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Abstract
Developing new drugs is an expensive and lengthy endeavor, partly due to the reliance on
high-throughput screening (HTS), which involves significant costs and is time-consuming. Virtual
screening, particularly molecular docking, offers a more cost-effective and faster alternative for
identifying promising drug candidates. However, the effectiveness of molecular docking can vary
greatly, which has led to the use of consensus docking approaches. These approaches combine
results from different docking methods to improve the identification of active compounds and
can reduce the occurrence of false positives. However, many of these methods do not fully
leverage the latest advancements in docking technology.
In response, we present ESSENCE-Dock (Effective Structural Screening ENrichment
ConsEnsus Dock), a new consensus docking workflow aimed at decreasing false positives and
increasing the discovery of active compounds. By utilizing a combination of novel docking
algorithms, we improve the selection process for potential active compounds. ESSENCE-Dock
has been made to be user-friendly, requiring only a few simple commands to perform a
complete screening, while also being designed for use in high-performance computing (HPC)
environments.

Introduction
The development of novel drugs is a very long and expensive process: depending on the
context, the costs of bringing new drugs to market can span from several hundred million to
over 4 billion U.S. dollars (1). Many factors contribute to these high costs, including clinical trials
and toxicity studies among others. Another part of the high costs can be attributed to hit
discovery through expensive, time-consuming high-throughput screening (HTS) (2). Screening
small libraries in this manner is done routinely, but chemical space is vast, and navigating it
using HTS exclusively can be very costly, both in time and money.
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Virtual screening techniques are capable of computationally identifying potential hit compounds,
thereby lowering the number of compounds to test experimentally. This can be done much
faster and cheaper than HTS, and thus applied to many more compounds, allowing the
exploration of a larger chemical space (3). In short, virtual screening techniques are valuable
tools for lowering costs and speeding up novel medicine development. Many different types of
virtual screening methods exist, but one of the most used techniques is molecular docking (4).
For this structure-based screening method, a 3D structure of both the target protein and ligand
needs to be available. The goal of molecular docking is to find the optimal ligand pose, which
typically has an associated docking score. Subsequently, this docking score can be used to
compare different ligands and rank them to obtain a list of the most promising candidates.

The performance of docking algorithms can vary significantly across different targets (5).
Examples of popular docking methods include AutoDock Vina (6), and its subsequent forks
Smina (7) and Gnina (8), but also commercial software such as LeadFinder (9) and Glide (10)
are routinely used in both industry and academia. These methods can be effective on their own,
but a consensus docking approach has been shown to improve reliability. By implementing a
consensus approach, one can reduce false positives and improve the overall accuracy of results
(11). However, many of these existing consensus methods rely on older docking techniques with
lower accuracy. Furthermore, they often overlook the importance of the predicted pose similarity,
despite its demonstrated effectiveness (12).

To provide a brief overview of existing consensus approaches, we begin with the early yet
effective work by A. Kukol (13). In this work, different docking rankings from different algorithms
were combined in order to determine which combination of docking methods is the most
effective. Specifically, the Directory of Useful Decoys (DUD) (14) was used for this purpose. It
was reported that AutoDock 4 (15) combined with AutoDock Vina yielded the best results
overall. Houston and Walkinshaw (16) built on these findings by incorporating a simple form of
binding pose similarity for additional consensus. Their relatively simple consensus docking
method was quite effective at lowering false positives. Their method started by performing
molecular docking using both AutoDock Vina and AutoDock 4. Subsequently, they quantified the
binding pose similarity by calculating the root mean square deviation (RMSD) between the
binding poses of each ligand. In case the RMSD was larger than 2Å, the molecule was rejected
and filtered out from further calculations due to the disagreement between the two docking
methods. If the RMSD was smaller or equal to 2Å, the compounds were kept for further analysis
and ranking. Although simple, this filter step based on RMSD pose-similarity managed to
identify many of the decoy compounds, thus demonstrating its value in the whole protocol.

After these developments, consensus docking has continuously been further explored by many
researchers. A brief overview of this has been provided in a review of molecular docking written
by Torres et al. (11). Some of the most recent consensus docking publications include DockECR
(17) and MILCDock (18). Palacio-Rodríguez et al. described an exponential consensus ranking
(ECR) method that uses an exponential distribution for each individual rank of every docking
method (19). Their method is implemented in such a way that compounds that score very well in
a single method can still be ranked highly, even though they score worse in the other docking
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methods. The DockECR publication is an in-depth exploration of the ECR method and was
collaboratively written with one of the original authors of the exponential consensus ranking
paper. They developed an open-source program that has implemented the ECR method and
supports several docking methods, such as LeDock (20), rDock (21), Smina (7), and AutoDock
Vina (6). Additionally, they added a binding pose similarity metric, which was shown to improve
the results in most cases. Their protocol also supports the use of parallelization, enabling
simultaneous docking runs across multiple CPUs. Finally, one of the latest works regarding
consensus docking is MILCDock. Here, the authors describe a consensus docking method that
is enhanced by machine learning. To gather training data, the authors performed molecular
docking on datasets such as DUD-E (22) using various open-source docking algorithms
including AutoDock Vina, AutoDock 4, and rDock. Subsequently, they used the resulting docking
data and binding pose similarities to train machine learning models that can be used as a
scoring function. Their results show substantial improvements when compared to the individual
docking runs.

Inspired by this prior research, we developed ESSENCE-Dock: a consensus docking workflow
primarily focused on reducing false positives and enhancing the enrichment of active
compounds. High consensus scores from our protocol correlate with a higher likelihood of
compound activity, as demonstrated by our reported high enrichment factors across various
DUD-E targets. Our workflow is flexible, user-friendly, and able to be performed using
High-Performance Computing (HPC) clusters. The entire screening process is streamlined to
just four commands: one for each of the individual docking methods —DiffDock (23), Gnina (8),
and LeadFinder (9) — and a fourth to initiate the consensus calculation that integrates the
results.

By combining docking scores, binding pose similarity, and ligand flexibility, ESSENCE-Dock
generates a comprehensive consensus score to rerank the screened compounds. Additionally,
all of the top results can be output to an interactive PyMol Session (PSE) file (24) for visual
inspection and user convenience. Furthermore, predicted protein-ligand interactions for the top
results are calculated and shown using PLIP (25). These protein-ligand interaction results are
also output in tabular and JSON formats for easy integration into further post-docking analysis.

In summary, we introduce ESSENCE-Dock (Effective Structural Screening ENrichment
ConsEnsus Dock), a novel consensus docking workflow that addresses some of the identified
gaps in current consensus docking methods. ESSENCE-Dock leverages state-of-the-art
docking techniques and takes into account binding pose similarity and ligand flexibility to
calculate a final consensus score. Our workflow is easy to use, only requiring a few commands
for the whole protocol. It is also able to run on HPC clusters using Singularity and has the
potential to streamline drug discovery efforts by focusing resources on acquiring and testing
compounds with high consensus scores.
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Materials and Methods
As established in the introduction, consensus analysis of docking techniques can substantially
improve the outcome of a virtual screening campaign (4). With this in mind, we set out to
develop our own consensus docking procedure, with a focus on lowering false positives in order
to obtain a high enrichment in the top fraction of high-scoring compounds.
As a first step, we attempted to select different types of docking techniques. We selected
methods that make use of very different sampling methods for pose generation and use different
types of scoring functions. This makes it more significant when consensus, both in high docking
scores and binding poses, is found because the docking algorithms came to the same
conclusion by employing completely different methods. We ended up selecting LeadFinder (9),
Gnina (8) and DiffDock (23). These docking methods, along with their specific sampling and
scoring algorithms are discussed in more detail below. A schematic overview of the general
workflow is provided in Fig. 1.

Fig. 1: Overview of the ESSENCE-Dock Workflow. Each ligand is prepared for and docked using
LeadFinder, DiffDock, and Gnina. The resulting docking scores and binding poses are subsequently
combined into a final ESSENCE-Dock score, which is used for ranking the compounds.

Ligand and Protein Preparation
Proper preparation of protein and ligands is a crucial step when performing molecular docking,
and helps to ensure optimal results. Each of the docking techniques used in our work -
LeadFinder (LF), DiffDock (DD), and Gnina (GN)- requires distinct formats for both ligands and
proteins. LeadFinder requires the use of mol2 format for both ligands and proteins, DiffDock
performs best with ligands in SDF format and protein structures in PDB format, while Gnina
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provides optimal results with structures in pdbqt format for both proteins and ligands. This
section will detail the procedures used to prepare the ligands and proteins for all the docking
calculations, starting with ligand preparation.

Ligands
The selected DUD-E target sets were downloaded from the DUD-E database, with the files
'decoys_final.ism' and 'actives_final.ism' serving as the starting point for conversion (see Fig. 2).

Fig.2: Ligand Preparation Workflow.
Input compounds in SMILES format were processed and converted to 3D SDF, mol2, and pdbqt files for
docking with DiffDock, LeadFinder, and Gnina, respectively.

Using Python and RDKit (26), the smiles were processed, hydrogens were added, and a 3D
conformation was generated for each compound using RDKit’s ETKDG method. The molecules
were saved as separate SDF files. Each file was named according to the ID provided in the
original .ism files and was tagged as 'active' or 'inactive' for more efficient post-processing after
docking.
These SDF files were used as ligands for the DiffDock method but were also converted to mol2
files using ChemAxon’s molconvert tool (27). This generated 3D coordinates of a low-energy
conformer using the MMFF94 forcefield (28). This made the molecules ready to be docked
directly using LeadFinder.
Subsequently, the mol2 files were used as input for the conversion to pdbqt format using the
“prepare_ligand4.py” script from AutoDockTools (ADT) (15). Finally, these resulting pdbqt files
were used for the Gnina docking procedure.

Protein Structures
For the protein preparation of the DUD-E targets, the PDB code of the provided receptor.pdb file
was used to obtain the final receptor files. A schematic overview of the protocol is shown in Fig.
3.
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Fig. 3: Protein Structure Preparation Workflow.
Protein structures are imported using their PDB code in Maestro. After processing, the structures are
saved as both PDB and mol2 files, which are used for DiffDock and LeadFinder, respectively. Additionally,
the PDB file is converted to pdbqt format using AutoDockTools for Gnina docking.

The first step after importing the PDB structure in Schrödinger’s Maestro (version 2020-4) (29)
was to remove all solvents, ions, and ligands. Subsequently, the Protein Preparation Wizard in
Maestro was used to properly (re)assign bond orders, add missing hydrogens, create disulfide
bonds, and fill in missing side chains. Next, Maestro’s system builder was used to charge the
protein using the OPLS3e forcefield (30). Concretely, this was accomplished by minimizing the
box volume, defining the solvent model as none, the box shape as orthorhombic, and 10 Å
buffer along every dimension.
After these steps, the processed protein was saved in both mol2 and pdb format. The mol2 file
was directly used as the receptor file for the LeadFinder docking calculations, while the pdb file
was used as input for DiffDock. The pdb file underwent further processing to create a pdbqt file
using AutoDockTools (ADT) from MGLTools (version 1.5.7) (15). Concretely, hydrogens were
added with the settings “All Hydrogens” and “noBondOrder”, followed by assigning AD4 type to
all atoms. As a last step, the Gasteiger charge was computed, and the resulting file was saved
as a pdbqt file for use in the Gnina docking process.

Docking Techniques
In this section, we will briefly discuss the docking techniques used for our ESSENCE-Dock
workflow, detailing their methodology for pose sampling and scoring functions, as well as the
parameters we used to process the input ligands.

LeadFinder
LeadFinder (LF), developed by BioMolTech and distributed by Cresset, uses a speed- and
accuracy-enhanced genetic algorithm for ligand conformation generation (9). This algorithm
creates a diversified pool of conformations, which are subsequently ranked using the LF scoring
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function. The output includes the best compounds with their docking score, predicted binding
energy, and corresponding docked pose in mol2 format. LF's scoring function is semi-empirical
and explicitly accounts for various types of molecular interactions (9).
We ran the LF calculations using MetaScreener v1.1 (31), an open-source and publicly available
tool that allows a user to perform molecular docking on high-performance computing (HPC)
clusters. This meant that LF could run in parallel, reducing the overall run time substantially and
making it feasible to screen larger libraries (see section Run times in Results). The LF docking
was executed using version 2104, along with standard variables and a grid size where X, Y, and
Z were all set to 30. As user input, only the docking coordinates, as well as the input ligand and
protein structure, were included as input variables. The LF docking calculations were performed
on the SCBI UMA Picasso HPC cluster using 1 CPU core and 2 GB of RAM per job.

Gnina
Another docking method we used in our consensus docking approach is Gnina (8). Gnina is a
fork of Smina (7), which in turn is a fork of Autodock Vina (Vina) (6). In contrast with LeadFinder,
which utilizes a genetic algorithm to explore a ligand’s conformational space, Gnina employs
Monte Carlo sampling to generate a diverse ensemble of ligand conformations. It also
implemented an ensemble of convolutional neural networks (CNN) as a scoring function, which
outperforms the scoring functions of its predecessors Vina and Smina in most cases (8).
Although Vina’s scoring function is still used during pose generation and refinement for
computational efficiency, Gnina's CNN ensemble model rescores and sorts the final poses.
These settings, found to be the most efficient by the authors, were also used for our Gnina
docking calculations.
For our calculations, the Gnina docking algorithm was implemented in MetaScreener v1.1,
again providing support to run the calculations massively in parallel on HPC clusters. Because
of the CNN scoring function, Gnina is able to run a lot faster on a GPU compared to a CPU.
Despite this, the parallel execution of calculations on an HPC cluster made processing the
selected DUD-E datasets still feasible. Gnina Version 1.0 was used with standard settings, a
box size of 30 in all dimensions, along with the user-provided ligand, protein, and docking
coordinates. Like the LF calculations, the GN docking calculations were performed on the SCBI
UMA Picasso HPC cluster, but using 4 CPU cores and 2 GB of RAM per job.

DiffDock
The final docking technique we integrated into our consensus docking workflow is DiffDock (23).
DiffDock is a novel, state-of-the-art blind docking method based on geometric deep learning.
The process refines randomized ligand conformations at various protein locations via a trained
reverse diffusion process, simultaneously determining the best binding pocket and
conformation. This eliminates the need for a pre-designated search box as required by LF and
Gnina. Because this is a blind docking method, the whole protein and all its potential binding
pockets are explored.
Unlike the other methods, DiffDock does not provide a scoring function. It does offer a
confidence score indicating prediction certainty. Although this is useful, it still does not allow a
user to gauge how potent a ligand binds, making it difficult to rank different ligands accurately
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among each other. Still, DiffDock is capable of predicting a ligand’s binding pose with
state-of-the-art accuracy, so it is still very useful to compare it to the binding poses generated by
LeadFinder and Gnina.
To facilitate DiffDock use in virtual screening, we developed a fork of DiffDock named
DiffDockHPC. It enables multiple parallel DiffDock jobs, significantly speeding up calculations
when processing more extensive libraries, and freely available at
https://github.com/Jnelen/DiffDockHPC. Like Gnina, DiffDock can be greatly accelerated by
GPUs, but running the calculations massively in parallel on CPUs still makes it feasible to be a
part of the consensus docking workflow. The DiffDock calculations were performed on NLHPC’s
leftraru cluster, using 4 CPU cores and 8 GB of RAM per job.

Processing of Docking Results
In this section, we describe the processing of docking results, the details of our scoring formula,
and the final output files that our ESSENCE-Dock workflow generates.

Scoring Formula
To easily rank compounds, we developed a scoring formula that considers not only individual
docking scores but also the binding pose similarity, as calculated by the average RMSD
between the docking poses. The ligand’s flexibility is also taken into account by incorporating
the number of rotatable bonds into the equation. The inclusion of the number of rotatable bonds
ensures that results are not skewed towards rigid structures, which inherently have fewer
degrees of freedom and consequently a higher chance of achieving better binding pose
similarity. The ESSENCE-Dock rescoring formula is presented in Equation 1:

(1)𝐸𝑆𝑆𝐸𝑁𝐶𝐸𝐷𝑜𝑐𝑘𝑆𝑐𝑜𝑟𝑒 =  2
𝑅𝑀𝑆𝐷𝑎𝑣𝑒𝑟𝑎𝑔𝑒 · 𝑀𝐵𝐸 · 𝑙𝑛(𝑅𝐵 + 1) + 1 

Here, RMSDaverage denotes the average root mean square deviation (as shown in Eq. 2), and
MBE represents the Mean Binding Energy (computed as per Eq. 3). RB corresponds to the
number of rotatable bonds. The RMSD and the number of rotatable bonds are calculated using
OpenBabel’s obrms and obrotamer functionalities respectively (32).

(2)𝑅𝑀𝑆𝐷𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =  
𝑅𝑀𝑆𝐷

𝐷𝐷_𝐺𝑁
+𝑅𝑀𝑆𝐷

𝐷𝐷_𝐿𝐹
+𝑅𝑀𝑆𝐷

𝐺𝑁_𝐿𝐹

3

(3)𝑀𝐵𝐸 =  
𝐵𝑖𝑛𝑑𝑖𝑛𝑔𝐸𝑛𝑒𝑟𝑔𝑦

𝐺𝑁
 + 𝐵𝑖𝑛𝑑𝑖𝑛𝑔𝐸𝑛𝑒𝑟𝑔𝑦

𝐿𝐹

2

As can be derived from Eq. 1, the ESSENCE-Dock score is inversely proportional to the
agreement between the binding poses produced by the individual docking methods. This means
that a lower (more negative) ESSENCE-Dock score indicates a higher degree of agreement
between the docking methods, and therefore a more reliable result.
Note as well that in equation 1, just the average RMSD and docking scores and the number of
rotatable bonds are required. In this sense, our approach is flexible and able to be used with
other docking programs as well. For user convenience, the whole ESSENCE-Dock approach
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has been implemented in Metascreener v1.1, and the consensus rescoring and post-processing
can be executed using just a single command

Enrichment Factors
To validate the protocol, we selected a diverse set of DUD-E targets and computed enrichment
factors (EFs) at different thresholds. We compared these EFs with those obtained from
individual docking methods (LeadFinder and Gnina) as well as a more basic consensus docking
approach using the mean binding energy and mean rank as scoring metrics. The EF for the top
5, 1, 0.5, and 0.1% was calculated using Eq. 4:

(4)𝐸𝐹 = 𝑎𝑐𝑡𝑖𝑣𝑒𝑠𝐸𝐹%/𝑡𝑜𝑡𝑎𝑙𝐸𝐹%
𝐴𝑙𝑙𝐴𝑐𝑡𝑖𝑣𝑒𝑠/𝐴𝑙𝑙𝐶𝑜𝑚𝑝𝑜𝑢𝑛𝑑𝑠  

At its core, this formula compares the fraction of actives in the top x% of compounds to the
overall distribution of actives in the dataset. ActivesEF% represents the amount of actives in
that EF% fraction, while total EF% represents the total number of compounds part of the same
EF% fraction. The bottom part of the equation is the fraction of the total amount of actives and
the total amount of compounds of the whole dataset.

Output Files
After scoring and ranking all the compounds using Eq. 1, the workflow is able to generate an
interactive PyMol (24) session (PSE) file. This PSE file contains the protein structure and the top
50 results (user-configurable) based on the scoring.
Each entry in the PSE file displays the three docked structures from LeadFinder, DiffDock, and
Gnina, enabling easy visual assessment of binding pose similarity. It also provides the original
docking score for LeadFinder and Gnina structures. Additionally, the file includes predictions of
protein-ligand interactions as predicted by PLIP (25), offering insights into the potential binding
interactions.
The interactive PSE file facilitates the study and comparison of ligand-protein interactions
across different docking methods. Furthermore, the PLIP results are summarised in both JSON
and spreadsheet-style CSV files for convenient further analysis.
Finally, the complete ESSENCE-Dock information (the individual docking scores, RMSD values,
etc.) for all compounds is saved to an output CSV file as well.

Results and Discussion
To demonstrate the efficacy of ESSENCE-Dock, we applied our workflow to a set of 21 distinct
DUD-E targets, representing a diverse range of protein families and biological contexts. After
docking and ranking the compounds, the enrichment factors (EF) were calculated at different
fractions. EFs are a measure of the method's ability to identify active compounds among the
top-ranked candidates, with higher EF values indicating better performance (refer to Materials
and Methods Eq. 4 for the exact EF formula). We evaluated EFs for the individual DUD-E
targets at various fractions: the top 5%, top 1%, top 0.5%, and top 0.1% to analyze
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ESSENCE-Dock’s efficacy in different scenarios. To compare and benchmark ESSENCE-Dock's
performance, we also computed the EFs at identical threshold levels using the rankings from
the individual docking methods: LeadFinder (LF) and Gnina (GN). Additionally, we calculated
two basic consensus metrics using the individual GN and LF docking calculations: the Mean
Binding Energy (MBE), which provides insights into the collective binding affinities, and the
Mean Rank (MR), which offers a measure of the ranking consistency across different docking
methods. All of these results are summarized in Table 1. The average results are compared
using a barchart in Fig. 4. The same information for the Median and all of the results for the
individual DUD-E targets can be found in the Supplementary Data (Fig. S1).

Fig. 4: Bar Chart of Average Enrichment Factors (EF) Across 21 Various DUD-E Targets at Varying
EF Thresholds.
This figure provides a comparative analysis of Enrichment Factors (EF) across 21 distinct DUD-E targets.
The Y-axis represents the enrichment factor, while the X-axis indicates the corresponding EF threshold
values. The color-coded bars correspond to the different ranking methods: LeadFinder, Gnina, Mean
Rank, Mean Binding Energy and ESSENCE-Dock.
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Table 1: Comparative Performance of ESSENCE-Dock and Reference Docking Methods Across 21 DUD-E Targets at Various Enrichment Factors
(EF%). Table 1 compares the performance of ESSENCE-Dock (Cons.) with reference methods (LeadFinder - LF, Gnina - GN, Mean Rank - MR, and
Mean Binding Energy - MBE) across 21 DUD-E targets at various Enrichment Factors (EF%). The table presents EF values for top 5%, top 1%, top 0.5%,
and top 0.1%. Shaded cells indicate method rankings, with green denoting higher comparative EF and red indicating lower comparative EF.

EF5% EF1% EF0.5% EF0.1%

LF GN MR MBE Cons. LF GN MR MBE Cons. LF GN MR MBE Cons. LF GN MR MBE Cons.

ADA 3.9 3.2 4.3 4.1 5.6 1.1 0.0 9.8 5.4 11.9 0.0 0.0 8.5 4.3 21.3 0.0 0.0 9.9 0.0 39.7

AKT1 1.7 3.6 2.7 3.3 1.4 1.7 8.6 4.4 6.5 2.7 2.7 12.2 6.8 8.8 2.7 0.0 26.9 6.7 16.8 3.4

AMPC 0.8 0.8 0.8 0.0 2.9 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CASP3 2.9 4.2 5.5 5.0 5.0 9.5 4.5 10.6 11.1 9.5 11.2 4.1 13.2 15.2 17.2 5.0 0.0 14.9 24.9 39.8

CP3A4 2.8 1.5 2.4 2.9 2.0 4.7 1.8 2.3 4.1 1.8 8.2 2.3 4.7 7.0 0.0 11.7 5.9 5.9 5.9 0.0

CXCR4 2.0 0.5 1.0 0.5 0.5 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

FA7 5.6 8.6 9.0 9.3 7.5 8.7 14.8 20.1 20.9 17.4 7.0 17.4 29.7 24.4 22.7 0.0 0.0 55.8 37.2 55.8

FABP4 0.4 8.1 3.4 5.5 6.4 0.0 21.3 2.1 8.5 10.6 0.0 25.5 0.0 8.5 8.5 0.0 0.0 0.0 0.0 0.0

FPPS 0.0 5.6 0.0 0.0 9.4 0.0 2.4 0.0 0.0 20.1 0.0 0.0 0.0 0.0 28.0 0.0 0.0 0.0 0.0 11.7

GCR 0.7 5.3 2.9 3.9 4.7 0.0 15.8 6.2 13.5 13.9 0.0 21.8 7.0 21.0 21.0 0.0 47.3 7.9 23.7 27.6

GLCM 5.5 1.1 3.7 4.1 5.5 11.0 1.8 3.7 11.0 5.5 11.3 0.0 3.8 15.0 7.5 0.0 0.0 0.0 0.0 0.0

HIVPR 5.1 4.5 7.1 7.0 6.5 5.4 6.2 14.2 11.2 9.7 4.5 6.0 17.6 14.2 12.0 3.8 9.4 26.3 24.4 26.3

HIVRT 2.5 3.3 3.8 3.8 4.2 2.7 3.6 5.6 5.6 8.9 1.2 4.7 7.1 5.9 13.0 0.0 9.0 9.0 6.0 18.0

HS90A 1.8 0.0 0.2 0.5 3.9 2.3 0.0 0.0 0.0 8.0 2.2 0.0 0.0 0.0 13.5 0.0 0.0 0.0 0.0 11.2

ITAL 3.3 3.2 2.9 3.3 3.0 8.0 11.6 11.6 13.1 9.5 13.1 8.7 21.8 20.4 17.5 7.0 7.0 55.6 48.7 48.7

KIF11 1.2 8.3 6.9 7.8 7.4 0.0 21.4 8.6 16.3 24.0 0.0 30.9 6.9 17.2 34.3 0.0 25.7 0.0 0.0 25.7

MK14 2.5 3.3 3.3 3.9 2.4 5.2 9.2 6.6 8.3 5.4 5.9 13.5 9.7 12.8 9.3 1.8 31.5 21.0 29.8 29.8

NRAM 0.6 1.2 3.1 2.0 7.5 0.0 0.0 2.0 0.0 17.3 0.0 0.0 0.0 0.0 29.0 0.0 0.0 0.0 0.0 53.6

PA2GA 2.4 5.3 1.6 1.8 8.9 0.0 6.1 1.0 1.0 25.5 0.0 6.1 2.0 2.0 30.6 0.0 10.6 10.6 10.6 31.8

TRY1 3.0 5.9 6.0 6.1 4.0 3.6 6.5 6.7 8.2 8.2 3.1 7.6 7.6 9.4 12.0 6.8 18.1 9.1 9.1 27.2

WEE1 14.3 17.6 15.3 16.8 17.6 41.8 60.3 61.3 61.3 53.5 47.5 61.3 61.3 61.3 59.3 61.3 61.3 61.3 61.3 61.3

Average 3.0 4.5 4.1 4.4 5.5 5.0 9.3 8.5 9.8 12.6 5.6 10.6 9.9 11.8 17.1 4.6 12.0 14.0 14.2 24.4

Median 2.5 3.6 3.3 3.9 5.0 2.3 6.1 5.6 8.2 9.5 2.2 6.0 6.9 8.8 13.5 0.0 5.9 7.9 6.0 26.3
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As illustrated in Table 1, our ESSENCE-Dock method often outperformed the other methods,
especially at the smaller EF fractions of EF0.5% and EF0.1%. In the case of EF0.1%,
ESSENCE-Dock was only surpassed by other methods in five cases: AKT1, CP3A4, GCR,
ITAL, and MK14. Even when our approach performed worse, it often still showed notable
enrichment. Only in the cases of AKT1 and CP3A4 did ESSENCE-Dock substantially
underperform other methods. For the other three DUD-E targets, ESSENCE-Dock's
performance remained competitive with high EFs of 27.6, 48.7, and 29.8 for GCR, ITAL, and
MK14, respectively. In some other cases such as AMPC, CXCR4, FABP4, and GLCM, none of
the methods manage to identify actives in the top 0.5% and 0.1% of ranked compounds,
resulting in EFs of 0. However, an important note is that these specific datasets are relatively
small (ranging from only ~2900 to ~3850 compounds). This means that at these top
enrichments, only a few compounds are considered, which can partly explain why all of the
methods score substantially worse here.

The individual EFs were averaged for each method and EF threshold, as summarized in Fig. 4.
This figure clearly demonstrates that our approach achieved the highest average enrichment
scores across all evaluated thresholds. While the improvement at EF5% is relatively modest, the
improvement becomes more evident as the EF threshold decreases. This is especially the case
with EF0.1%, where ESSENCE-Dock has an enrichment factor that is 5 times higher than
LeadFinder and 2 times higher than Gnina. Furthermore, even in comparison to the Mean Rank
and Mean Binding Energy consensus methods, ESSENCE-Dock is still nearly twice as effective.

Fig. 5 shows graphs comparing the ranking performance of the individual docking methods (GN
and LF) and the ESSENCE-Dock approach for three different DUD-E datasets: NRAM (A),
CASP3 (B), and CP3A4 (C). Each figure within this comparison features two separate
histograms: one representing the distribution of active compounds (in blue) and the other
depicting the distribution of decoy compounds (in orange). Of note are the varying quantities of
active and decoy compounds which lead to seperate Y-axes for each group. This distinction is
caused by the significantly larger number of decoys compared to active compounds. For all
docking methods, lower (more negative) scores on the X-axis indicate a better result. Similar
figures for all of the tested DUD-E datasets are provided in the Supplementary Data (Fig. S2).
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Fig. 5: Comparative Docking Performance of Gnina, LeadFinder, and ESSENCE-Dock on NRAM,
CASP3, and CP3A4 from the DUD-E Dataset.
This figure presents the distributions of actives (depicted in blue) and decoys (represented in orange)
based on their respective docking scores for the NRAM (A), CASP3 (B), and CP3A4 (C) datasets
included in the DUD-E database. Notably, the figure employs differently scaled axes to accommodate the
varying quantity of actives (left axis) compared to decoys (right axis). In all cases, a lower score (more
negative) indicates a better-ranked sample.

In the example of NRAM (Fig. 5A), the individual docking methods GN and LF don’t excel at
assigning better docking scores to the active compounds compared to the decoys. This is
reflected in the overlapping distributions between the actives and decoys in these cases. In
contrast, the assigned ESSENCE-Dock scores produce a distinct cluster of active compounds
distributed within the range of -25 to around -15, clearly separated from the decoy compounds.
These trends align with the quantitative data presented in Table 1, where our ESSENCE-Dock
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method at EF0.5% and EF0.1% for NRAM demonstrates substantial enrichment, while the other
methods yield enrichment factors of zero.

In the case of CASP3 (Fig. 5B), the individual docking methods GN and LF demonstrate better
performance compared to the NRAM case, successfully ranking a higher number of actives near
the top based on their respective docking scores. Still, ESSENCE-Dock is able to outperform
the other methods using the consensus approach. Again, this is reflected in Table 1, where at
EF0.5% and especially EF0.1%, ESSENCE-Dock shows a higher EF than the individual
docking methods, as well as the simplistic consensus MR and MBE results. Interestingly, again
there is a distinct cluster of active compounds present between the -20 and -15 scores.

Finally, Fig. 5C shows the example of CP3A4 from the DUD-E database. This is one of the
cases where ESSENCE-Dock performs worse compared to the other methods, as can also be
seen in the EF0.1% results for CP3A4 in Table 1. Even the individual docking methods, GN and
LF provide better enrichment than ESSENCE-Dock in this specific example. While these results
for ESSENCE-Dock on the CP3A4 dataset seem disappointing, they are also informative. The
observation that ESSENCE-Dock assigns lower scores to nearly all compounds in this dataset
indicates its effectiveness in detecting a lack of consensus, which, in turn, suggests that the
docking results may be unreliable.

In this context, the ESSENCE-Dock score can also be used as a confidence metric for the
consensus results. When the score is relatively bad (for example >-12.5), it usually means that
ESSENCE-Dock detects substantial disagreement between the individual docking methods.
This suggests that the consensus results are relatively unreliable and that caution should be
taken when interpreting them. This is supported by the results for most other datasets where
ESSENCE-Dock performs poorly (AMPC, CP3A4, CXCR4, FABP4, and GLCM), which typically
have low ESSENCE-Dock scores (>-15), indicating low confidence. We believe that the ability of
ESSENCE-Dock scores being able to act a quality measure for the docking results is a valuable
feature. Concretely, during virtual screening campaigns using ESSENCE-Dock, a certain score
cutoff (for example -15 or -20) could be chosen. Compounds scoring worse than the threshold
would be rejected, allowing researchers to effectively sift through and prioritize compounds,
reducing false positives and focusing on candidates with a more robust consensus.

Finally, we briefly discuss the runtimes of three DUD-E examples: MK14, TRY1 and WEE1.
These datasets vary in size, and can thus give an indication for the runtimes across different
dataset sizes. We will discuss the runtimes of the individual docking runs (Fig. 6), as well as the
time it takes to process the individual docking results into the final ESSENCE-Dock rescoring
(Fig. 7).
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Fig. 6: Wall-Clock Runtime Performance of Docking Algorithms on DUD-E Targets.
Bar chart depicting wall-clock runtimes for DiffDock, Gnina, and LeadFinder applied to MK14, TRY1, and
WEE1 datasets, highlighting the total wall-clock runtime of each method across varying dataset sizes.

Fig. 6 summarizes the total runtimes for the individual docking methods: DiffDock, Gnina, and
LeadFinder, calculated for the three aforementioned DUD-E datasets. MK14 included 36,428
compounds, TRY1 had 26,429, while WEE1 contained 6,252. DiffDock calculations were
performed on the NLHPC Leftraru supercomputer (“slims” node) with 4 CPU cores and 8GB
RAM per job. In contrast, Gnina and LeadFinder docking calculations were carried out on the
SCBI UMA Picasso HPC cluster, with Gnina being assigned 4 CPU cores and 2GB RAM, while
LeadFinder using 1 CPU core along with 2GB RAM per job.

In all cases, the Gnina calculations took the most amount of time. This can probably be
attributed to the fact that these calculations were run using only CPUs, while Gnina’s CNN
scoring algorithm has been optimized to be run with a GPU. The Gnina docking calculations
were assigned 4 CPUs per job, which was able to accelerate the initial generation and
optimization of binding poses compared to running it with only 1 CPU. However, the final step of
CNN scoring took up the most amount of time, and seemed to be unchanged regardless of the
amount of assigned CPUs. Thus, it is probably not able to take advantage of multiple CPU
cores during the CNN scoring calculations. However, access to GPUs could accelerate the CNN
scoring and reduce overall runtime substantially.
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In most cases, DiffDock and LeadFinder took about the same amount of wall-clock time to
complete. The exception here is with TRY1: here the LeadFinder calculations took even longer
than in the case of MK14. We assume this is an anomaly, as this is not in line with the trend that
we observed with the other datasets. One potential explanation could be due to a high server
load during those specific calculations, leading to overall longer runtimes.
Even though their runtime was similar, DiffDock and LeadFinder don’t have the same
computational cost: DiffDock was assigned 4 CPU cores, while LeadFinder ran on only one.
Note that DiffDock was also designed to be run on a GPU, but when it is not, it is still able to
take advantage of multiple CPU cores if they are available (unlike Gnina). Finally, LeadFinder is
made to be run on CPUs and thus is the most optimized. This translated into the lowest
runtimes in all scenarios, except in the anomalous case of TRY1. Note that the total runtime is
quite large, but when distributing this total time across many jobs (100 to even 250 jobs) on
HPC clusters, the total wall-clock runtime still is reasonable. However, screening very large
libraries (1 million compounds or more) would be a big task. Hence we recommend to first
perform a prescreening, using for example faster ligand-based techniques to narrow down the
amount of compounds. For this purpose, one could employ techniques such as fingerprint
similarity, shape-based screening or pharmacophoric similarity screening among others.

Fig. 7: Runtime comparison of the ESSENCE-Dock Consensus calculations across DUD-E targets
with varying sizes.
Scatterplot and trendlines depict UNIX real, user, and system runtimes for ESSENCE-Dock across
WEE1, TRY1, and MK14 datasets, with R² values indicating highly linear nature when increasing the
dataset size.
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In Fig. 7 we show the runtimes of the ESSENCE-Dock consensus calculations. In this process,
the individual docking calculations are processed and combined into the final ESSENCE-Dock.
The time to generate a PyMol Session file with PLIP scores is not included here. These
consensus calculations are performed using a Python script, which also makes use of
subprocess calls to obrms and obrotamer to calculate the RMSD and retrieve the number of
rotatable bonds. The time spent in subprocess calls is not included in the user time. Instead it is
listed as system time and therfore we include all 3 metrics as returned from the Unix “time”
command. These calculations were performed on a local workstation using 1 core and 2GB of
RAM on an AMD EPYC 7282 16-core processor.

Fig. 7 also shows that the ESSENCE-Dock consensus calculations scale linearly. The trendlines
have an R² value of 0.99 for system-time and 1.00 for user- and real-time, which confirms its
linear relationship. The total runtime can get more significant if the datasets are really large, but
it is still manageable, only taking up about 15 minutes for a small dataset (like the WEE1
example) and about an hour and 10 minutes for larger ones (like the MK14 example).

From these results, it is clear that our novel ESSENCE-Dock approach is a powerful docking
technique that is able to provide substantial enrichment across various families of proteins. On
top of that, it also provides helpful output files, including a PSE file of the top results along with
their predicted PLIP interactions. The predicted protein-ligand interactions are also summarized
in a useful JSON and CSV file.

Conclusions and Outlook
We have presented ESSENCE-Dock, an easy-to-use consensus docking workflow that focuses
on providing a high enrichment of active compounds. It combines three different docking
methods (DiffDock, Gnina, and LeadFinder) and considers the predicted binding pose
similarities, docking scores, and ligand flexibility. Additionally, the top results can be visualized in
an interactive PyMol session with PLIP-predicted protein-ligand interactions. The predicted
protein-ligand interactions are also provided in useful formats for post-processing.
ESSENCE-Dock can be run on HPC clusters using Singularity and Slurm, making it feasible to
apply the workflow on larger virtual libraries.

Future work could explore the use of new docking methods, as ESSENCE-Dock is flexible and
can easily be made to work with other docking methods. When new, better-performing docking
methods are developed, they can be quickly and easily integrated into the workflow. Additionally,
it could be interesting to train a machine-learning algorithm on all of this input data. This would
allow us to move to a machine learning scoring function, which could be more robust and
outperform the current method, leading to even better overall results.
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Data and Software Availability
DiffDockHPC: https://github.com/Jnelen/DiffDockHPC
Metascreener: https://github.com/bio-hpc/metascreener
The DUD-E docking results and consensus: https://zenodo.org/doi/10.5281/zenodo.10025839
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Abbreviations
ADT: AutoDock Tools
CNN: Convolutional Neural Network
Cons.: Consensus
CPU: Central Processing Unit
CSV: Comma Separated Values (file)
DD: DiffDock
DUD(-E): Directory of Useful Decoys(-Enhanced)
ECR: Exponential Consensus Ranking
EF: Enrichment Factor
GN: Gnina
GPU: Graphics Processing Unit
HTS: High-throughput Screening
HPC: High-Performance Computing
LF: LeadFinder
MBE: Mean Binding Energy
ML: Machine Learning
MR: Mean Rank
PDB: Protein Data Bank
PLIP: Protein-Ligand Interaction Profiler
PSE: PyMol Session (file)
RAM: Random Access Memory
RB: Rotatable Bonds
RMSD: Root Mean Square Deviation
VS: Virtual Screening
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