.13 used 68 

prompt engineering to guide ChatGPT in extracting information about metal-organic framework 69 

(MOF) synthesis. Yet, Chen et al.14 reported that ChatGPT performed significantly worse on 70 

biomedical text mining compared to existing models. This finding contradicts the common belief 71 

in the LLMs’ superior comprehension abilities. Either way, LLMs have limitations due to their 72 

model architecture and memory, including a maximum length of prompt tokens. Additionally, 73 

human expressions can be ambiguous, incomplete, vague, and difficult to refine. Outputs may not 74 

strictly adhere to formatting requirements, leading to misunderstanding and poor performance in 75 

mining complex text, such as patents or scientific literature. Therefore, zero-shot or few-shot 76 

prompts are often insufficient to address the diversity of scenarios. 77 

In this study, we fine-tuned ChatGPT for five challenging tasks in chemical text mining: 78 

compound entity recognition, reaction role annotation, metal-organic framework (MOF) synthesis 79 

information extraction, nuclear magnetic resonance spectroscopy (NMR) data extraction, and 80 

conversion reaction paragraphs into action sequences. We found for the first time that fine-tuning 81 

ChatGPT significantly enhances performance in text mining tasks, compared to prompt-only 82 

version, while also reducing dependency on the repetitive and extensive prompt engineering 83 

experiments. Meanwhile, we also evaluated other newly emerged generative pre-trained language 84 

models, such as Llama215, T516, and BART17. Among these, the fine-tuned ChatGPT achieved 85 

state-of-the-art (SOTA) performance across all five tasks. Remarkably, it even outperformed 86 

models that have been trained specifically for each task and subsequently fine-tuned, based on a 87 

significantly larger amount of in-domain data. This study highlights the potential of fine-tuning 88 

LLMs, like ChatGPT, to revolutionize complex knowledge extraction with their versatility, 89 

robustness, and low code capability. Fine-tuned LLMs can be easily generalizable and can 90 
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optimize the labour-intensive and time-consuming data collection workflow, even when trained 91 

with few data. This will accelerate the discovery and creation of novel substances, making them 92 

powerful tools for universal use. 93 

 94 

Fig. 1 | Schematics of fine-tuning ChatGPT for chemical text mining. a, The pipeline of fine-tuning ChatGPT on proprietary 95 

data. The green OpenAI logo symbolizes official gpt-3.5-turbo, while the blue one symbolizes fine-tuned gpt-3.5-turbo. b, 96 

Supervised fine-tuned ChatGPT outperforms prompt-only ChatGPT in some customized scenarios. c, Illustration of 97 

cheminformatics insights to be extracted from paragraph. And illustration of the five practical tasks in chemical text mining with 98 

respective example outputs, including Paragraph2Compound, Paragraph2RXNRole, Paragraph2MOFInfo, Paragraph2NMR, and 99 

Paragraph2Action. 100 

  101 
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Overview of Chemical Text Mining Tasks 102 

Given the complex and diverse information embedded in chemical literature, we designed 103 

five extraction tasks to demonstrate the potential and practicality of LLMs in chemical text mining. 104 

Paragraph2Compound task is to extract all chemical compound entities from the given chemical 105 

paragraph. Paragraph2RXNRole task is to label the reaction roles including product, reactant, 106 

catalyst, temperature, solvent, time, and yield in the paragraph. Paragraph2MOFInfo task is to 107 

extract all MOF synthesis conditions including compound name, metal source, metal amount, 108 

linker, linker amount, modulator, modulator amount or volume, solvent, solvent volume, reaction 109 

temperature and reaction time. Paragraph2NMR task is to extract the IUPAC name, experimental 110 

condition including frequency and solvent as well as chemical shift data for both 1H NMR and 111 

13C NMR spectra. Paragraph2Action task is to convert experimental procedures to structured 112 

synthetic steps (action sequences). All tasks are unified to sequence-to-sequence formats to 113 

facilitate the uses of LLMs. 114 

 115 

Paragraph2Compound—Extract all chemical compound entities. 116 

Fig. 2a illustrates the sampling process, which narrows down from 100,000 to 10, out of 117 

millions of pre-processed annotations, followed by the training process. Fig. 2b demonstrates the 118 

performance of prompt-only models and fine-tuned models, which are evaluated on a consistent 119 

evaluation set of 1,000 samples across varying training data sizes. These results are obtained from 120 

three independent trials. In the case of prompt-only models, randomness is intentionally introduced 121 

by altering the prompt and examples (Fig. 2c). Given the task’s straightforward nature and clear 122 

instructions, even the prompt-only language models achieved decent F1 scores over 0.6. For fine-123 

tuned models, the sampling and training process for the training set is repeated three times, as 124 

https://doi.org/10.26434/chemrxiv-2023-k7ct5 ORCID: https://orcid.org/0000-0002-3323-3092 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-k7ct5
https://orcid.org/0000-0002-3323-3092
https://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

depicted in Fig. 2a. As shown in Fig. 2b, all fine-tuned models demonstrate a performance 125 

improvement, especially in terms of the F1 score and Jaccard index, proportional to the increase 126 

in dataset size. These models outperform the prompt-only models designed for this task. When the 127 

training data size is substantial enough, the F1 scores of ChatGPT, Llama2, and T5 can reach close 128 

to 0.9, and the Jaccard index can approach 0.8. Notably, gpt-3.5-turbo, when fine-tuned, showed 129 

minimal fluctuations and superior performance. However, it is essential to emphasize that the cost 130 

of fine-tuning gpt-3.5-turbo increased tenfold with each tenfold increase in data volume. Our 131 

experimentation with gpt-3.5-turbo were capped at 10,000 training samples for 3 epochs due to 132 

OpenAI's limitations, resulting in a nearly 90-dollar expense—a significant investment in 133 

computational resources. In contrast, other fine-tuned language models have displayed notable 134 

cost advantages in this simple task. 135 

 136 

Fig. 2. | Design and Performance for Paragraph2Compound task. a, The workflow of sampling and training based on USPTO 137 

dataset for Paragraph2Compound task. b, The performance of different models across varying size of training set. The data point 138 

and the shaded areas represent respectively the mean values and standard deviations derived from three independent trials. c, 139 

Example of the zero-shot and three-shots prompts utilized for Paragraph2Compound task. 140 

  141 
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Paragraph2RXNRole—Product Extraction and Reaction Role Labelling. 142 

According to Guo et al.7, the Paragraph2RXNRole task comprises two subtasks. The first is 143 

to extract the central product, and the second is to label the associated reaction roles within 144 

specified paragraphs (Fig. 3a). For these tasks, Guo et al. developed two-stage BERT-like token-145 

multi-classification models. To enable a fair comparison with generative language models, we 146 

converted the data into sequence-to-sequence formats by adding <Role*Compound*Role> 147 

annotations to the input paragraphs. We then converted the language models’ outputs back into 148 

lists of BIO-tags, followed by post-processing to align with the original BIO-tags labels for 149 

assessment. For product extraction, our fine-tuned ChatGPT (best over one epoch) achieved a F1 150 

score of 77.1%, slightly surpassing the previous SOTA approach, ChemBERT, which scored 76.2% 151 

(Fig. 3b).  For reaction role labelling, our fine-tuned ChatGPT (best over five epochs) achieved a 152 

F1 score of 83.0%, significantly outperforming the previous SOTA approach, ChemRxnBERT, 153 

which scored 78.7% (Fig. 3c). It’s notable that the fine-tuned ChatGPT models, which cost only 154 

$1 and $5 respectively, demonstrated extremely high cost-effectiveness with small training 155 

datasets. In contrast, ChemBERT was domain-adaptive pre-trained on 9,478,043 sentences from 156 

200,000 journal articles, and ChemRxnBERT was further task-adaptive trained on 944,733 157 

reaction-inclusive sentences. We should also mention that the outputs of fine-tuned ChatGPT and 158 

Llama2 align almost perfectly with the input text, with 100% and 99% post-processing-free ratios  159 

respectively. On the other hand, the outputs of fine-tuned T5 and BART require additional 160 

alignment due to their tokenization and vocabulary limitations, with a ratio of only 31% that does 161 

not require post-processing. Even after post-processing, the F1 scores of T5 and BART were 162 

significantly lower than those token-classification models or LLMs such as ChatGPT and Llama2. 163 
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By the way, when utilizing prompt engineering with 30-shot examples, ChatGPT just achieved an 164 

F1 score of less than 30% due to the disorganized dataset. 165 

 166 
Fig. 3. | Design and Performance for Paragraph2RXNRole task. a, Data formats of two subtasks in paragraph2RXNRole task. 167 

b, Performance of product extraction. c, Performance of reaction role labelling. 168 
 169 

Paragraph2MOFInfo—Extraction of MOF Synthesis Information. 170 

Our re-annotated dataset for the Paragraph2MOFInfo task displayed in Fig. 4a, mostly 171 

contains single reaction paragraphs with a few featuring multiple reactions. We used Levenshtein 172 

similarity and exact accuracy as metrics to objectively assess the models’ ability to extract 173 

formatted data that fully complies with customized requirements in the task. This approach 174 

contrasts with the manual analysis used by Zheng et al.13 and requires less human intervention. 175 

The fine-tuned ChatGPT significantly outperforms the ChatGPT with prompt engineering, 176 

improving exact extractions by over 20% for both single and multiple reactions (Fig. 4b). It also 177 

surpasses other fine-tuned models, especially when handling complex multi-reaction paragraphs. 178 
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Exact accuracy rates for single and multiple reactions are 82.7% and 68.8%, respectively (Fig. 4b). 179 

As depicted in Fig. 4c and Fig. 4d, while most models achieve high Levenshtein similarity across 180 

the 11 parameters, only a few maintain high exact accuracy, which is the golden metric that we 181 

mainly focus on. Considering that some MOF synthesis paragraphs may include multiple reactions, 182 

we provide an example of multi-reaction extraction by various models in Fig. 4e. The paragraph 183 

includes two reactions, the first with (R)-H3PIA and bipy as linkers, providing all reaction 184 

conditions explicitly, and the second with the substitution of (R)-H3PIA with (S)-H3PIA, keeping 185 

all other conditions unchanged. Most models successfully interpreted the semantics and extracted 186 

two reactions from the MOF synthesis paragraph. However, only the fine-tuned ChatGPT perfectly 187 

extracted information that matched our annotated ground truth. Other models showed varying 188 

degrees of incompleteness, particularly with items involving multiple components and their 189 

quantities. 190 
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 191 

Fig. 4. | Design and Performance for Paragraph2MOFInfo task. a, A statistic of the dataset. b, Mean performance of 192 

Levenshtein similarity and exact match accuracy by different models. c, Levenshtein similarity for 11 parameters in the 193 

Paragraph2MOFInfo task. d, Exact match accuracy for 11 parameters in the Paragraph2MOFInfo task. e, An example of extractions 194 

by different models from a multi-reaction MOF synthesis paragraph. The cells in yellow represented the ground truth. The cells in 195 

green represented the exact match predictions. The cells in blue represented the incorrect predictions.  196 

 197 
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Paragraph2NMR—Extraction of experimental conditions and NMR chemical shifts. 198 

The impact of training set sizes and the use of prompt engineering on the performance of fine-199 

tuning ChatGPT in extracting NMR information is illustrated in Fig. 5a. Regardless of the training 200 

data size for fine-tuning (ranging from 25 to 300), or the presence of prompt engineering, there are 201 

hardly any significant fluctuations in performance. This holds true for metrics such as Levenshtein 202 

similarity and exact match accuracy of the fine-tuned ChatGPT when the numbers of training 203 

samples exceed 50. This demonstrates the strong learning capability and robustness of LLMs. Fig. 204 

5b illustrates the performance of different generative language models using the same 200 training 205 

data. In terms of Levenshtein similarity, a metric based on edit distance, almost all fine-tuned 206 

language models achieved impressing scores, outperforming ChatGPT that solely relies on prompt 207 

engineering (Fig. 5b). However, when considering the exact match accuracy metric, where each 208 

character must perfectly align with the ground truth count, LLMs such as ChatGPT and Llama2 209 

take the lead. While fine-tuned T5 and BART manage to extract the majority of the text, they often 210 

miss or mistakenly copy several characters. This contributes to a significant decrease in their exact 211 

match accuracy metric, as shown in Fig. 5c. In this context, the extraction of long complex text by 212 

LLMs is more standardized and high-quality, aligning more closely with human expectations. It is 213 

worth noting that fine-tuning Llama2 provides an alternative approach for deploying text mining 214 

locally, given its exceptional exact match accuracy. 215 
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 216 

Fig. 5. | Performance for Pargraph2NMR task. a, The performance of fine-tuning ChatGPT with and without prompt engineering 217 

as it varies with training data size. b, Heat map illustrating Levenshitein similarity and exact match accuracy of various models in 218 

extracting each NMR information. c, Examples of error extractions by T5 and BART, compared with the ground truth. 219 
 220 

Paragraph2Action: Action sequence extracted from an experimental procedure. 221 

The above-mentioned extraction tasks simply require the model to replicate specific 222 

information from the paragraph. However, the Paragraph2Action task requires the model to 223 

understand and transform the paragraph. Clearly, ChatGPT with prompt engineering has difficulty 224 

with this task, especially when it involves multiple complex conversions and insufficient prompt 225 

descriptions. To gauge the maximum potential of ChatGPT using only prompts, we incrementally 226 
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increased the number of transformation examples from 6 to 30. Despite encompassing all types of 227 

actions at least once and nearly reaching the token limit of 4,096 with 30 examples, ChatGPT's 228 

performance in a few-shot scenario remains disappointingly poor. It only achieved 13.9% full 229 

sentence exact accuracy, a BLEU score of 49.5, and a Levenshtein similarity of 66.0. In contrast, 230 

fine-tuning pre-trained language models with a small amount of data can yield decent results, 231 

achieving over 50% full sentence exact accuracy and over 80% for both BLEU Score and 232 

Levenshtein similarity. Remarkably, after 3 epochs of fine-tuning ChatGPT on 1,060 hand-233 

annotated training data, we achieved 62.5% full sentence exact accuracy, an 84.8 Modified BLEU 234 

score, and an 87.6 Levenshtein similarity. This process took only 1 hour and cost $3 for fine-tuning. 235 

These metrics surpass the SOTA results previously reported by Vaucher et al.1, which used an 236 

ensemble of three modes, each task-adaptively pre-trained on 2 millions rule-based data and 237 

refined on 14,168 augmented data. Interestingly, further improvement was achieved by 238 

augmenting the training data size to 14,168. This resulted in 69.0% full sentence exact accuracy, 239 

an 86.4 Modified BLEU score, and an 89.9 Levenshtein similarity (Table 1). For tasks involving 240 

“fuzzy rules” or hard-to-define extraction, fine-tuning ChatGPT offers significant advantages in 241 

tailoring the transformation with a small amount of annotated data. 242 

 243 

 244 

  245 
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Tabel 1 | Performance on Paragraph2Action task.  246 

Model Training data strategy 100% 
accuracy 

90% 
accuracy 

75% 
accuracy 

Modified 
BLEU score 

Levenshtein  
similarity Cost 

GPT-3.5-turbo (6-shots) No training 8.2 16.8 34.7 38.6 59.4 905 mean tokens 

GPT-3.5-turbo (12-shots) No training 8.8 19.3 42.3 43.1 62.3 1,374 mean tokens 

GPT-3.5-turbo (18-shots) No training 13.1 23.3 42.6 44.4 64.3 1,670 mean tokens 

GPT-3.5-turbo (24-shots) No training 14.8 25.9 45.5 47.0 65.8 2,598 mean tokens 

GPT-3.5-turbo (30-shots) No training 13.9 26.4 47.2 49.5 66.0 3,610 mean tokens 

Transformer (single model) * No task-adaptive pretraining, no augmentation (1,060) 13.1 15.1 21.9 22.5 45.9 - 

BART-base (fine-tuned) No task-adaptive pretraining, no augmentation (1,060) 51.1 65.9 77.6 73.2 83.9 - 

T5-base (fine-tuned) No task-adaptive pretraining, no augmentation (1,060) 57.7 71.6 83.2 81.8 86.8 - 

Lama2-13b-chat (fine-tuned) No task-adaptive pretraining, no augmentation (1,060) 56.8 66.8 80.7 80.3 86.0 40 min for training  

GPT-3.5-turbo (fine-tuned) No task-adaptive pretraining, no augmentation (1,060) 62.5 72.7 82.9 84.8 87.6 3 epochs, $ 3, 1h 

Transformer (single model) * No task-adaptive pretraining, augmented unique (14,168) 37.8 47.7 62.8 64.7 76.4 - 

BART-base (fine-tuned) No task-adaptive pretraining, augmented unique (14,168) 52.0 68.5 80.1 74.4 84.8  

T5-base (fine-tuned) No task-adaptive pretraining, augmented unique (14,168) 59.7 74.1 82.4 84.1 87.1 - 

Llama2-13b-chat (fine-tuned) No task-adaptive pretraining, augmented unique (14,168) 60.2 70.4 83.5 81.6 87.9 9 hours for training 

GPT-3.5-turbo (fine-tuned) No task-adaptive pretraining, augmented unique (14,168) 69.0 78.1 86.9 86.4 89.9 5 epochs, $ 92, 1.5 h 

Transformer (single model) * Task-adaptive pretraining (2 million), no augmentation (1,060) 56.8 67.3 80.4 81.5 85.7 - 

Transformer (single model) * Task-adaptive pretraining (2 million), augmented unique 
(14,168) 59.4 70.5 81.8 84.3 86.7 - 

Transformer (ensemble models) * Task-adaptive pretraining (200w+), augmented unique (14,168) 60.8 71.3 82.4 85.0 86.6 - 

The symbol “*” represented the result reported by Vaucher. The result in black bold is the best previous performance. 247 

The result in red bold is the best new performance. 248 

 249 

Discussion 250 

Chemical text mining expedites scientific discovery in chemistry. Previously, tasks involving 251 

complex chemical language and sophisticated processing required the development of specific 252 

domain-focused models. Now, the fine-tuning of universal LLMs offers a highly generalized and 253 

cost-effective solution. We have demonstrated the impressive efficacy and high exact accuracy of 254 

fine-tuning LLMs, especially ChatGPT, across five tasks in text mining. An examination of 255 

incorrect predictions revealed that only a small proportion were entirely incorrect, while most were 256 

acceptable alternatives to the ground truth or even pointed out the incorrect labels (Supporting 257 

Information). These errors can be attributed to inconsistent annotation standards and the inherent 258 

ambiguity of terms with multiple interpretations or functions. Therefore, improving the formatted 259 
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data extraction requires continuous efforts, including the refinement of specific rules and the 260 

enrichment of annotations prone to misinterpretation during training and inference. With detailed 261 

specifications and high-quality formatted data, the fine-tuning method based on LLMs is highly 262 

reliable. It can be easily extended to tasks related to extracting information from scientific literature 263 

and transforming data into customized format. This approach will significantly contribute to the 264 

development of extensive databases like SciFinder18 and Reaxys19, which gather comprehensive 265 

synthesis data through automated curation and expert verification. 266 

In this work, we have scratched the surface of the vast potential of LLMs in chemistry and 267 

materials science by fine-tuning LLMs for chemical text mining. Technically, advancements like 268 

wider context windows, faster inference approaches, and improved model architectures in the era 269 

of LLMs are anticipated to further enhance text mining. However, it’s essential to consider what 270 

else can be achieved with LLMs and how we can develop more effective LLMs for chemistry and 271 

materials science. For instance, LLMs have the potential to revolutionize predictive modelling by 272 

incorporating the extensive “fuzzy knowledge” encapsulated within scientific literature, especially 273 

in chemistry and drug discovery. By combining empirical results with documented knowledge, 274 

LLMs could assist chemists identify patterns in experiments that might otherwise be missed, 275 

predict properties of compounds and outcomes of reactions, and even generate new chemical 276 

hypotheses and theories. Furthermore, the integration of LLMs’ comprehension with specialized 277 

tools could substantially lower the barrier of chemists to use these tools throughout the entire 278 

workflow, thanks to interactive interfaces in natural language. Future research could investigate 279 

how to merge formatted laboratory data with wealth of information in scientific literature and 280 

develop the multimodal capability to enrich specific domain knowledge for LLMs. This endeavour 281 

will require a sustained, long-term effort. 282 

https://doi.org/10.26434/chemrxiv-2023-k7ct5 ORCID: https://orcid.org/0000-0002-3323-3092 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-k7ct5
https://orcid.org/0000-0002-3323-3092
https://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

For the first time, we have demonstrated the effectiveness of fine-tuning ChatGPT and the 283 

potential of LLMs n chemical text mining. We conducted five complex tasks: compound entity 284 

recognition, reaction role labelling, MOF synthesis information extraction, NMR data extraction, 285 

and the transformation from reaction procedures to action sequences. Chemical text mining 286 

remains a challenging professional domain when leveraging language model mining, even with 287 

prompt engineering. However, LLMs that are fine-tuned with appropriate annotations can produce 288 

structured outputs that perfectly fulfil human requirements not easily expressed in natural language. 289 

This feature fully utilizes their natural language understanding and formatting capability. Using 290 

chemical text mining as an example, this study provides guidance on fine-tuning of LLMs to serve 291 

as universal knowledge extraction toolkits. These toolkits can be easily extended for automated 292 

extraction from documents and rule-based formatted transformations. Our work lays the 293 

groundwork for transformative applications of LLMs in knowledge extraction within the chemical 294 

domain. 295 

 296 

  297 
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Methods 343 

More details will be released after the article is publicly available. 344 

Metrics for Evaluation 345 

Since fine-tuning ChatGPT does not allow for early stopping based on optimal validation loss, 346 

we report the performances of all models at the best epoch selected from the evaluation set for fair 347 

comparison. Given the task specifics, we use metrics including precision, recall, and F1 score for 348 

evaluating entity-level performance. For sentence-level performance assessment, we use 349 

Levenshtein similarity, exact match accuracy, partial accuracy, and a modified BLEU score. 350 

Data Availability 351 

All datasets used in this work are available from the authors upon request.  352 

Code Availability 353 

All scrips for training and evaluating can be found on GitHub at https://github.com/zw-354 

SIMM/SFTChatGPT_for_chemtext_mining. 355 
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