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ABSTRACT 

Photocatalysts have recently attracted significant interest due to their potential applications in 

sustainable energy-conversion systems. In organic chemistry, recyclability of photocatalysts are 

important characteristics with respect to environmental concerns and economic benefits. Metal-based 

polypyridyl complexes of ruthenium and iridium have been widely used as recyclable homogeneous 

photoredox catalysts, whereas organophotoredox catalysts are less explored and usually limited to the 

use of polymer methods. Herein, we report the design and synthesis of recyclable phenothiazine 

organophotoredox catalysts (PTHS 1–3). These catalysts exhibit relatively high excited-state 

oxidation potentials (E1/2
ox* = −2.34 to −2.40 V vs. SCE) that can efficiently promote photoredox 

reactions via the one-electron reduction of 1,3-bis(trifluoromethyl)benzene and 4-

trifluoromethyliodobenzene, which have high reduction potentials (Ep/2 = −2.07 to −2.16 V vs. SCE). 

Notably, when the recycling performance was evaluated in the cross-coupling reaction between an 

aryl halide and triethylphosphite, PTHS-1 can be recovered at least four times without loss of its 

catalytic activity. The present recyclable and reusable organophotoredox catalysts thus represent a 

promising tool for sustainable organic synthesis.  
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Introduction 

Recycling photocatalysts has attracted much attention as a critical factor in emerging chemical 

technologies in terms of environmental concerns and economic benefits. Homogeneous photocatalysts 

such as metal-based polypyridyl complexes of ruthenium and iridium as well as organic dyes have 

been widely used in photoredox catalysis.1,2 Although recycling metal-based polypyridyl complexes 

is common, that of organophotoredox catalysts remains much less explored and usually limited to the 

use of polymer methods.3,4 Considering that organophotoredox catalysts are cost-effective and of low 

toxicity, the development of an approach for their recycling is essential in sustainable organic synthesis. 

10-Aryl phenothiazines are widely used as photocatalysts for photoredox reactions and atom-

transfer-radical-addition polymerizations in organic chemistry (Figure 1; e.g., PTH-1).5 Due to their 

high excited-state oxidation potentials (E1/2
ox* ≈ −2.10 V vs. SCE), a number of 10-aryl-

phenothiazine-catalyzed photoredox reactions that proceed via oxidative quenching cycles have been 

developed.6 However, the high reactivity of the p-position relative to the nitrogen atom on 10-aryl 

phenothiazines renders these prone to react with electrophiles.7 Thus, several modified 10-aryl 

phenothiazine catalysts have recently been explored (Figure 1; PTH 2–4).8 Despite these advances, 

the development of more stable and sustainable photoredox catalysts remains highly desirable. 

To explore the recyclability of organophotoredox photocatalysts, we have designed and synthesized 

recyclable phenothiazine organophotoredox catalysts (Figure 1; PTHS). The catalyst design is based 

on the following considerations: i) to increase the stability and reducing properties, bulky and electron-

donating groups such as the tBu group are introduced at the p-position relative to the nitrogen atom on 

the phenothiazine catalysts; ii) to absorb visible light and increase the stability, the phenothiazine 

catalysts are endowed with a thia-bridged helically shaped structure. 
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Figure 1. Representative Phenothiazine Catalysts 

 

 

 

Results and Discussion 

We initially synthesized a series of phenothiazine catalysts (PTHS 1–3) in short steps and moderate 

yield using commercially available starting materials to probe the relationship between their structure 

and physical properties (Table 1).9,10 Interestingly, we found that these catalysts have high excited-

state oxidation potentials (E1/2
ox*= −2.34 to −2.40 V vs. SCE) compared to other phenothiazine 

catalysts such as PTH 1–4. Therefore, PTHS 1–3 were expected to reduce various substrates via 

oxidative quenching cycles. In addition, the PTHS catalysts exhibit an absorption band in the visible 

spectrum, which indicates that they can be activated by visible light. 

With these promising results in hand, we applied the PTHS catalysts to various types of photoredox 

reactions. First, we examined the three-component oxytrifluoromethylation of 1,1-diphenylethylene 

(2; Table 2).11 The reactions proceeded smoothly in the presence of a catalytic amount of PTHS 1–3 

(1.0 mol%) to give the desired product (3) in good yield. Blank experiments in the absence of a catalyst 

or light confirmed that the reaction requires a PTHS catalyst and irradiation with blue LED to 

proceed.9 Since the PTHS catalysts have high excited-state oxidation potentials, the CF3 radical was 

smoothly generated from Umemoto’s reagent (1; Ep/2 = −0.25 V vs. SCE)12 and then reacted with 2 to 

give the desired product (3). This organophotocatalytic reaction is significantly more cost-effective 

and sustainable compared to previously reported methods based on transition-metal catalysts.11 
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Table 1. Synthesis and Physical Properties of PTHS Organophotoredox Catalysts 

 

Catalyst E1/2(C•+/C*)a 

(V) 

E1/2(C•+/C)b 

(V) 

E0,0 (eV) Excitation λmax 

(nm) 

Emission λmax 

(nm) 

PTHS-1 −2.34 0.86 3.20 317 449 

PTHS-2 −2.35 0.80 3.15 316 460 

PTHS-3 −2.40 0.64 3.04 314 475 

a Excited-state oxidation potentials were estimated on the basis of the ground-state redox potentials 

and the intersection of the absorption and emission bands. b Determined by cyclic voltammetry in 

CH2Cl2 vs. SCE.9 

 

Next, we investigated a visible-light-mediated decarboxylative C(sp3)–O bond formation (Table 3). 

Nagao and Ohmiya have already reported that PTH-3 catalyzes the decarboxylative coupling between 

aliphatic alcohol 5 and redox-active esters such as 4 (Ep/2 = −1.08 V vs. SCE).8b It thus seems feasible 

to speculate that the PTHS catalysts might also be applied to the decarboxylative C(sp3)–O bond 

formation from ester 4 to provide the corresponding ether (6) in moderate yield.  

The results of the defluoroalkylation of 1,3-bis(trifluoromethyl)benzene (7) with unactivated 

alkenes are shown in Table 4.13 When 7 (Ep/2 = −2.07 V vs. SCE) was treated with 3-buten-1-ol (8) in 

the presence of PTHS-1 and PTHS-2, the reaction proceeded effectively to give 9 in moderate to good 

yields (Table 4, entries 1 and 2). In contrast, PTHS-3 could not be applied to the reaction (Table 4, 

entry 3). Since the excited-state oxidation potential of PTH-3 is lower than the reduction potential of 

7, the reaction with PTH-3 was also inefficient (Table 4, entry 4). 

Subsequently, we investigated the photoredox cross-coupling reaction between 4-

trifluoromethyliodobenzene (10) and triethylphosphite in the presence of the PTHS catalysts, which 

afforded aromatic phosphonate 11 in good yield (Table 5).14 Although 10 has a high reduction potential 

(Ep/2 = −2.16 V vs. SCE),15 the single-electron transfer from the PTHS catalysts to 10 is energetically 

favorable due to the high excited-state oxidation potentials of the PTHS catalysts (E1/2
ox* = −2.34 to 

−2.40 V vs. SCE). Accordingly, the PTHS catalysts are suitable for photoredox reactions via 

oxidation-quenching cycles. 
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Table 2. Three-component Oxytrifluoromethylation of 1,1-Diphenylethylenea 

 

Entry Catalyst Yield (%) 

1 PTHS-1 79 

2 PTHS-2 72 

3 PTHS-3 80 

a All reactions were carried out with 1 (0.105 mmol), 2 (0.1 mmol), and catalyst (1.0 mol%) in 

acetone/H2O (9:1, v/v) at room temperature under an Ar atmosphere and blue-light irradiation. 

 

Table 3. Decarboxylative C(sp3)–O Bond Formationa 

 

Entry Catalyst Yield (%) 

1 PTHS-1 60 

2 PTHS-2 48 

3 PTHS-3 40 

a All reactions were carried out with 4 (0.2 mmol), 5 (0.6 mmol), LiBF4 (10 mol%), and catalyst (10 

mol%) in MeCN at room temperature under an Ar atmosphere and blue-light irradiation.  
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Table 4. Defluoroalkylation of 1,3-Bis(trifluoromethyl)benzenea 

 

Entry Catalyst Yield (%) 

1 PTHS-1 83 

2 PTHS-2 47 

3 PTHS-3 trace 

4 PTH-3 6 

a All reactions were carried out with 7 (0.1 mmol), 8 (0.3 mmol), cyclohexane thiol (10 mol%), sodium 

formate (0.3 mmol), and catalyst (10 mol%) in DMSO at room temperature under an Ar atmosphere 

and blue-light irradiation. 

 

Table 5. Photoredox Cross-coupling Reaction of 4-Trifluoromethyliodobenzene with 

Triethylphosphitea 

 

Entry Catalyst Yield (%) 

1 PTHS-1 77 

2 PTHS-2 78 

3 PTHS-3 78 

a All reactions were carried out with 10 (0.1 mmol), triethylphosphite (0.3 mmol), DBU (0.2 mmol), 

and catalyst (10 mol%) in MeCN at room temperature under an Ar atmosphere and blue-light 

irradiation.  
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Scheme 1. Photochemical Sulfonylation of Phenothiazinesa 

 

a All reactions were carried out with phenothiazines (0.2 mmol) and tosyl chloride (TsCl; 0.2 mmol) 

in MeCN at room temperature for 24 h under an N2 atmosphere and blue-light irradiation. bPreviously 

reported product yield.7 

 

To examine the stability of the catalysts, we carried out the photochemical sulfonylation of PTH-1 

and PTHS-1 (Scheme 1). When PTH-1 was treated with tosyl chloride (TsCl) under irradiation from 

blue LEDs, monosulfonylated 12 was obtained in 78% yield due to the high reactivity of the p-position 

relative to the nitrogen atom in 10-aryl phenothiazines.7a In contrast, the PTHS-1 catalyst was 

effectively recovered in 95% yield, proving that the presence of tBu groups increases the catalyst 

stability. Therefore, the PTHS-1 catalyst is applicable to various photoredox reactions, which cannot 

be effectively achieved by hitherto reported phenothiazine catalysts. 

The high stability of PTHS-1 also prompted us to investigate its recycling performance (Table 6). 

After completion of the cross-coupling reaction of 10 with triethylphosphite, PTHS-1 was collected 

via extraction with EtOAc and column chromatography, and the ability of recycled PTHS-1 to 

catalyze the reaction was examined. PTHS-1 could be recovered at least four times without loss of its 

catalytic activity. Thus, PTHS-1 is demonstrably a recyclable organophotocatalyst and suitable for 

sustainable synthetic methods. 

Finally, when the reaction was performed on the gram scale, the desired product was obtained in 

85% yield (1.20 g) with 96% recovery of PTHS-1 (Scheme 2). Thus, PTHS-1 is a highly active 

catalyst with high recoverability even when used on the gram scale. 

 

 

 

 

 

 

 

https://doi.org/10.26434/chemrxiv-2023-plb6m ORCID: https://orcid.org/0000-0001-8253-3561 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-plb6m
https://orcid.org/0000-0001-8253-3561
https://creativecommons.org/licenses/by-nc-nd/4.0/


Table 6. Recycling Performance of PTHS-1a 

 

Run 1 2 3 4 

Yield (%) 77 78 75 79 

a All reactions were carried out with 10 (0.1 mmol), triethylphosphite (0.3 mmol), DBU (0.2 mmol), 

and PTHS-1 (10 mol%) in MeCN at room temperature under an Ar atmosphere and blue-light 

irradiation. 

 

 

Scheme 2. Gram-scale Photoredox Cross-coupling Reaction of 4-Trifluoromethylbenzene with 

Triethylphosphitea 

 

a The reaction was carried out with 10 (5.0 mmol), triethylphosphite (15.0 mmol), DBU (10.0 mmol), 

and PTHS-1 (10 mol%) in MeCN at room temperature under an Ar atmosphere and blue-light 

irradiation. 

 

In summary, we have developed strongly reducing and recyclable phenothiazine organophotoredox 

catalysts (PTHS 1–3) that can be activated by visible light. These catalysts exhibit relatively high 

excited-state oxidation potentials (E1/2
ox* = −2.34 to −2.40 V vs. SCE), which can efficiently promote 

four photoredox reactions via oxidative-quenching cycles in good yields. The presence of tBu groups 

in the PTHS-1 catalyst increases its stability, thus enabling its recovery under photochemical 

sulfonylation conditions, outperforming previously reported phenothiazine catalysts for such 

photoredox reactions. In fact, PTHS-1 can be recovered at least four times without loss of its catalytic 

activity in the cross-coupling reaction of 4-trifluoromethyliodobenzene (Ep/2 = −2.16 V vs. SCE), 

highlighting its potential for sustainable photocatalysis. Moreover, when the reaction was performed 

on a gram scale, the desired product was obtained in 85% yield (1.20 g) with 96% recovery of PTHS-

1.  

These recyclable organophotoredox catalysts thus represent a promising tool for sustainable organic 

synthesis.  
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