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We report a robust and compact methodology for averaging quantum photoexcitation dynamics 

over the initial orientations of the molecules with respect to an ultrashort light pulse. We use 

singular value decomposition of the density matrix of the excited molecules which allows 

identifying the few dominant principal molecular orientations with respect to the polarization 

direction of the electric field. The massive compaction of the density matrix of the ensemble 

of randomly oriented pumped molecules enables a most efficient fully quantum mechanical 

time propagation scheme. Two examples are discussed for the quantum dynamics of the LiH 

molecule in the manifolds of its electronically excited  and  states. 
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Introduction 

Recent progress in attoscience1-2 open the way to new avenues for controlling chemical 

reactivity through the selective excitation of a superposition of electronic states with the short-

in-time-broad-in-energy attopulse.3 As pointed out very early,4 the orientation of the molecule 

with respect to the polarization direction of the pulse electric field is a very effective way to 

control the initial superposition built by the pulse and therefore the subsequent dynamics. 

Molecules can be oriented using a single or a sequence of laser pulses, enabling to carry out 

field free photoexcitation or photoionization experiments in the molecular frame. 5-9 However, 

the achievable orientation is typically limited to values of  ≈ 0.7 and  ≈ 0.8. 

Moreover, the proposed experimental approaches to orient molecules are not applicable to all 

types of molecules.10-12 Therefore, it is often the case that a realistic description of quantum 

dynamics of molecules photoexcited by short atto and few fs pulses requires an averaging over 

the molecular orientations with respect to the polarization direction of the exciting optical 

pulse. However, averaging quantum dynamics simulations over an ensemble of molecular 

orientations can be computationally rather costly in computer time and storage capacity since 

the quantum dynamical propagation needs to be repeated as many times as the number of 

molecular orientations in the ensemble. While such an orientation averaging is manageable 

computationally for diatomic molecules, it becomes out of reach for quantum dynamical 

simulation involving several nuclear degrees of freedom on coupled electronic states, as typical 

when molecules and molecular cations are excited by ultrashort, broad in energy atto pulses.2, 

13 Here we propose a numerical approach for computing the ensemble dynamics of randomly 

oriented molecules interacting with an ultrashort optical pulse that considerably lowers the 

computational resources and provides insights on the orientation effects. Our approach is based 

on the Singular Value Decomposition (SVD)14 of the matrix built from the pure quantum states 

associated with each molecular orientation of the ensemble. This matrix, A, is a rectangular 

matrix with dimension, Nb, the number of basis set functions used to expand the wave function, 

times the number of molecular orientations, No. Typically, after the pulse is over, only a few 

principal components suffice to obtain an accurate description of the matrix A. The SVD 

principal components identify the most important orientations that contribute to the ensemble 

dynamics (the singular orientation vectors) and the corresponding molecular pure quantum 

states (the singular molecular states). In addition to provide physical insights on the role of 

orientation averaging on the ensemble dynamics, we show that the SVD compaction 

significantly reduces the cost of computing the quantum dynamics of the ensemble since only 

cosθ cos2θ
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few singular (pure) quantum states need to be stored and propagated after the pulse to 

accurately describe the ensemble quantum dynamics. An exact description is obtained by 

retaining as the number of principal components the smallest dimension of A matrix, which is 

typically the number of orientations, No. For an approximate description, one can adjust the 

number of retained principal components necessary to reach a specified accuracy threshold. 

We find that only a few components are required for a satisfactory semi-quantitative description 

 

SVD approach to quantum dynamics averaged over random orientations 

At time t = 0, the molecules of the ensemble are in their ground electronic state. The different 

molecules of the ensemble are distributed over their particular orientation, o, with respect to 

the polarization direction of the exciting pulse. Each initial orientation, o, at the time before 

excitation defines a pure state, . During and after the excitation by the atto pulse 

each initial state evolves into , a coherent combination represented as a Born-Huang 

expansion, a sum of Nb separable terms in the nuclear and electronic degrees of freedom: 

  (1) 

where  is the Born-Huang amplitude of the vibronic basis function  for the initial 

orientation, o. The index b stands for a nuclear and an electronic index which, for a pulse 

broad in energy, includes several coupled electronic states. In general we expect that the 

number of terms in Eq. (1) is such that Nb >> No,   where No is the number of molecular 

orientations in the ensemble. The amplitudes  are computed by integrating the Time-

Dependent Schrödinger Equation (TDSE), on a basis of Ng grid functions for the nuclear 

coordinates for Ne coupled adiabatic electronic states, which leads to Nb = Ng x Ne: 

    (2) 

The inequality Nb >> No is primarily because the number Ng of grid points needs to be large. 

The molecular Hamiltonian, H, includes the coupling to the electric field of the pulse, , 

in the dipole approximation and the non adiabatic coupling (NAC) between the electronic states 

driven by the nuclear motion. For a diatomic molecule,  

 (3) 

  
Ψo t = 0( )

Ψo t( )

Ψo t( ) =
b=1

Nb

∑ cb
o t( ) b

cb
o t( ) b

  cb
o(t)

i!
dco
dt

= Hco

E t( )

   
H = − 1

2µ
∇R

2 + 2τ R( ).∇R + ∇Rτ R( )( ) + τ R( ).τ R( )( ) + V R( )−E t( ).µ
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In Eq. (3), the second and third terms are the NAC terms and V(R) the potential term. The last 

term is the dipole coupling, where the orientation of the electric field vector, E(t), is defined in 

the molecular frame attached to the center of mass of the molecule. This considerably simplifies 

the numerical integration and is equivalent to defining the orientation of the molecular frame 

with respect to the orientation of the electric field in the laboratory frame. Note that one needs 

to rotate back to the laboratory frame before analyzing angular distributions. 

During the pulse, the Hamiltonian depends on time. One needs to take into account the 

orientation of the electric field with respect to the molecule to describe the excitation dynamics. 

We do so by integrating the TDSE during the pulse for all the No orientations of E(t), each 

computed separately, obtaining No time-dependent pure states . These states are 

gathered into a rectangular, complex, Nb x No, matrix A with typically No < Nb. Singular Value 

Decomposition (SVD) provides an exact description of the matrix A as a sum of a maximum 

of No separable terms, its principal components.14 The SVD factorization of A is a sum of direct 

products of a left, , and a right, , singular complex eigenvector weighted by the 

corresponding (real) singular value, , 

   (4) 

In each principal component, m, the right singular vector, , has No components, , 

and depends only on the orientation index, o, and the left singular vector, , has Nb 

components, , and depends only on the basis set index b. Throughout, we refer to  as 

the orientation singular vector and to  as the molecular singular vector. 

From the rectangular A matrix, one can construct two reduced square density matrices. The Nb 

x Nb density matrix of the ensemble of molecules, , is the trace over the orientations 

and depends on the molecular degrees of freedom only. It is the  quadratic form of the 

matrix A(t): 15, 

 (5) 

Inserting Eq. (4) into Eq. (5), one gets 

Ψo t( )

Um Vm
†

σ m

A t( ) =
m=1
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∑ σ m t( ) Um t( )⊗Vm† t( )

Vm t( ) vom t( )
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∑
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  (6) 

where the last line is obtained by taking into account the orthogonality of the orientation 

singular vectors so that .  depends on the singular molecular vectors only. 

Similarly, one can define the complementary No x No reduced density matrix, , by the 

quadratic form : 

  (7) 

which depends on the orientation singular vectors only.  

During the pulse, the electronic and nuclear degrees of freedom are coupled to the orientations 

through the dipole terms, which leads to a time dependence of the singular values . When 

the pulse is over, the dipole coupling terms vanish and the Hamiltonian, Eq. (3), becomes 

stationary. Then the singular values become stationary since we consider a non rotating 

molecule. Note that the two partial traces have the same set of eigenvalues, which are the square 

of the singular values, , of A: 

 . (8) 

with . The SVD of the A matrix at the end of the pulse, at time ti, therefore 

provides a set of orthogonal pure states, , that each corresponds to a specific singular 

orientation of the molecule as defined by the corresponding orientation singular vector Vm. We 

show below that only a few singular values , , suffice to recover accurately 

the molecular density matrix, , at the end of the pulse. One can set a maximum number 

of singular values needed by putting a threshold on how well the norm is recovered: 

   

ρmol t( ) = 1 No( )
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† .Um '( )⊗Vm '
†( )

= 1 No( )
m
∑ σ m

2 t( ) Vm ⊗Vm
†( )
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1
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⎛
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   (9) 

Since the molecular Hamiltonian is stationary after the pulse and the molecule is not rotating, 

the singular values are stationary as well. One can therefore set up a very efficient propagation 

scheme for the density matrix of the ensemble of molecules after the pulse is over by only 

propagating with the molecular Hamiltonian (Eq. (3)) the few, ,  vectors that 

correspond to the largest singular values:  

 for  t > ti, with  (10) 

where the initial values, , are the coefficients of the  vectors at the time ti (the end of 

the pulse). 

Providing that the TDSE is integrated accurately so that the integration error is smaller that 

, the numerical error, Eq. (9), that is due to the fact that we use a restricted number of 

principal components of the matrix A, does not increase with time. Using Eq. (6), we get

  t > ti (11) 

To summarize, our approach requires to propagate all the initial states defined by a sampling 

of the molecular orientations until the pulse is over. Since we consider excitation by short atto 

or few fs pulses, this propagation time is short, of the order of 20 fs for a pulse with a FWHM 

of 2 fs. Then when the Hamiltonian is stationary, one performs an SVD analysis of the matrix 

A (Eq. (4)) and retains the Nmin largest principal components necessary to reach a specified 

accuracy threshold. Only these fewer components need to be propagated after the pulse using 

the TDSE as long as the molecular Hamiltonian remains stationary. This approach reduces the 

computer time needed to compute quantum molecular dynamics averaged over molecular 

orientations by at least 2 orders of magnitude for the dynamics of diatomic molecule taking 

place on several electronic states. The gain is even larger when molecule has several nuclear 

degrees of freedom. It is also storage efficient because it allows compacting the information of 

dynamics of the randomly oriented initial states into a few singular components. Using our 

approach, one does not need to store and analyze the dynamics of the all the randomly 

orientated initial states. 

 

ΔNmin = 1− Tr ρmol
Nmin ti( )⎡⎣ ⎤⎦ = 1−

1
No

⎛

⎝⎜
⎞

⎠⎟ m=1
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∑ σ m
2 ti( ) ≥ 0

Nmin Um

i!dUm dt = HUm Um ti( ) =
b=1

b

∑ ubm ti( ) b

ubm ti( ) Um

ΔNmin
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Nmin t( ) = 1/ No( ) σ m

2 ti( )
b

Nb

∑
b '

Nb '

∑ ubm
*

m=1

Nmin

∑ t( )ub 'm* t( ) b b '

= 1/ No( )
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Results and discussion 

We apply our scheme to the non rotating LiH molecule excited by two deep UV few cycles 

pulses of different frequency and with the same FWHM of 2 fs (FWHM bandwidth of 1. 82 

eV). In the Franck-Condon (FC) region, Req = 1.6Å (see Figure S2), the transition dipole 

moment from the GS to the lowest  state, , along z is smaller than the transition dipole 

along x or y to the lowest  state, , and to the higher  and states. We report on the 

dynamics induced using pulses with two different carrier frequencies, , tuned to access 

different combinations of  and  states. The first pulse has a carrier frequency of 4.35 eV, 

so that both the lowest  and   states fall within the pulse energy bandwidth. However, 

because of the difference in the transition dipole moments, for random orientations, it is the 

 state that is accessed, with only very low populations in the  and in the entire  

manifold. The second pulse has a higher carrier frequency of 5.17 eV which allows accessing 

the higher  and  states with similar probabilities. The strength of the electric field is 0.01 

a.u. (3.51 1012 W/cm2).  

The dynamics induced by the first pulse is used for benchmarking the SVD approach for 

random initial molecular orientations. Excitation by the 4.35 eV pulse yields very different 

populations: the population of the  state is 1-2 orders of magnitude larger than that of the 

 states. To benchmark our approach, we computed the time evolution by solving the TDSE 

for 800 random initial orientations using Eq. (2). The electronic structure parameters (potential 

energy, NAC and transition dipole curves) are those reported in ref. 16 and plotted in the SI 

(figures S1, S2 and S3). The NAC terms couple electronic states of the same symmetry,  or 

. Electric fields oriented along the molecular axis (the z axis in the molecular frame) can 

only accessed excited  states since the ground state is of  symmetry. However, as soon as 

the electric field has components along x or y in the molecular frame, a linear combination of 

 and  states is excited. Since the transition dipole to the  state is larger than to the  

states and to the other  states, the averaged populations in the two components of the  

state are much larger than that of the other states. The populations in the electronic states 

averaged over 800 random molecular orientations are plotted in figure 1a for the  state and 

in figure 1b for the  manifold and the  state.  
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Figure 1. Populations averaged over 800 molecular orientations in the  state (a) and (b) in 

the  manifold (  and ) and the  states computed for an excitation by the deep UV 

2fs pulse of 4.35 eV. The reason why the two components of the  state are not exactly equal 

is due to the fact that only 800 orientations are included in the averaging procedure. After the 

pulse, the population of the  state is essentially stationnary. The long time behavior is given 

in Figure S4. 

 

The electronic states within each manifold are coupled by the NAC terms. As can be seen from 

Fig 1b, the population transfers are far larger within the states of the  manifold than for the 

 ones. This is mainly due to the fact that the energy difference between the two  states is 

much larger, see Figure S4 for the long time behavior of the population in the  state. For the 

same reason, the population transfers between the  state and the higher  states are also 

small. 
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Our SVD approach to the ensemble dynamics begins by building the matrix A (Eq. (4) ) from 

the 800 randomly oriented co vectors and compute its principal components by SVD at every 

time step during the excitation by the pulse. The singular values are arranged in order of 

decreasing magnitude with  being the largest. The square of the 8 largest singular values, 

 normalized by No the number of initial random orientations are plotted in Fig. 2a as a 

function of time on a log scale to emphasize how far they decrease in magnitude with increasing 

order m. As discussed above, after the pulse, the Hamiltonian is stationary and the singular 

values are constant in time. The normalized singular value  is unity before excitation and 

remains close to one after the pulse. It can be correlated with the ground electronic state as we 

discuss below (Figure 4).  and  are degenerate during and after the pulse, while  and 

 that are degenerate during the pulse while after the pulse, it is the pair ,  that are 

equal. As shown in figure 4 below, these two pairs of singular values are localized on the two 

 states,   and . One can also see in Figure 2a that a larger number of singular values 

are important during the pulse than after the pulse, which is due to the fact that the populations 

of the higher  states that are involved in the transient dynamics during the pulse are going 

back to zero when it is over. Figure 2b shows how much of the trace of the density matrix, 

 (Eq.(9)) is recovered for an increasing number of singular values, , m= 1 to 5. 

Five singular values suffice to recover the trace of the density matrix of the ensemble of 800 

randomly oriented molecules with a precision better than of 10-3 during the pulse and of 10-5 

after it is over, see Figure 3a. In figure 3b, we plot on a log scale the set of the 25 largest 

singular values at the maximum of the pulse (12.3 fs) and after the pulse, when the Hamiltonian 

and therefore the singular values are stationary (18 fs). One can see that indeed a 6th singular 

value would be needed to get an accuracy of 10-5 during the pulse. Figure 3b also shows that 

with 15 eigenvalues, the SVD fit reaches error values of ≈10-13 (numerically zero) which 

corresponds to the accuracy of the numerical integration of the TDSE.  

σ 1

σ m
2

σ 1

σ 2 σ 3 σ 6

σ 7 σ 7 σ 8

Π Π1 Π2

Σ

Tr ρmol
m t( )⎡⎣ ⎤⎦ σ m
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Figure 2. a) The time evolution of the 8 largest normalized singular values, , during 

and after the pulse. The singular values of that correspond to molecular singular vectors Um 

localized on the two components of  states are plotted with markers so as to better identify 

them. The two pairs of degenerate singular values localize on the  states,  and  on  

(blue diamonds for  and green ones for ) and  (red triangles) and  (orange filled 

triangles) during the pulse and  and (filled squares) after the pulse on . b) the 

cumulative trace recovered with an increasing number of singular values, from 1 to 5. 
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Figure 3: a)  (Eq. (9)) the absolute value on the error on the trace computed by including 

5 singular values in the trace of the density matrix, . b) the 25 largest normalized 

singular values computed at the maximum of the pulse (violet squares) and after the pulse, 

when their values are constant (red dots) at 18 fs. The doublets of degenerate singular values 

correlate with the two components of the  states. 

 

In figure 4, we show the localization of the molecular (left) singular vectors, Um, on the 

electronic states and along the R coordinate, at 18fs, after the pulse is over. U1, which 

corresponds to the largest singular value, is localized on the ground electronic state and 

corresponds to the ground vibrational state (the initial state). U2 and U3 are localized on the  

 state (on the y and x components respectively) with essentially equal values of  and 

. U4 is localized on the manifold of excited  states ( ) with a  value an order 

ΔNmin

Tr ρmol
5 t( )⎡⎣ ⎤⎦
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of magnitude smaller than  and . U5 is localized on the GS but corresponds to excited 

vibrational states, with an even smaller value of . 

The corresponding singular orientation vectors are shown in figure 5. V1 (panel a) is distributed 

uniformly on the sphere, corresponding to the initial distribution of orientations, in agreement 

with the localization of U1 on v =0 of the ground electronic state (see Figure 4). V2 (panel c) 

and V3 (panel d) are localized along the y and the x axis respectively since U2 and U3 are 

localized in the y and x components of the  state. V4 (panel b) is localized along the z axis 

since it corresponds to excited  states. V5 (figure S5) is a much smaller component and 

corresponds to excited vibrational state of the GS and is localized on z. We therefore see that 

the localization of the singular vectors is dictated by the symmetry the electronic states, which 

is conserved after the pulse since the NAC terms can only couple states of the same symmetry. 

 
Figure 4: Localization of the molecular singular vectors Um on the grid for the 5 largest singular 

values. Computed for the excitation by the 2fs 4.35 eV pulse. 

σ 2 σ 3
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Figure 5: Orientation distribution on the unit sphere of the square modulus of the V vectors of 

the 4 largest principal components. V1 (panel a)is uniformly distributed over all orientations. 

V2 (panel c) and V3 (panel d) are oriented along y and x respectively to account for the 

excitation of the Π states while V4 (panel b) is oriented along z and accounts for the excitation 

of the Σ excited states. The colors code on the rhs is common to V2, V3 and V4. The V vectors 

are normalized to 1. V5, that is oriented along z as well, which corresponds to a more minor 

principal component. It shown in Figure S5. 

 

Since the Hamiltonian is stationary after the pulse, the left eigenvectors, Um, which are 

localized on the grid and on the electronic states, can be used to compute the quantum dynamics 

of the ensemble. We do so using Eq. (10) by propagating numerically the 5 Um vectors that 

correspond to the five largest singular values, , starting at the end of the pulse, 18 fs. Since 

the numerical precision of the integration is of the order of 10-12 for the 200 fs of the 

propagation time, the error that we make by retaining the 5 largest principal components (10-5 

relative error on the trace of the density matrix  ) does not increase. In parallel, as a 

σ m

ρmol t( )
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benchmark, we propagated  the 800 initial states separately for 200 fs using the TDSE and the 

performed the averaging over these 800  .  

The agreement between the two computations is excellent for the populations of electronic 

states, electronic coherences and for observables such as the time-dependent dipole moment, 

which depends on both the population and the coherences between electronic states and grid 

points. This is true not only for the states with a large population, like the two components of 

the  state and the GS plotted in Figure 1a, but also for the populations of the  states (Figure 

1b), which have populations of a few tenths of percent only. The relative error for the 

population of the GS and of the  state computed as an exact average over the 800 

orientations or by the SVD propagation of the 5 largest principal components is of the order 

10-4 percent (Figure 6a), which can be understood from the fact that 4 among the 5 principal 

values retained for the SVD propagation localize on these states. For the manifold of , , 

 and (Figure 6b), the error is larger, of the order of a tenth of percent, which again can 

be understood from the fact that the population in those states is only ≈ 100 times larger than 

the threshold (10-5) fixed to recover the trace of the ensemble density matrix and that only one 

singular component, the fourth one, accounts for the dynamics of the populations in the excited 

Σ	manifold. The largest error is made when the non adiabatic coupling is strong between the 

excited Σ	states. For completeness, we show in Figure S6 that the populations computed by the 

two methods cannot be distinguished to reading accuracy. 

Ψo t( )

Π1 Σ

Π1

Σ1 Σ2

Σ3 Σ4
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Figure 6. Relative errors on the populations of the GS and Π! states computed as an exact 

averaging over 800 initial orientations or by propagating the Um vectors of the 5 largest 

principal components. The plot of the populations is shown in Figure S6. Figure S7 of the SI 

shows the error on the populations at 18 fs computed for 5, 8 ,10, 12 and 15  respectively. 

 

In figure 7a, we show the full time-dependent dipole, 𝜇(𝑡), which is an observable very 

sensitive to the electronic and vibrational coherences. The fast ≈ 1 fs periods are the beatings 

between the Π! state and the GS while the longer beatings with a ≈ 10 fs period are between 

the Π!	and the excited Σ states. Note that the amplitudes of 𝜇(𝑡) decreases in time because the 

GS and Σ! are bound, all the other excited states, including  are dissociative. The relative 

error for an increasing number of principal components taken into account in the dynamics is 

plotted in Figure 7b. One can see that 5 principal components give an relative error of 10-5-10-

4, similar to that computed for the populations of the electronic states while already for 10 

components, an error of 10-8 is reached. As for the populations, the largest error is made in the 

first 50 fs when the NAC between the Σ states is strong. 

σ m

Π1
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Figure 7. a) Full dipole moment, 𝜇(𝑡), computed for the exact averaging over 800 random 

orientation for the exciting 2fs deep UV (4.35 eV) pulse. b) relative error on 𝜇(𝑡) computed 

for an increasing number of principal components as indicated. 

 

The results reported in Figures 6, 7 and S6 and S7 show that one can accurately describe the 

dynamics of the ensemble after the pulse is over by solving numerically the TDSE for the 5 

molecular singular vectors, Um, instead of the 800 needed for an averaging over the initial 

random orientations. This represent a considerable saving of computer time and storage. One 

only need to propagate and store these 800 random oriented initial vectors during the pulse, for 

a dozen of femtosecond or so. The accuracy of the SVD propagation can be set by fixing a 

threshold for the recovery. For a threshold of the order of the accuracy of the numerical 

integration of the TDSE, one get essentially ‘exact’ results, as seen already for Figure 7. Setting 

a larger threshold inevitably introduces errors in the populations of the electronic states that are 

very small after the pulse is over, like the very low populations of the  manifold shown in 

Fig. 1. Another measure of the error is to use the Frobenius distance between the 'exact' density 

matrix obtained from averaging over 800 random initial orientations and the one recovered by 

Σ
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propagating a small number of Um vectors. The Frobenius distance provides a measure of the 

error for the entire density matrix, and not only for its diagonal matrix elements as is provided 

by the difference in the trace, (Eq.(9)) . The Frobenius distance is plotted in figure S8 on 

a log scale at t = 18 fs for an increasing number of principal components. Its distance is of the 

same order of magnitude as (Eq.(9)) (Figure 3a) and on the error of on time-dependent 

dipole, , (Figure 7) and decreases in a similar way with the number of principal 

components included to recover the density matrix. 

The expansion in terms of principal components, Eq. (11), is exact when all the No principal 

components are included. Otherwise the SVD theorem14 states that including more singular 

values in the expansion will improve the fit or, at worst, not change it. Therefore, in the absence 

of a benchmark as for the example discussed above, one can readily determine the desired 

accuracy threshold by increasing the number of singular components used for propagating the 

TSDE after the pulse, based on the analysis of the values of the singular values and the error 

on the trace of the ensemble (Figures 4, 5 and S8) at the end of the pulse, here at 18 fs.  

 

To illustrate further the power of the method, we now discuss the results for a second exciting 

pulse, with a slightly higher carrier frequency, (5.17 eV) so that the higher  and  states are 

accessed with similar weights. In this case we only ran the dynamics for the 800 initial random 

molecular orientations until 18 fs, when the pulse is over. After the pulse is over, the 

propagation was carried out by integrating the TDSE using a few principal components, Um 

vectors, Eq. ((10)).   

We illustrate the convergence process of using an increasing number of principal components 

for the propagation of the pulse after 18 fs. We show in figure 8 the normalized singular values, 

, and the error on the trace of the ensemble as a function of the index m. We can distinguish 

two breaks in the magnitude of the singular values, one between m=4 and m=5 and one between 

m=8 and m=9. The same break is obtained for the Frobenius distance shown in Figure S8. The 

relative error,  Eq. (9) on the populations of the electronic states at 18fs is shown on 

figure 8b for 4  values. 

ΔNmin

ΔNmin

µ t( )

Σ Π

σ m
2

ΔNmin

σ m
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Figure 8. a) The normalized singular values, 𝜎"#  , (right y axis) and  (right axis) at t =18 

fs, computed for the excitation of LiH by a 2fs deep UV pulse with a carrier frequency of 5.17 

eV and the error on the trace. b) Relative error on the populations computed for 4 . 

 

The localization of the Um vectors on the grid and on the electronic states at 18 fs is shown in 

Figure 9. U1 is localized on the GS, U2 on the manifold of excited  states, Σ#, Σ$ , Σ%, and U3 

and U4 on the x and y components of  and  respectively. Note how for this excitation, 

𝜎#, 𝜎$ and 𝜎% are essentially equal. Correspondingly, the V1 is uniform, V2 is localized along z, 

and V3 and V4 are localized along x and y respectively, see Figure S9. 
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Σ
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Figure 9: Heat map of the localization of the square modulus of the Um vectors, m =1 to 4, for 

the dynamics induced by the 2fs deep UV (5.17 eV) pulse at t = 18fs, when the pulse is over.  

 

The dynamics of the population transfer as well as the total dipole, computed by propagating 

the Um vectors, are plotted in Figure 10 for 5  values and compared to the exact averaging 

over 800 orientations until 24 fs. We give in the figure 11 the differences between the values 

of the dipole computed for 5 , 10  and 15 . One can see that the value is essentially 

converged for 5 .  

σ m

σ m σ m σ m

σ m

https://doi.org/10.26434/chemrxiv-2023-bqnt6 ORCID: https://orcid.org/0000-0001-7434-5245 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-bqnt6
https://orcid.org/0000-0001-7434-5245
https://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

 
Figure 10. Populations (a) and time-dependent dipole, 𝜇(𝑡) (b), for the excitation by the 2fs 

deep UV 5.17 eV pulse. In panel a), the exact averaging over 800 initial random orientations 

is plotted in full lines up to 24fs. For later times, the approximate values computed by the 

propagation of 5 Um vectors using the TDSE (Eq.(10)) is shown in dotted lines, starting at 18 

fs. In Panel b) the same is done for the full time-dependent dipole, 	𝜇(𝑡). 
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Figure 11. Convergence of the value of the time-dependent dipole, 𝜇(𝑡), for increasing number 

of principal components included in the propagation as indicated. 

 

Conclusions 

Our SVD based method allows for accurately describing the dynamics of the coherent 

excitation of an ensemble of randomly oriented molecules by a broad in energy ultrashort pulse 

that encompasses several electronic states. It shows that rather few singular vectors are 

sufficient to represent the ensemble of orientations of attosecond excited molecules which 

provides a storage and computer time efficient approach for studying the dynamics of 

coherently excited randomly oriented molecules. Equally noteworthy is that fewer than 

expected singular vectors are sufficient to represent the ensemble of excited electronic states. 

Even beyond that, note the stereodynamics: there is a one to one correspondence between the 

two sets of singular vectors. Each dominant orientation is thereby associated with its own 

coherent set of excited electronic states. 
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