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Abstract

Deep learning methods that predict protein-ligand binding have recently been used

for structure-based virtual screening. Many such models have been trained using

protein-ligand complexes with known crystal structures and activities from the PDB-

Bind dataset. However, because PDBbind only includes 20K complexes, models typ-

ically fail to generalize to new targets, and model performance is on par with models

trained with only ligand information. Conversely, the ChEMBL database contains

a wealth of chemical activity information but includes no information about binding

poses. We introduce BigBind, a dataset that maps ChEMBL activity data to proteins

from the CrossDocked dataset. BigBind comprises 583K ligand activities and includes

3D structures of the protein binding pockets. Additionally, we augmented the data

by adding an equal number of putative inactives for each target. Using this data, we

developed Banana (BAsic NeurAl Network for binding Affinity), a neural network-

based model to classify active from inactive compounds, defined by a 10 μM cutoff.
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Our model achieved an AUC of 0.72 on BigBind’s test set, while a ligand-only model

achieved an AUC of 0.59. Furthermore, Banana achieved competitive performance

on the LIT-PCBA benchmark (median EF1% 1.81) while running 16,000 times faster

than molecular docking withGnina. We suggest that Banana, as well as other models

trained on this dataset, will significantly improve the outcomes of prospective virtual

screening tasks.

Introduction

Structure-based virtual screening aims to identify compounds that bind to a pocket in a

target protein structure by ranking compounds from a large chemical library according to

predicted binding scores. The top-scoring compounds are prioritized for experimental vali-

dation. Traditional algorithms generate and score possible binding poses for each compound

using molecular docking and physics-inspired heuristics.1–4 These docking methods, how-

ever, have limited accuracy. Moreover, their slow speed presents challenges for screening

new libraries containing billions5 of compounds.6

Recently, deep learning techniques have been introduced to the field of structure-based

virtual screening to accelerate both pose generation and scoring of protein-ligand complexes.

To this end, many groups have used neural networks to score 3D protein-ligand complexes.

For instance, several groups have used 3D convolutional neural networks (CNNs) on voxel

grids defined by protein-ligand complexes.7,8 Notably, this is the approach taken by Gnina.9

Alternatively, graph neural network architectures such as message-passing neural networks

(MPNNs) on the 3D interaction graph of the complex have been proposed.10–12

Regardless of the architecture, the performance of all deep learning models that score

3D protein-ligand complexes is limited by the available data. For instance, many models

have been trained with the PDBbind dataset, which uses 3D protein-ligand complexes from

the Protein Data Bank (PDB)13 mapped to known activities. This dataset incorporates ca.

20K protein-ligand complexes, a relatively small amount of data compared to well-known
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and successful cases of using deep learning in domains such as image recognition and natural

language processing.14,15

Because of its relatively small size, the accuracy of models trained on the PDBbind

dataset has been limited. While many papers report promising results,10–12 these results are

often inflated due to data leakage. This problem arises when using data splits that have the

same protein in the train and test sets. The high apparent performance of such models is

misleading because of the inherent similarity of complexes in the train and test sets. It has

been observed that even a ligand-only K-nearest-neighbors (KNN) regressor can perform well

on the PDBbind refined set,16 whereas models perform much worse when using clustered

splits.17,18

Recently Francoeur et al. 18 introduced the CrossDocked dataset, which ameliorates sev-

eral issues with PDBbind. CrossDocked clusters experimental protein-ligand complexes into

conserved pockets, following Pocketome.19 It includes complexes with no known activity

data and augments the dataset with poses of ligands cross-docked to other receptors with

the conserved binding site. It also clusters the pockets according to 3D structural similarity

and uses these clusters for the data splits. The substantial expansion of the dataset with

these docked poses improved the performance of neural networks that select realistic docked

poses. Activity data, however, is still restricted to ligands with a known binding pose.

Training deep learning models on protein-ligand interactions with known crystal struc-

tures makes sense in the context of augmenting docking techniques that generate possible

ligand poses. However, such explicit knowledge about ligand pose in the binding pocket

may be unnecessary for predicting ligand binding scores. Indeed, several methods have been

proposed that predict activity given just the ligand chemical graph representation and the

3D receptor structure20 or the ligand graph and the receptor amino acid sequence.21–23 Ad-

ditionally, it is possible to train models that rely solely on docked poses, as is done by Liu

et al. 24 .

As mentioned above, deep learning has proven effective when using much more data than
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the 20K activity data points available in PDBbind or CrossDocked. Thus, we hypothesized

that an expanded dataset with orders of magnitude more binding data would result in more

accurate models for predicting binders to novel proteins. Herein, we describe the develop-

ment of BigBind, a dataset that maps molecular activities from ChEMBL25 to proteins in

CrossDocked. The current version of BigBind contains 582,957 activities comprising 399,090

unique compounds and 1,107 protein pockets. Additionally, we created rigorous data splits

based on pocket similarity so we can test model generalization to new pockets. We emphasize

that, since this dataset does not contain explicit knowledge of ligand binding poses, models

must use separate ligand and receptor graphs rather than an interaction graph. They may,

however, utilize interaction graphs resulting from docked poses.

Other datasets exist that map protein 3D structure (or sequence) to ligand activity

without crystal poses, but none have the scope of BigBind. DAVIS,26 KIBA,27 and KinCo,24

for instance, are limited to kinases. Benchmarking datasets such as DUD-E,28 DEKOIS,29

and LIT-PCBA30 also contain activity data without crystal poses, but these are designed

to benchmark rather than train SBVS models. As such, they do not contain the same

breadth of data as BigBind, and the data is highly imbalanced toward inactive molecules.

Additionally, it is inappropriate to use DUD-E as a training set due to subtle biases that

models can exploit.31,32

We then developed a simple graph neural network, Banana (BAsic NeurAl Network for

binding Affinity), to directly predict activity from the pocket and ligand graphs. In order

to address overfitting in our initial regression model, we used Stochastic Negative Addition

(SNA)33 to augment the dataset with putative inactives. We then trained a classification

model on the augmented dataset, which achieved an AUC of 0.72 on the BigBind test set.

In contrast, a ligand-only version of the model only achieved an AUC of 0.59, and a KNN

baseline achieved an AUC of 0.55.

Encouraged by these results, we tested the model on LIT-PCBA,30 a difficult benchmark

consisting of experimentally verified active and inactive molecules for a set of 15 targets.

4

https://doi.org/10.26434/chemrxiv-2022-3qc9t-v3 ORCID: https://orcid.org/0000-0003-0755-0278 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2022-3qc9t-v3
https://orcid.org/0000-0003-0755-0278
https://creativecommons.org/licenses/by/4.0/


When used alone, Banana achieves competitive performance with Gnina (median EF1% of

1.81 versus Gnina’s EF1% of 1.88 for the default ensemble and 2.58 for the dense ensemble).

Overall, we demonstrate that a model trained on this dataset can successfully generalize

to new targets and shows promise for prospective virtual screening campaigns. We hope

that newer, more advanced, models will use BigBind to achieve even greater performance.

Methods

Dataset Creation

CrossDocked
2,922 pockets
18,450 complexes

ChEMBL
19,780,369 
activities

BigBind
582,957 activities with 
3D pocket structure

Determine pocket 
bounds

Curation and duplicate 
handling

Cluster pockets and 
create data splits

Find activity data for 
proteins with single 
pocket

Figure 1: Workflow to create the BigBind dataset.

To generate the BigBind dataset, we first determined the Uniprot34 accession numbers

for each protein in the CrossDocked dataset using the SIFTS dataset.35 The receptor struc-

tures from CrossDocked are clustered into conserved binding sites from Pocketome,;19 we

filtered out all proteins with multiple such binding sites. We then queried the ChEMBL 33

database to find all molecules with known activities for those proteins. We only used as-

says with target type of "PROTEIN" to ensure each measurement was target-specific rather

than cell-based. We assumed that all compounds in ChEMBL that are annotated as active

against those proteins bind in that known pocket (this assumption may be incorrect for
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some compounds, leading to noise in the dataset). We also note that we used the pChEMBL

value as an activity score for each protein-ligand pair; this adds additional noise because

it aggregates different types of experimental information (such as Ki, Kd, and IC50) into a

single value. To reduce this noise in the dataset, we additionally removed data from primary

high-throughput screening (HTS) assays (standard type equal to "Potency").

We then curated the resulting molecules. Following the convention of ZINC,36 we filtered

out any molecule containing elements other than H, C, N, O, F, S, P, Cl, Br, or I. We also

filtered out all compounds with disconnected chemical graphs (e.g. salts) and ensured that

each molecule contained at least 5 atoms and had a molecular weight of less than 1,000

amu. If a protein-ligand pair had multiple activities in ChEMBL, we recorded the median

value. We also used RDKit37 to generate a 3D structure for each molecule and optimized

the resulting structure using UFF.38 If RDKit failed to generate an optimized structure for

a compound, it was removed. We note that the UFF structures were created so we can test

docking methods on the dataset; the method described in this paper only uses 2D ligand

information.

Using the aligned crystal structures from CrossDocked, we also determined the extent of

each protein binding pocket. For each pocket, we superimposed all ligand crystal structures

that bind to that pocket, and, for each receptor crystal structure, we chose all residues within

5 Å of any ligand atom. We saved a separate pocket PDB file for each receptor. We also

defined the pocket 3D bounding box to be the minimum box that contains all crystallized

ligands with 4 Å of padding on all sites. We filtered out all pockets with less than 5 residues

or with bounding boxes of more than 42 Å on any side. We additionally used PDBFixer39

to add missing atoms to each PDB file. When training the models on this dataset, we chose

a random pocket from the relevant pocket folder.
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Computing the Data Splits

We split the dataset into train, validation, and test sets according to both protein pocket

and ligand similarity scores. To compute pocket similarity, we used a pocket-level version

of the TM-align algorithm40 (details in the Supporting Information). Since a pocket may

have multiple 3D structures, we defined the similarity between two pockets as the maximum

pocket-level TM score between any two of their structures. The ligand similarity was defined

as the Tanimoto similarity of two ligands’ 2048-bit Morgan fingerprints with radius 3. Two

pockets were placed in the same cluster if their TM scores were greater than 0.89. The TM

cutoff was lowered to 0.82 if the pockets were known to bind to any ligand with Tanimoto

similarity greater than 0.7. The rationale for choosing these two cutoff values is laid out in

more detail in the Supporting Information. We split the dataset according to these pocket

clusters. To ensure we can use performance on LIT-PCBA as an evaluation metric, we also

ensured that all pockets in the same cluster as any LIT-PCBA target were also in the test

set.

Stochastic Negative Addition

To utilize SNA, we first turned the problem into a classification problem. For every data

point in the original dataset, we labeled the compound active if its activity was less than 10

μm (pChEMBL value greater than 5). Then, for each target, we added an equal amount of

randomly selected compounds that we labeled as inactive. When selecting these presumed

inactive, we ensured that the compounds were not known to bind to any target in the same

pocket similarity cluster as the current target in question. In addition to encouraging models

to pay attention to both ligand and protein features, SNA also serves to balance the dataset.

Before applying SNA, 84% of activities in the dataset are considered active; after applying

SNA, 41% of the dataset is active.
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KNN Baseline

To score a protein-ligand interaction using a KNN classifier, we must first define a single

similarity measure over protein and ligand pairs. If L is the ligand Tanimoto similarity and

R is the protein pocket TM score between two datapoints, we want to know the optimal

linear combination of these scores to compute the total similarity. To do so, we estimate the

joint probability distribution P (L,R) for all pairs of datapoints in BigBind. We then fit a

linear model to predict log P (L,R)
P (L)P (R)

. This ratio measures how likely two ligand and protein

similarities are to co-occur relative to what would be expected from random co-occurrence.

We use the coefficients on L and R to define the global similarity measure S = 0.18L+3.57R.

To run the KNN model (with K=1) on a new protein-ligand pair, we simply find the molecule

with the closest S in the BigBind training set (without SNA) and return S as the activity

score. We note that, unlike the KNN used by Volkov et al. 16 , this KNN incorporates both

ligand and receptor information and is thus a more robust baseline.

Model Architecture and Training

Figure 2: Banana architecture.

The architecture of Banana is shown in Figure 2. For the model input, we prepare

graphs for both the receptor binding pocket and the ligand. Following previous studies,41–43

the nodes of the receptor graph are the residues, labeled with the amino acid name. An
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edge exists between two nodes in the receptor graph if their α-carbons are within 20 Å of

each other. The scalar distance between them is used as edge data. For the ligand graph,

we simply use the molecule graph. The nodes are heavy atoms and are labeled with the

element, formal charge, hybridization, number of bonded hydrogens, and whether or not the

atom is aromatic. The edges are bonds and are labeled with the bond order.

Two separate MPNNs are used to create output vectors vL and vR for the ligand and

receptor, respectively. Similarly to Krasoulis et al. 20 , we then compute the outer product

vLv
⊺
R. After flattening, we use a multi-layer perceptron (MLP) to compute the scalar out-

put. For the regression task of predicting activity we use this output directly, and for the

classification task of predicting whether or not the ligand is active against the pocket, we

use a sigmoid to give us the output probability.

For all experiments, we trained the model with and without receptor information. To

remove receptor information, we kept the model architecture the same but only gave it the

first receptor pocket in the dataset. We note that this results in a ligand-only architecture

that is unnecessarily complex, but we nonetheless wanted to ensure the architecture was the

same as the ligand-and receptor model to provide a robust control.

When training, we used a mean squared error (MSE) loss for the regression task and a

binary cross-entropy (BCE) loss for the classification task. We used the AdamW optimizer44

with a learning rate of 10−5 and a batch size of 16. We trained the classification models

for 5 epochs and the regression models for 50 epochs. The remaining hyper-parameters and

training details can be found in the supporting information.

Model Evaluation

To test the classification models, we looked at the area under the curve (AUC) of the receiver

operating characteristic (ROC) on the BigBind test set. This gives an overall view of how

well the model classifies actives from inactives. However, for practical virtual screening

applications, one cares more about whether or not the model can select actives from a large
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set of mostly inactive molecules. To test this, we evaluated the final ligand-and-receptor

classification model on LIT-PCBA, a challenging benchmark composed of data from high-

throughput screens. LIT-PCBA includes lists of experimentally verified active and inactive

molecules for all 13 targets, each of which has several 3D structures cocrystallized to different

ligands. We use the ligands in these cocrystal structures to define the binding pocket in the

same way we created all the pockets in the BigBind dataset. We emphasize that, since all

the targets from LIT-PCBA were placed in the BigBind test set, each target is entirely new

to Banana. We measured the model’s top 1% enrichment factor (EF1%) and normalized

enrichment factor (NEF1%) on each target in LIT-PCBA. The EF1% is the ratio of actives in

the top 1% of ranked compounds divided by the ratio of actives in the whole set. The NEF%

is the EF1% divided by the maximum achievable EF1% for the target, thus normalizing

the value between zero and one. These results were compared with AutoDock Vina1 and

Gnina, as reported by Sunseri and Koes 45 . We wish to emphasize that, though LIT-

PCBA is a promising benchmark due to its use of experimental results rather than putative

decoys, many of the assays used are cell-based rather than target-specific. Thus the activity

annotations are noisy and not entirely dependent on the molecule’s engagement with the

protein target in question.

To benchmark the speed of Banana, we evaluated the model on the complexes in the

PDBbind 2016 core set on a laptop with an NVIDIA GeForce RTX 2060 Mobile GPU. This

speed was then compared to the speed of Gnina (default ensemble) as reported by McNutt

et al. 9 .

Since Banana is significantly faster than traditional docking tools, we wondered whether

it could be useful for filtering out compounds in a virtual screen prior to conventional docking.

To answer this, we used Banana to filter out 90% of the compounds and used Gnina (with

both the default and dense ensembles) to rerank the remaining 10%. We tested this on

LIT-PCBA and report the resulting enrichment factors.
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Results

The Importance of Stochastic Negatives
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Figure 3: ROC curves for models trained and evaluated with and without SNA. When we
train and evaluate the model without SNA (top left), the ligand-only model appears to
outperform the full model. However, those same models both perform poorly after SNA
is applied to the test set (top right). When we train with SNA, the performance of both
models decreases on the non-SNA test set (bottom left). When evaluated on the SNA test
set, only the full model maintains high performance (bottom right).

As can be seen in Figure 3, when Banana is trained without SNA, the ligand-only

model outperforms the ligand-and-receptor model (AUC 0.80 versus 0.75). The fact that

receptor information reduces performance implies that this performance is entirely due to

biased protein-ligand co-occurrence within the dataset. Indeed, when we apply SNA to

the test set and try the non-SNA models, we see that both versions perform poorly (AUC
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0.63 versus 0.59). Thus, these models are unsuitable for prospective virtual screening tasks.

On the other hand, when the models are trained with SNA, the ligand-and-receptor model

significantly outperforms the ligand-only model on the SNA test set (AUC 0.72 versus 0.59).

Curiously, training with SNA slightly decreases the performance of both models on the non-

SNA test set (AUC 0.71 and 0.78). These observations support our hypothesis that SNA

provides a way to force the model to learn information about the ligand-receptor interaction

rather than simply exploiting the fact that certain ligand scaffolds are only tested against

certain protein classes in the dataset. All models tested outperform the KNN baseline (AUC

0.55).

Model Performance on LIT-PCBA
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Figure 4: Performance of all the models on LIT-PCBA targets.

As Table 1 demonstrates, our model achieves performance comparable toGnina with the

default ensemble (EF1% 1.81 versus 1.88) on LIT-PCBA, though still falls behind Gnina

with the dense model (EF1% 2.58). Intriguingly, the combined models are slightly worse

than either individually; Banana+Gnina (default) and Banana+Gnina (dense) achieve

AUCs of 1.41 and 1.13, respectively. Nonetheless, Banana, Gnina, and all combinations

thereof do demonstrate superior performance to AutoDock Vina.
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Overall, Banana achieves enrichment factors that are competitive with Gnina. The

most promising aspect of the model, however, is the speed. We find that Banana takes an

average of 1.7 ms to evaluate a single protein-ligand complex from the PDBbind 2016 core

set. Since Gnina (default) takes an average of 27 s on the same set, our model shows a

speedup factor of 16,000.

Table 1: Median EF1%, NEF1%, and AUC values for all the models on the LIT-PCBA
benchmark. Note that the combined Banana+Gnina models are algorithms for selecting
top compounds in a virtual screen that do not compute a single score for each compound.
Thus they have no AUC values.

Model EF1% NEF1% AUC
BANANA 1.81 0.02 0.58

Vina 1.1 0.01 0.58
GNINA (default) 1.88 0.02 0.61
GNINA (dense) 2.58 0.04 0.62

BANANA+GNINA (default) 1.41 0.02
BANANA+GNINA (dense) 1.13 0.01

Discussion

In recent years there have been many advances in deep learning model architectures for

analyzing molecules.46–50 Following traditional methods, deep learning models have often

attempted to predict ligand activity from 3D protein-ligand complexes. However, this re-

quires a dataset that contains activity data for known co-crystallized complexes, and such

datasets are small and biased. Most methods have been trained on PDBbind, which only has

about 20K activity values. CrossDocked augments this dataset with additional pose data,

but does not expand on activity data. In principle, however, ligand selection can be accom-

plished without the knowledge of the binding site. Thus, we developed BigBind, a dataset of

583K protein-ligand activities along with the 3D structure of the respective receptor binding

pocket.

We first tried training regression models to directly predict protein-ligand activity, but
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our initial results demonstrated the same problems seen in PDBbind – namely, that the

model overfit to targets in the training set, and has similar performance with and without

receptor information. It seems that simply adding more data doesn’t automatically yield

better generalization. We hypothesized that the source of this issue was biased protein-ligand

co-occurrence in the dataset. Since ChEMBL activities are curated from publications, many

molecules were specifically designed to bind to the target they were tested on. Thus it may

be possible to guess the relevant target information simply by analyzing the ligand (as our

models appeared to be doing). This process, however, does not generalize well to new targets,

which is why the models overfit.

To combat this, we used Stochastic Negative Addition. Since protein-ligand binding is

rare, if we choose a random molecule and random target from the dataset, we can assume

that the compound is inactive against the target. By adding these putative inactives to our

dataset, we alleviate the issue of being able to guess target properties by simply looking

at the ligand. This increased the size of the dataset to 1.2M datapoints. Our results are

consistent with this hypothesis. We showed that a model trained on the resulting dataset

is forced to learn information about protein-ligand interactions and can indeed generalize to

new targets.

We then showed that our model, when used alone, performs comparably to docking

with Gnina on the LIT-PCBA benchmark while running 16,000 times faster. Banana

can achieve such a large speed improvement because it does not require generating possible

3D structures for the protein-ligand complex, a bottleneck of traditional docking methods.

Thus Banana demonstrates immediate utility for virtual screening. Notably, since the

model takes only 1.7 ms to evaluate a single ligand, it shows promise for screening ultra-

large libraries such as Enamine’s REAL Space.5

The model described in this paper is relatively simple, and we plan on exploring more

advanced architectures in the future. We are especially interested in exploring models that

hypothesize a 3D pose for the ligand to explain the activities. Perhaps having more domain
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knowledge about 3D space will improve model performance. Additionally, we hope to expand

BigBind in the future. PubChem,51 for instance, has data from high-throughput screens not

seen in ChEMBL. This data is noisy, but it is possible that adding it will improve model

performance.

Data and software availability

The code for creating the dataset can be found at https://github.com/molecularmodelinglab/bigbind,

and the full dataset can be downloaded at

https://storage.googleapis.com/bigbind data/BigBindV1.5.tar.gz. The code for training and

running Banana is available at https://github.com/molecularmodelinglab/banana.
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(21) Öztürk, H.; Özgür, A.; Ozkirimli, E. DeepDTA: deep drug–target binding affinity pre-

diction. Bioinformatics 2018, 34, i821–i829.

(22) Nguyen, T.; Le, H.; Quinn, T. P.; Nguyen, T.; Le, T. D.; Venkatesh, S. GraphDTA: pre-

dicting drug–target binding affinity with graph neural networks. Bioinformatics 2021,

37, 1140–1147.

(23) Wang, J.; Dokholyan, N. V. Yuel: Improving the Generalizability of Structure-Free

Compound–Protein Interaction Prediction. Journal of Chemical Information and Mod-

eling 2022, 62, 463–471.

(24) Liu, C.; Kutchukian, P.; Nguyen, N. D.; AlQuraishi, M.; Sorger, P. K. A Hybrid

Structure-Based Machine Learning Approach for Predicting Kinase Inhibition by Small

Molecules. Journal of Chemical Information and Modeling 2023, 63, 5457–5472, Pub-

lisher: American Chemical Society.

(25) Gaulton, A.; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.;

McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J. P. ChEMBL: a large-

18

https://doi.org/10.26434/chemrxiv-2022-3qc9t-v3 ORCID: https://orcid.org/0000-0003-0755-0278 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2022-3qc9t-v3
https://orcid.org/0000-0003-0755-0278
https://creativecommons.org/licenses/by/4.0/


scale bioactivity database for drug discovery. Nucleic Acids Research 2012, 40, D1100–

D1107.

(26) Davis, M. I.; Hunt, J. P.; Herrgard, S.; Ciceri, P.; Wodicka, L. M.; Pallares, G.;

Hocker, M.; Treiber, D. K.; Zarrinkar, P. P. Comprehensive analysis of kinase inhibitor

selectivity. Nature Biotechnology 2011, 29, 1046–1051, Number: 11 Publisher: Nature

Publishing Group.

(27) Tang, J.; Szwajda, A.; Shakyawar, S.; Xu, T.; Hintsanen, P.; Wennerberg, K.; Ait-

tokallio, T. Making Sense of Large-Scale Kinase Inhibitor Bioactivity Data Sets: A

Comparative and Integrative Analysis. Journal of Chemical Information and Modeling

2014, 54, 735–743, Publisher: American Chemical Society.

(28) Mysinger, M. M.; Carchia, M.; Irwin, J. J.; Shoichet, B. K. Directory of Useful Decoys,

Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking. Journal of

Medicinal Chemistry 2012, 55, 6582–6594, Publisher: American Chemical Society.

(29) Bauer, M. R.; Ibrahim, T. M.; Vogel, S. M.; Boeckler, F. M. Evaluation and Op-

timization of Virtual Screening Workflows with DEKOIS 2.0 – A Public Library of

Challenging Docking Benchmark Sets. Journal of Chemical Information and Modeling

2013, 53, 1447–1462, Publisher: American Chemical Society.

(30) Tran-Nguyen, V.-K.; Jacquemard, C.; Rognan, D. LIT-PCBA: An Unbiased Data Set

for Machine Learning and Virtual Screening. Journal of Chemical Information and

Modeling 2020, 60, 4263–4273.

(31) Chen, L.; Cruz, A.; Ramsey, S.; Dickson, C. J.; Duca, J. S.; Hornak, V.; Koes, D. R.;

Kurtzman, T. Hidden bias in the DUD-E dataset leads to misleading performance of

deep learning in structure-based virtual screening. PLoS ONE 2019, 14, e0220113.

(32) Sieg, J.; Flachsenberg, F.; Rarey, M. In Need of Bias Control: Evaluating Chemical

19

https://doi.org/10.26434/chemrxiv-2022-3qc9t-v3 ORCID: https://orcid.org/0000-0003-0755-0278 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2022-3qc9t-v3
https://orcid.org/0000-0003-0755-0278
https://creativecommons.org/licenses/by/4.0/


Data for Machine Learning in Structure-Based Virtual Screening. Journal of Chemical

Information and Modeling 2019, 59, 947–961, Publisher: American Chemical Society.
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