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ABSTRACT 

The desirable pharmacological properties and a broad number of therapeutic activities have 

placed peptides as promising drugs over small organic molecules and antibody drugs. Nevertheless, 

toxic effects such as hemolysis have hampered the development of such promising drugs. Hence, a 

reliable computational tool to predict peptide hemolytic toxicity is enormously useful before synthesis 

and experimental evaluation. Currently, four web servers that predict hemolytic activity using 

Machine Learning (ML) algorithms; however, they exhibit some limitations such as the need for a 

reliable negative set and limited application domain. Hence, we developed a robust model based on 

a novel theoretical approach that combines network science and a multi-query similarity searching 

(MQSS) method. A total of 1152 initial models were constructed from 144 scaffolds generated in a 

previous report. These were evaluated on external datasets, and the best models were fused and 

improved. Our best MQSS model I1 outperformed all state-of-the-art ML-based models and was 

used to characterize the prevalence of hemolytic toxicity on therapeutic peptides. Based on our 

model’s estimation, the number of hemolytic peptides might be 3.9-fold higher than the reported.  
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1. INTRODUCTION 

Peptides are becoming as relevant as antibodies and small organic molecules in developing 

therapeutic drugs 1,2 because they own a combination of desirable pharmacological features. Peptides 

not only have higher efficacy, target selectivity and good tolerability than small organic molecules, 

but are at the same time less immunogenic and have higher tissue penetration capacity than proteins 

and antibodies 3–6. Moreover, peptides have been shown to display a variety of therapeutic activities 

such as antimicrobial, antiviral, anticancer, antihypertensive, antioxidant, among others 5,7. Mainly, 

antimicrobial peptides (AMPs) are of special interest because they are a promising alternative to 

overcome antimicrobial resistance caused by a serious misuse of conventional antibiotics 8,9. 

Nevertheless, peptide-based drugs do not reach the market because they have some inherent 

weaknesses, as they are susceptible to peptidase activity and may show toxic effects like hemolysis 

9.  

Hemolysis involves the premature disruption of Red Blood Cells (RBCs) before the expected 

4-month life-span releasing iron, heme and hemoglobin into the vasculature 3,10. Such products cause 

NO scavenging, oxidative effects and promote inflammatory responses 11–13. In consequence, an 

increased risk of thrombosis 14, atherosclerosis 15, and kidney injury 16 have been associated with 

hemolysis in many clinical situations 14. For these reasons, designing a peptide-based therapeutic 

agent prone to cause hemolysis must be avoided. 

Peptide-associated hemolysis can be evaluated experimentally, allowing scientists to screen for 

low or non-hemolytic peptides that retain efficient therapeutic activity 17–20. Nevertheless, the lack of 

standardization among the protocols can lead to inaccurate results. For instance, it has been 

demonstrated that hemolytic activity assessment strongly depends on the source of RBCs (e.g., 

human, sheep, rat and rabbit) and the type of buffer or amount of DMSO used 21,22. In addition, these 

experimental procedures can become laborious and relatively expensive when evaluating a high 
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number of peptides 10. Therefore, a computational approach where peptide hemolytic toxicity can be 

determined by just providing the amino acid (AA) sequence would be relevant. 

The availability of peptide databases containing information on hemolytic activity highly 

benefits the development of such computational prediction models. Currently, the main databases 

include: i) Hemolytik 23, with 2651 experimentally validated hemolytic peptides (accessed on March 

25, 2023); ii) Database of Antimicrobial Activity and Structure of Peptides (DBAASP v3) 24 

(accessed on March 28, 2023), with 11414 entries showing information on hemolytic and cytotoxic 

activities of AMPs; and iii) StarPepDB 25 (accessed on March 25, 2023), a graph-based database 

containing information of 2004 hemolytic peptides. 

Nine machine learning (ML)-based methods for hemolytic toxicity prediction have been 

described so far 1–5,10,26–28, from which four have implemented a web server system, namely: HemoPI 

1, HemoPred 10, HAPPENN 26 and HLPpred-Fuse 3. Although the models fairly predict peptide 

hemolytic activity, important limitations are identifiable. Some of them require a specific peptide 

length range to process the peptides, do neither accept non-conventional natural AAs (e.g., 

pyrrolysine) nor D-AAs. Moreover, these models highly depend on a reliable negative set selection 

29, which is hard to accomplish since there is limited agreement on which is the most appropriate 

metric to quantify hemolysis and on the definition of the minimum hemolytic concentration (MHC at 

5%, 10%, 50% or 100% hemolysis) 26. In other words, according to the selected criteria, a peptide 

might be classified as non-hemolytic despite showing moderate or low hemolytic activity. In 

consequence, a true negative set consisting of actual non-hemolytic peptides is not available. 

Here, we propose a new and straightforward computational approach that overcomes such 

limitations. First, our models can handle peptides of virtually any length, with non-standard AAs and 

D-AAs. Second, our models do not need to be trained; instead, they rely on the fine-tuning of the 

sequence alignment type and the similarity cutoff value r. Third, since our models are one-class 

classification models, a negative dataset is not needed for model construction, thus it does not 
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influence on the learning phase of our algorithm. Finally, the robustness of our best models was 

deeply assessed, outperforming the state-of-the-art ML-based prediction models. 

Our method is based on complex network science and multi-query similarity searching (MQSS) 

models. This procedure has demonstrated not only to accurately predict tumor-homing 30 and 

antiparasitic peptide activities 31, but also to get a deeper insight into the peptide chemical space 32,33, 

hence improving peptide-based drug design. Furthermore, a software specifically designed for this 

purpose, named StarPep toolbox v0.8.5 has been developed to facilitate the workflow 34.  

In a previous report 33, we explored the chemical space of the StarPepDB hemolytic peptides 

and generated a variety of subsets (scaffolds) that represent the entire space but retaining a relatively 

low number of peptides avoiding overrepresentation. Such scaffolds were derived from Half-Space 

Proximal Networks (HSPNs) constructed by using five different similarity measures. These scaffolds 

were used in this study as queries for the construction of new and robust MQSS models. 

 

2. MATERIALS AND METHODS 

2.1 Databases and Web Server Predictors 

2.1.1 Databases and Datasets 

StarPepDB. It is a graph-based database containing 45120 peptides with annotated activities 

retrieved from 40 bioactive databases embedded in the StarPep toolbox software 25. A subset 

consisting of 2004 hemolytic peptides was used in ref. 33 for generating scaffolds. Here, we 

constructed our multi-query similarity searching models based on the 144 scaffolds derived from 

HSPNs built with 3 similarity metrics: angular separation (AS), Chebyshev (Ch) and Euclidean (Eu) 

distance. See SM4.2 in ref. 33 for more details. In addition, this database was used to characterize the 

prevalence of hemolytic toxicity in antibacterial, anticancer, antifungal, antiparasitic, and antiviral 

peptides. 
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HemoPI-1 Main. It consists of 442 experimentally validated highly hemolytic peptides 

(positive samples) and 442 randomly extracted peptides from Swiss-Prot 1,35 (negative samples). This 

dataset was used to calibrate the models’ parameters by assessing the performance of our 1152 base 

models. 

HemoPI-1 Validation. This dataset contains 110 experimentally validated highly hemolytic 

peptides (positive samples) and 110 randomly extracted peptides from Swiss-Prot (negative samples) 

1. HemoPI-1 Validation was used to confirm the patterns identified using HemoPI-1 Main and further 

select the best 24 and final 12 base (individual) models. 

HemoPI-1 NRS1. It encompasses 234 positive and 552 negative samples. This dataset resulted 

from merging HemoPI-1 Main and Validation datasets, then peptides redundant with any of the 24 

base models were removed. The dataset was used to select the best 12 base models, to validate the 

robustness and prediction power of these MQSS models, and to carry out performance comparisons 

with ML-based models. 

HemoPI-1 NRS2. This dataset consists of 211 positive and 552 negative samples. It is a subset 

of HemoPI-1 NRS1 in which peptides redundant with any of our models (base, fusion, and improved 

models) were removed. This dataset was involved in validating the best MQSS and ML-based 

models. 

Big-Hemo. This dataset was created to overcome the lack of consensus on adequately 

quantifying hemolysis. It only contains non-redundant highly hemolytic peptides (positive samples) 

retrieved from the datasets: i) HemoPI-2 Main and Validation 1, ii) HemoPI-3 Main and Validation 

1, iii) HAPPENN 26, iv) HLPpred-Fuse Layer 2 Training and Independent 3 and v) HemoNet 2. This 

dataset is important to assess the ability of the models to correctly identify highly hemolytic peptides, 

which are more concerning when designing therapeutic drugs. In this dataset, peptides containing ‘X’ 

several times in a sequence and Nphe or Nleu in their sequences were discarded. The resulting Big-

Hemo dataset contains 2196 highly hemolytic peptides 33. 
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Big-Hemo NRS1. It is a subset of the Big-Hemo dataset in which any redundant peptide with 

all our models (base, fusion, and improved models) has been removed. This dataset contains 1279 

peptides and was involved in the final validation of all MQSS and ML-based models. 

THPdb. This database contains information about FDA-approved peptides and protein therapeutics 

36. Such peptides should have a low hemolytic toxic profile; hence, this database was used to validate 

our best model. 

The datasets HemoPI-1 NRS1, HemoPI-1 NRS2, and Big-Hemo NRS1 were generated to avoid 

bias from our models when validating their performance and make fair comparisons with ML-based 

models. Hence, these datasets do not contain peptides already included in any of our MQSS models. 

It is worth mentioning that ML-based models still have an advantage on these datasets since they 

were trained with most of these peptides. All datasets are available at SM1.  

2.1.2 Web Server Predictors 

Four ML-based web server predictors have been reported for peptide hemolytic activity: 

HemoPI 1 (https://webs.iiitd.edu.in/raghava/hemopi/index.php), HemoPred 10 

(http://codes.bio/hemopred/), HAPPENN 26 (https://research.timmons.eu/happenn) and HLPpred-

Fuse 3 (http://thegleelab.org/HLPpred-Fuse/index.html). 

HemoPI (2016) is based on SVM models that use AA and dipeptide composition, binary 

profiles and motifs as input features 1. This web server provides five prediction models: “SVM 

(HemoPI-1) based”, “SVM + Motif (HemoPI-1) based”, “SVM (HemoPI-2) based”, “SVM + Motif 

(HemoPI-2) based” and “SVM (HemoPI-3) based”. 

HemoPred (2017) is based on random forest models whose input features are amino acid and 

dipeptide composition 10. It only provides a single model in its web server: “HemoPred”. 

HAPPENN (2020) is based on an artificial neural network (NNs) classifier that has 1024 and 

64 nodes in the first and second hidden layers, respectively 26. Its web server provides three NN 

models: “HAPPENN-MAIN”, “HAPPENN-RR90” and HAPPENN-HARD”. 
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HLPpred-Fuse (2020), unlike the aforementioned prediction models, the final model relies on 

a fusion of 54 single feature-based models using a meta-predictor approach 3. It only provides a single 

model on its web server: “HLPpred-Fuse”. 

In total, there are ten prediction models reported in four web servers. We compared our models’ 

performance with these state-of-the-art prediction models. 

2.2 Multi-Query Similarity Searching Method 

Our prediction models rely on the premise that similar peptides have similar properties 37. 

Therefore, they were constructed using the multi-query similarity searching (MQSS) method, which 

broadly consists of looking for peptides in a target dataset that are the most similar ones to the query 

peptides (Figure 1). The elements of a MQSS model are a query dataset, a similarity measure, and a 

similarity cutoff r. In this report, 144 scaffolds generated from HSPNs built with 3 similarity metrics, 

Angular separation (AS), Chebyshev distance (Ch) and Euclidean distance (Eu) were used as query 

datasets, see SM4.2 in Ref. 33. Regarding the similarity measure, we tested the use of Smith-

Waterman local alignment (L) 38 and Needleman-Wunsch global alignment (G) 39 both with 

BLOSUM-62 substitution matrix 40. The similarity cutoff values r applied in this experiment were 

0.4, 0.5, 0.6 and 0.7. The process of constructing MQSS models is described below. 

First, using any of the alignment-based algorithms (G or L), a pairwise similarity measure, 

S(Ti, Qj), is calculated between each of the peptides in the query (Q) and the target (T) datasets. Then 

we applied the MAX-SIM rule 41 defined as: max{S(Ti, Qj)}; ∀ Ti ∈ T. The resulting similarity 

values were grouped and ranked from the most to the least similar (Group Fusion). Subsequently, a 

similarity cutoff value r was fixed, and target peptides with higher similarity values than r are 

considered as positive samples (hemolytic). MQSS models with the best parameters are selected by 

evaluating their performance on an external dataset. Model construction and evaluation is easily done 

using the StarPep toolbox. Figure 1A shows a scheme of the MQSS method and Figure 1B shows a 

geometrical interpretation of this method. 
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Figure 1. Description of the MQSS method. A. A pairwise similarity measure, S(Ti, Qj), is calculated 

between each of the peptides in the query dataset (Q) and each of the peptides in the target dataset 
(T). Local (L) and global (G) alignments can be used to calculate the similarity between peptides. 

Then for each target peptide, we applied the MAX-SIM rule defined as: max{S(Ti, Qj)}; ∀ Ti ∈ T. 

The resulting similarity values were grouped and ranked from the most to the least similar (Group 
Fusion). Then a similarity cutoff value r was fixed, and target peptides with higher similarity values 
than r are considered as positive samples (hemolytic). B. Geometrical representation of the MQSS 
method. This method looks for the target peptides that are the nearest neighbors to our query peptides 
whose distance is smaller than the radius r. i.e., that are inside of the hemolytic space which is defined 
as the union of all the circles of radius r of the query peptides. Figure created with Inkscape 42. 

2.3 Construction and Validation of MQQS Models 

The workflow consists of four stages: (i) model exploration and selection, (ii) construction of 

fusion models, (iii) model improvement, and (iv) model validation. These steps were conducted using 

the StarPep toolbox 34, SeqKit Toolkit 43, and aided with in-house Python scripts. 

In the first step, we constructed our models from the 144 scaffolds reported in SM4.2 from Ref. 

33. For each scaffold, we built models with G and L alignments and cutoff values r from 0.4 – 0.7 in 

steps of 0.1. In total, 1152 base MQSS models were generated (SM3). Afterwards, we explored the 

relation between the combination of different parameters in MQSS models on HemoPI-1 Main 

dataset, from which 288 models were filtered for further validation on HemoPI-1 Validation dataset. 

Then, 24 base models were selected based on performance on this dataset (Figure 2A). After that, 
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we selected 12 base models (B1–B12) that best performed on the three datasets: HemoPI-1 Main, 

Validation and HemoPI-1 NRS1 (Figure 2B). 

In the second step, we selected the best three out of the twelve base models and fused their 

scaffolds, removing redundant peptides (SM2.2). It resulted in 4 new scaffolds from which 12 MQSS 

fusion models (F1–F12) were constructed using the similarity measures G or L, and cutoff r: 0.4, 0.5 

and 0.6 (Figure 2C and SM3). The robustness of the base and fusion models was assessed on 

HemoPI-1 NRS1 and Big-Hemo datasets. Furthermore, the performance of ML-based models was 

assessed using the same datasets (Figure 2D and Figure 3A). 

The third step consists in improving the representativeness of the 8 best MQSS models. In this 

process, we extracted 413 peptides from the Big-Hemo dataset that were incorrectly predicted by 

more than 4 out of the 8 best models. Using this set of peptides, we constructed HSPNs and scaffolds 

with the same parameters used for extracting the corresponding scaffolds of the models to be 

improved (network generation and scaffold extraction processes are detailed in ref. 33). The improved 

MQSS models (I1–I8) were constructed by fusing their initial scaffolds with the scaffolds obtained 

from the Big-Hemo dataset (SM2.3). The similarity measure and cutoff r were the same as the 

precursor model’s (Figure 3B and SM3).  

In the fourth step, we validated the robustness of our three best models and the best ML-based 

model implemented at each web server on the datasets HemoPI-1 NRS2 and Big-Hemo NRS1. Finally, 

we obtained the best-performing model after ranking the models using the Friedman test calculated 

using KEEL 3.0 44. This test considered the model’s performance on the datasets: HemoPI-1 NRS1, 

HemoPI-1 NRS2, Big-Hemo and Big-Hemo NRS1. 
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Figure 2. Experimental procedure for exploring and selecting the best MQSS models. A. The initial 
step involves evaluating our models on HemoPI-1 Main and Validation datasets to find relevant 
patterns of the combination of parameters used to build the models and parental scaffolds and HSPNs. 
B. The second step consists of selecting the 12 base MQSS models that best perform in the three 
datasets: HemoPI-1 Main, Validation and HemoPI-1 NRS1. C. The third step consists of fusing the 
scaffolds of the three base MQSS models and subsequently generating new models (fusion models). 
D. In step four, we evaluate our MQSS models and compare them with external models using the 
dataset HemoPI-1 NRS1. Circles and squares with fingerprints represent MQSS models and ML 
models, respectively. Circles with an “S” inside represent models’ scaffolds. Figure created with 
Inkscape 42. 
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Figure 3. Experimental procedure for improving base and fusion MQSS models. A. Initial model 
validation on Big-Hemo dataset to assess the model’s ability to recognize highly hemolytic peptides. 
Circles and squares with fingerprints represent MQSS and ML models, respectively. B. Process to 
improve the representativeness of our best 8 MQSS models by adding scaffolds from the wrongly 
predicted peptides in the Big-Hemo dataset. Circles with an “S” inside represent models’ scaffolds, 
whereas pentagons with an “S” inside represent scaffolds extracted from the set of 413 incorrectly 
predicted peptides of the Big-Hemo dataset. Figure created with Inkscape 42. 

2.4 Performance Evaluation 

The robustness of MQSS models and the 10 external ML-based prediction models found in four 

web server predictors was evaluated by calculating their accuracy (Acc), kappa statistics (κ), 

sensitivity (Sn), specificity (Sp), the precision of positives and negatives (Ppos and Pneg, respectively), 

the model’s coverage (Cov) and the Matthews correlation coefficient (MCC), being the latter the most 

important parameter 45,46. Here, it is worth noting that since Big-Hemo and Big-Hemo NRS1 contain 

only positive samples, the defining parameter in these datasets was the Sensitivity (Sn). 
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These parameters are defined as follows: 

𝐴𝑐𝑐 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
, 

(1) 

𝜅 =
𝑃𝑜−𝑃𝑐

1−𝑃𝑐 
, 

(2) 

𝑆𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁 
, 

(3) 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁+𝐹𝑃 
, 

(4) 

𝑃𝑝𝑜𝑠 =
𝑇𝑃

𝑇𝑃+𝐹𝑃 
, 

(5) 

𝑃𝑛𝑒𝑔 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
, 

(6) 

𝐶𝑜𝑣 =
𝑇𝑀

𝑇𝐷
, 

(7) 

𝑀𝐶𝐶 =
𝑇𝑃 ×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)×(𝑇𝑃+𝐹𝑁)×(𝑇𝑁+𝐹𝑃)×(𝑇𝑁+𝐹𝑁)
, 

(8) 

where, TP, TN, FP, FN are the number of true positives, true negatives, false positives, and false 

negatives, respectively. Po is the relative observed agreement between the observers and Pc is the 

expected change agreement calculated by the formula: 

𝑃𝑐 =
(𝑇𝑃+𝐹𝑃)×(𝑇𝑃+𝐹𝑁)×(𝑇𝑁+𝐹𝑃)×(𝑇𝑁+𝐹𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)2
, 

(9) 

TM represents the total number of correctly and incorrectly predicted peptides by the model and TD 

represents the total number of peptides in the benchmark dataset. 

2.5 Characterization of Therapeutic Peptides 

Finally, aided by our best model I1, we characterized the prevalence of hemolytic toxicity in 

therapeutic peptides with various endpoints. Peptides from the StarPepDB were chosen as this 

database is one of the most comprehensive reported 25. 
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Using the StarPep toolbox, we filtered the peptides by function: i) antibacterial, ii) antifungal, 

iii) antiviral, iv) anticancer and v) antiparasitic. Then we calculated for each endpoint the total number 

of peptides, the number of peptides reported as hemolytic, and the number of peptides predicted as 

hemolytic using the I1 model. Finally, fasta files containing non-hemolytic peptides for each activity 

were provided. 

 

3. RESULTS AND DISCUSSION 

3.1 MQSS Model Exploration and Selection 

A total of 1152 initial MQSS models were generated from the combination of 144 scaffolds 

extracted from Ref. 33, two sequence alignment algorithms (G and L) and four similarity values of r: 

0.4, 0.5, 0.6 and 0.7. By exploring the behavior of these models on the HemoPI-1 Main dataset 

(SM6.1), combinations of parameters that resulted in higher performance were found. The most 

important factors were the selection of optimal values of cutoffs s and r. Models based on scaffolds 

extracted using a similarity cutoff s equal to 0.7 or 0.8, showed an average MCC of 0.933 and 0.964, 

respectively, showing a low variability (Figure 4A). Although, models with s = 0.9 showed a slightly 

better performance; this slight improvement does not compensate the higher number of peptides in 

the scaffolds, about 335 more peptides (SM6.2). Regarding the selection of r, models with values 

equal to 0.4, 0.5 and 0.6 tend to have less performance variability and higher robustness than models 

with r = 0.7 (Figure 4B).  

By filtering models meeting this combination of parameters (s = 0.7 or 0.8; r = 0.4, 0.5 or 0.6), 

the number of models was reduced to 288. A further validation on the HemoPI-1 Validation dataset 

allowed to reduce the number of models to 24 (SM3 and SM4.2). An additional dataset, HemoPI-1 

NRS1, was used to fairly evaluate model performance since it has removed peptides found in any of 

the scaffolds of our 24 models. Finally, after multiple comparisons of the 24 models on the datasets 
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HemoPI-1 Main, Validation and HemoPI-1 NRS1, low performing and redundant models were 

removed. Only 12 base models (B1–B12) were retained for further analysis (SM4.2). 

 
Figure 4. Boxplots showing (A) the Matthews correlation coefficient (MCC) of MQSS models built 
with scaffolds extracted using different values of cutoff s and (B) from MQSS models using different 
similarity values of cutoff r. White asterisks represent the average MCC. This figure was created with 
ggplot2 R package 47 and edited with Inkscape 42. 

3.2 MQSS Fusion Models 

To assess whether the fusion of scaffolds from MQSS base models increases the 

representativeness and model performance, we selected three base models from the 12 models 

reported in Section 3.1. Models B6, B8 and B11, were chosen since they show high performance 

when evaluated on HemoPI-1 Main, Validation and HemoPI-1 NRS1 datasets. Moreover, they were 

generated from scaffolds extracted from HSPNs built using different metrics (Ch, Eu, and AS, 

respectively). 

Three new scaffolds were generated by pairwise combination (fusion) of scaffolds from B6, B8 

and B11 and one additional scaffold resulted from merging all three base scaffolds. In total 12 fusion 

models (F1–F12) were created from these scaffolds (SM3). Only F7 and F9 models showed 
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performance improvement on HemoPI-1 NRS1 compared to the 12 base models (SM4.3). However, 

all 12 fusion models were kept for further comparisons. 

3.3 Model Improvement. 

We compared the performance of base and fusion MQSS models with reported ML-based 

models on the dataset HemoPI-1 NRS1 (SM4.3). Table 1 shows the performance of five base and 

five fusion models. All MQSS models outperformed state-of-the-art ML-based models. The best 

model on this dataset was F9 (MCC = 0.985), which resulted from the fusion of scaffolds belonging 

to the models B8 and B11. The optimal parameters for F9 are local alignment and r = 0.6. On the 

other hand, the best ML-based model on this dataset was HLPpred-Fuse (MCC = 0.942). 

However, when comparing our model’s ability to identify highly hemolytic peptides by 

assessing them on the Big-Hemo dataset (Table 1 and SM4.3), models’ performance decreased. Our 

best model on this dataset, F11, was ranked fourth (Sn = 0.862). Nevertheless, all our models still 

outperformed six ML-based models (all HAPPENN models and three of the five HemoPI-1 models). 

Table 1. Performance of MQSS and ML-based models on the datasets HemoPI-1 NRS1 and Big-
Hemo. It only shows the five base models and five fusion models that performed better on both 
datasets. For the complete list of the 24 MQSS models and for results of the statistics Ppos and Pneg, 
refer to SM4.3. 

Model 
HemoPI-1 NRS1 Big-Hemo 

Acc κ Sn Sp MCC Cov Sn Cov 

B1 0.992 0.982 0.983 0.996 0.982 1.00 0.808 1.00 

B2 0.991 0.979 0.979 0.996 0.979 1.00 0.812 1.00 

B4 0.991 0.979 0.979 0.996 0.979 1.00 0.803 1.00 

B6 0.992 0.982 0.996 0.991 0.982 1.00 0.794 1.00 

B11 0.992 0.982 0.996 0.991 0.982 1.00 0.854 1.00 

F8 0.991 0.979 0.996 0.989 0.979 1.00 0.858 1.00 

F9 0.994 0.985 0.996 0.993 0.985 1.00 0.811 1.00 

F10 0.992 0.982 0.983 0.996 0.982 1.00 0.818 1.00 

F11 0.990 0.976 0.996 0.987 0.976 1.00 0.862 1.00 

F12 0.992 0.982 0.996 0.991 0.982 1.00 0.813 1.00 

HAPPENN-MAIN 0.861 0.644 0.647 0.952 0.656 0.95 0.766 0.95 

HAPPENN-RR90 0.833 0.566 0.576 0.943 0.581 0.95 0.714 0.95 

HAPPENN-HARD 0.782 0.445 0.522 0.893 0.452 0.95 0.689 0.95 

HemoPI(SVM_HemoPI-1based) 0.968 0.925 0.970 0.967 0.925 1.00 0.897 1.00 

HemoPI(SVM_HemoPI-2based) 0.947 0.876 0.962 0.940 0.878 1.00 0.580 1.00 

HemoPI(SVM_HemoPI-3based) 0.785 0.542 0.850 0.757 0.562 1.00 0.764 1.00 
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HemoPI(SVM+Motif_HemoPI-1based) 0.973 0.937 0.974 0.973 0.937 1.00 0.897 1.00 

HemoPI(SVM+Motif_HemoPI-2based) 0.925 0.829 0.962 0.909 0.835 1.00 0.614 1.00 

HemoPred 0.758 0.493 0.838 0.725 0.518 1.00 0.828 0.91 

HLPpred-Fuse 0.975 0.941 1.000 0.964 0.942 1.00 0.955 0.81 

Table 2. Sensitivity improvement for high hemolytic peptides evaluated on the Big-Hemo dataset. 
The left side shows the models before improvement, whereas the right side shows the renamed 
improved models. 

Before Improvement After Improvement 

Model Sn Model Sn 

B1 0.808 I1 0.991 

B2 0.812 I2 0.992 

B6 0.794 I3 0.969 

B8 0.791 I4 0.981 

B11 0.854 I5 0.994 

B12 0.812 I6 0.992 

F7 0.805 I7 0.992 

F11 0.862 I8 0.997 

 

Since our best models failed to retrieve some peptides from the Big-Hemo dataset, we improved 

their representativeness by adding scaffolds from highly hemolytic peptides. The models B1, B2, B6, 

B8, B11, B12, F7, and F11 were enhanced by adding a scaffold from the Big-Hemo dataset. These 

Big-Hemo-based scaffolds were extracted using the parameters shown in SM3. When comparing the 

percentage of identical and similar peptides between scaffolds using the Dover Analyzer software 48, 

Big-Hemo-based scaffolds exhibited a different peptide representativeness compared to the initial 

scaffolds (SM2.3.4). Therefore, MQSS models were positively benefited from this scaffold addition. 

Eight improved MQSS models were built, namely I1–I8. The alignment and cutoff r were the 

same used for building the precursor model. All improved models showed an enhancement in 

recognizing highly hemolytic peptides (Table 2 and SM4.3). In fact, the improved version of F11, 

namely I8, reached a sensitivity of 0.997 on the Big-Hemo dataset, surpassing HLPpred-Fuse’s 

performance (Sn = 0.955). 

To ensure that adding new peptides to our models did not affect the overall performance, we 

assessed them on the HemoPI-1 NRS1 dataset (SM4.3). All improved models were top ranked on this 

dataset. 

3.4 Final Models Evaluation. 
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We selected one final MQSS model from each group (base, fusion and improved) based on 

their performance on HemoPI-1 NRS2 and Big-Hemo NRS1 datasets, and by considering the most 

diverse models following the disagreement and double-fault measures 49,50. The final MQSS models 

(B2, F11 and I1) along with the best ML-based model of each web server were tested on the datasets 

HemoPI-1 NRS2 and Big-Hemo NRS1 (Table 3). These datasets allow fair comparisons since they 

do not contain redundant peptides with any of the MQSS models (improved models included). 

Table 3. Performance comparison between our three best MQSS models and the best ML-based 
model of each web server. 

Model 

HemoPI-1 NRS2 Big-Hemo NRS1 

Acc κ 
Average  

Recall* 

Average  

Precision* 
MCC Cov Sn Cov 

B2 0.997 0.993 0.998 0.995 0.993 1.00 0.933 1.00 

F11 0.991 0.977 0.994 0.984 0.978 1.00 0.941 1.00 

I1 0.996 0.990 0.997 0.993 0.990 1.00 0.999 1.00 

HLPpred-Fuse 0.974 0.936 0.982 0.957 0.938 1.00 0.977 0.85 

HemoPI(SVM+Motif_HemoPI-1based) 0.975 0.939 0.977 0.963 0.939 1.00 0.892 1.00 

HemoPred 0.747 0.463 0.772 0.722 0.492 1.00 0.855 0.85 

HAPPENN-MAIN 0.859 0.621 0.786 0.850 0.633 0.96 0.762 0.97 

*The average recall is the mean between Sn and Sp, whereas the average precision is the mean between Ppos and Pneg. 

 

Our three models outperformed ML-based models on the HemoPI-1 NRS2 dataset, and model 

I1 showed the highest sensitivity on Big-Hemo NRS1 dataset (0.999). HLPpred-Fuse and 

HemoPI(SVM+Motif_HemoPI-1 based) models also performed well on both datasets. However, 

HLPpred-Fuse was not able to process peptides with length less than 4 AAs and those containing D-

AAs, thus showing one of the lowest coverages on Big-Hemo (Table 1) and Big-Hemo NRS1 (Table 

3) datasets.  

On the other hand, HemoPred and HAPPENN-MAIN performed poorly on HemoPI-1 NRS2 

and Big-Hemo NRS1 datasets; failing also in handling 15% of the peptides from Big-Hemo NRS1 

dataset. Furthermore, HAPPENN models showed several limitations regarding the application 

domain, which is restricted to peptides of 7–35 AAs in length and do not admit non-standard AAs. In 

addition, the web server only admits up to 20 sequences per run, which may become tedious when a 

high number of peptides is intended for prediction.  
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Finally, we performed the Friedman test to rank the final models based on their performance 

on the datasets HemoPI-1 NRS1, HemoPI-1 NRS2, Big-Hemo and Big-Hemo NRS1. Figure 5 shows 

the average ranking scores in the Friedman test. Model I1 was ranked first, followed by the other two 

MQSS models, B2 and F11. The post-hoc comparison (SM7) revealed no statistical difference among 

the MQSS models. However, there was a statistical difference between I1 and any of the ML-based 

models.  

The scaffold of the I1 model is provided in SM2.4. This model uses global alignment (G) and 

cutoff r = 0.4 as optimal parameters. The model can easily be utilized by importing the scaffold and 

setting the alignment and cutoff r in the StarPep toolbox. 

 
Figure 5. Average ranking scores obtained in the Friedman test. Friedman statistic (distributed 
according to chi-square with 6 degrees of freedom): 62.631696. P-value computed by Friedman test: 
0. This figure was created with ggplot2 R package 47 and edited with Inkscape 42.  

Finally, to corroborate our best model’s usefulness, we tested it on the curated THPdb database 

(SM1.7.3), which includes FDA-approved peptides and protein therapeutics 36. In principle, our 

model should not retrieve any of the approved peptides unless a drug reports hemolytic toxicity. Our 

model I1 retrieved only three hemolytic peptides from the 183 sequences of the curated THPdb 

dataset, namely Th1024, Th1146 and Th1113. As expected, our model correctly predicted the 

hemolytic activity of Th1024 (Gramicidin D), an effective antibacterial used for treatment of skin 

lesions, surface wounds and eye infections. It is reported that due to their highly hemolytic activity 

of this drug, it cannot be administered internally and hence can only be applied on the skin 51. The 

other two FDA-approved drugs, Th1146 (Lucinactant) and Th1113 (Glatiramer acetate) are used as 
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a pulmonary surfactant and an immunomodulator, respectively 52,53. Unfortunately, we could not find 

any information related to the hemolytic toxicity of these peptides.  

3.5 Characterization of Therapeutic Peptides 

One interesting application for our best MQSS prediction model is to estimate the prevalence 

of hemolytic toxicity in reported peptides with different endpoints. We analyzed antibacterial, 

antifungal, antiviral, anticancer and antiparasitic peptides. Figure 6 shows the number of peptides 

reported in the StarPepDB for each of these specific functions. When estimating the prevalence of 

hemolytic toxicity in such peptides, we realized that a high proportion of potentially hemolytic 

peptides still have not been evaluated for this undesired activity. Hence the number of reported 

hemolytic peptides is underestimated (Figure 7 and SM5.6). For instance, only 11.29 % of the 14376 

antibacterial peptides have reported hemolytic toxicity; however, our model predicts there might be 

about 7580 antibacterial peptides (52.73 %) with hemolytic toxicity.  

Interestingly, antiviral peptides seem to have a low prevalence of hemolytic toxicity compared 

to the other endpoints as only 24.18 % of the peptides have been predicted as hemolytic. In general, 

our model predicts a 3.9-fold increase in the actual number of hemolytic peptides for these five 

endpoints. This result shows that caution should be taken when considering peptides whose 

information about hemolytic toxicity is not provided, as this does not imply that peptides are not 

hemolytic. In such scenarios, a prediction model such as the presented in this report could be useful. 

Finally, to facilitate the reliable exploration of non-hemolytic therapeutic peptides, we provided 

a list of peptides sorted by function, in which peptides either reported or predicted as hemolytic have 

been removed (fasta files are available at SM5). Additional information about these peptides can be 

retrieved using the StarPep toolbox. 
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Figure 6. Number of peptides with different functions reported in StarPepDB. It is worth noting that 
these classes are not mutually exclusive as some peptides might have more than one activity. This 
figure was created with ggplot2 R package 47 and edited with Inkscape 42. 

 
Figure 7. Percentage of peptides presenting reported and predicted hemolytic activity in 
antimicrobial, anticancer, antifungal, antiparasitic and antiviral peptides. This figure was created with 
ggplot2 R package 47 and edited with Inkscape 42. 

 

4. CONCLUSIONS 

An in silico model able to reliably predict hemolytic toxicity from peptide sequences is a highly 

useful tool that can help accelerate the development and approval of new peptide drugs cost-

efficiently. Currently, nine prediction models are available for this task, all based on ML. In this 

report, we presented a more robust model based on a novel approach that uses network science and 

the MQSS method. Our best model not only outperformed state-of-the-art prediction models 

implemented in web servers but also overcomes some of their pitfalls, such as a limited generalization 

conditioned by an application domain. Furthermore, MQSS models can be easily implemented by 

uploading the model’s scaffold and setting the appropriate alignment algorithm and cutoff r at the 

StarPep toolbox. As a valid application of our model, the prevalence of hemolytic toxicity on 
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therapeutic peptides was estimated, finding that the actual number of hemolytic peptides is 

underrepresented and there might be 3.9-fold more hemolytic peptides than the reported. 
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