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The evaluation of oxidation and reduction potentials is a pivotal task in various chemical fields.
However, their accurate prediction by theoretical computations, which is a complementary task and
sometimes the only alternative to experimental measurement, may be often resource-intensive and
time-consuming. This paper addresses this challenge through the application of machine learning
techniques, with a particular focus on graph-based methods (such as graph edit distances, graph
kernels, and graph neural networks) that are reviewed to enlighten their deep links with theoreti-
cal chemistry. To this aim, we establish the ORedOx159 database, a comprehensive, homogeneous
(with reference values stemming from density functional theory calculations), and reliable resource
containing 318 one-electron reduction and oxidation reactions and featuring 159 large organic com-
pounds. Subsequently, we provide an instructive overview of the good practice in machine learning
and of commonly utilized machine learning models. We then assess their predictive performances
on the ORedOx159 dataset through extensive analyses. Our simulations using descriptors that are
computed in an almost instantaneous way result in a notable improvement in prediction accuracy,
with mean absolute error (MAE) values equal to 5.6 kcal mol−1 for reduction and 7.2 kcal mol−1
for oxidation potentials, which paves a way toward efficient in silico design of new electrochemical
systems.

I. INTRODUCTION

The experimental optimization of chemical reagents is
very often a time-consuming and financially expensive
task as it requires numerous tries that can also involve
hazardous compounds or complex synthetic strategies.
As a consequence, the exploration of the chemical space
for a given property frequently remains limited to a small
number of variations, and the fine-tuning that is per-
formed is then far from being optimal. It is thus highly
desirable to have at disposal a fast screening tool that can
efficiently guide the applied chemists for the selection of
the best synthetic targets.

Numerical techniques are certainly suitable candidates
for shortcut strategies that can be led at larger scales,
provided the associated computations can treat the sys-
tems both in a reasonable time and with a sufficient ac-
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curacy. While this last point can be achieved using ad-
vanced quantum chemistry (QC) methods such as density
functional theory (DFT) or post-Hartree-Fock methods,
the first one precludes the use of these latter approaches
for an extensive compound search since calculations for
a single molecule can take several hours or days in the
case of extended systems.

Such limitations can be alleviated by the use of ma-
chine learning (ML) methods, which usually provide pre-
dictive models that can be deployed at a large scale (then
enhancing the exploration of the chemical space [1]) in a
rather small amount of time when they are based on fea-
tures than can be evaluated in a faster way than the re-
lated full QC calculation. The importance of ML in the-
oretical chemistry has tremendously increased in the last
decade, and has now become ubiquitous in the field (see
for instance the reviews by Keith et al. [2] and Mater et
al. [3]), generating also a lot of individual tools and soft-
ware [4]. Such booming is so exponential that it has be-
come almost impossible to review the use of ML in chem-
istry in a comprehensive way, since it ranges from drug
design to retro-synthesis analysis, encompassing material
sciences and catalysis, or molecular dynamics and even
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QC itself, among other fields of application.
In this paper intended for the special issue of the Jour-

nal of Computational Chemistry devoted to ML and arti-
ficial intelligence in theoretical and computational Chem-
istry, we will illustrate in a didactic fashion to what ex-
tent the ML machinery can be efficiently implemented for
the prediction of one of the most fundamental chemical
properties, namely the redox potentials. Indeed, oxida-
tion and reduction are elementary processes that occur
in almost all chemical subfields [5]. This is obviously
the case in biochemistry since many biological processes
involve redox reactions (as epitomized by the cellular res-
piration [6]), but also in geology (formation of blast fur-
naces [7]), in chemical engineering and industry (we can
mention cathodic protection in galvanized steels to fight
against corrosion [8]), in new product synthesis through
electrochemical catalysis [9], and so on.

Being able to accurately predict redox properties, both
for known or new molecules, is thus of utmost importance
in many areas of chemistry and also in daily life (if one
thinks of batteries and solar cells for instance), and ML
methods have already been applied to tackle this issue in
the spirit of Quantitative Structure–Property Relation-
ships (QSPR) approaches. A very recent publication by
Fedorov and Gryn’ova reviewed in detail this topic [10],
and we thus refer the interested reader to this remark-
able paper for an up-to-date account on ML technics for
redox prediction and an expanded panorama of reported
models. We will restrict ourselves to only mention here
few landmark papers (the choice being of course arbitrar-
ily and too much reduced), covering various fields (from
material science to biochemistry) by Kleinová et al. [11],
Méndez-Hernández et al. [12], Ghule et al. [13], Galuzzi
et al. [14], or Bhat et al. [15].

Our aim, here, is actually much less ambitious in this
paper that adopts a hybrid format since it is both a short
review and a research paper with new results. Hence, we
will not look for a general and versatile (and even less
universal) model, but, conversely, we will pick out some
specific tools - mainly belonging to graph-based methods
-, maybe less known in the chemical community, and we
will discuss their relevant for the prediction of redox po-
tentials. Graph theory has actually be efficiently used in
chemistry for the prediction of many properties belonging
to different fields of chemistry, ranging from mutagenic-
ity or toxicity in medicinal chemistry to boiling points
in physical chemistry (see for instance [16, 17]). Note-
worthy, we will start from the very beginning by setting
up from scratch a completely new database of organic
molecules, with DFT reference values computed by our-
selves.

This departs from the common practice based on pre-
existing databases. Indeed, one of the usual drawbacks
of them is that they might gather reference values from
various origins, sometimes without clear source, and they
may thus suffer from a lack of homogeneity that is not
without incidence on the “trustability” of the results.
Conversely, we will generate here our reference values

with a unique and perfectly defined, controlled, and - also
an important point - reproducible computational proto-
col. This database will be described more in details in
the next section.

Then, the computational details and the ML technics
used in this study will be presented in a pedagogical way,
so that it can build a bridge between the two communi-
ties (namely theoretical chemistry and data science). A
particular emphasis will be put on graph-based methods
since they are at the heart of our original ML method.
Then, the various ML models obtained will be presented
and discussed before final conclusions.

From a methodological point of view, any ML study
should adhere to the FAIR (Findable, Accessible, Inter-
operable, Reusable) principles [18]. Artrith et al. have
recently reviewed best practices in ML for chemistry [19]
that serve as useful guidelines for our purposes. Their
ckecklist consists in six main points: (i) data sources
should be listed, publicly available with a clear identifica-
tion numbers, and with possible biases reported; (ii) data
should be cleaned using a well-defined and discussed pro-
tocol; (iii) the methods for data representations should
be clearly articulated and compared with the literature;
(iv) the implementation of the ML model should be pro-
vided, and the model should be compared to baseline
methods and to state-of-the-art ones; (v) a clear data
split between training, validation, and testing should be
implemented and clearly described; (vi) the code and
workflow should be made available and allow for repro-
ducing the reported results. We will illustrate all these
general rules throughout this paper.

II. THE OREDOX159 DATABASE

The ORedOx159 database is a collection of 318 one-
electron reduction and oxidation reactions involving 159
large-size organic compounds routinely used as redox in-
dicators, or involved in the development of molecular
electrochemical storage and electrochemical sensors [20].
For instance, it counts viologen derivatives which are
well-known from decades to reversibly change color be-
tween violet and deep blue through reduction and oxida-
tion [21], or 2,2’-bipyridiniums which are used as ‘electron
reservoir’ for electrochemical storage [22], or phenoth-
iazine compounds which has been recently considered as
efficient redox mediators in electrochemical sensors [23].
For each organic compound A, the database collects a
one-electron reduction reaction

A + e− →A−, ∆rG0
Red (1)

where ∆rG0
Red denotes the (standard) Gibbs free energy

variation of the reduction process at room temperature.
∆rG0

Red values are usually computed as negative except
when the oxidant A is less stable than the reducer A−.
This issue is related to that of negative electron affinities
(in general defined for vertical processes) and can also be
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an artefact due to the neglecting of solvent effects (see
for instance the discussion by De Proft and co-workers
within a DFT context [24].

Complementarily, the oxidation reaction twin writes

A→A+ + e−, ∆rG0
Ox (2)

with ∆rG0
Ox being the Gibbs free energy variation during

the oxidation process at the same temperature.
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FIG. 1: Scheme of the main organic derivatives from
which the compounds of the ORedOx159 database are

derived.

Let us recall that the Gibbs free energy is directly re-
lated to the standard reduction potential E0

Red encoun-
tered in electrochemistry. In the general case, an oxidizer
is indeed reduced by z electrons to form a reduced species.
These two quantities are linked by the well-known Nernst
equation

∆rG0
Red = −zFE0

Red, (3)

where F is the Faraday constant (i.e., 96,500 C mol −1).
It is thus equivalent to build a predictive model on Gibbs
reaction free energies or on redox potentials.

Regarding its chemical diversity, the database is com-
posed by a large variety of compounds substituted
by electro donor or acceptor groups such as aliphatic,
etheroxy, keto, ester and halogen substituents, and de-
rived from four different organic families that are clus-
tered into the phenothiazine (1), quinone (2), 2,2’-
bipyridinium (3) and viologen (4) subsets. Figure 1 pro-
vides a representation of the main core derivative of each
of them, and Figure 2 depicts the distribution of their re-
spective Gibbs free energy variations in reduction and ox-
idation computed in gas phase at PBE0/def2-SVP level.

More precisely, the phenothiazine subset counts 28
derivatives. They are 15 carbon- and 6 aza-substitued
phenothiazines as well as 4 benzothiazines and 3 sulfox-
ided phenothiazines. Their reduction Gibbs free energy
variations span between -26.31 and 10.07 kcal mol−1 while

their oxidation ones varies between 140.00 and 181.55
kcal mol−1.

The quinone subset composes of 37 compounds. They
belong to naphto- and anthra-quinones (13 and 3 deriva-
tives, respectively) as well as isoindole-4,7-diones (11
derivatives) and other types of quinones (10 derivatives).
Their reduction (oxidation) Gibbs free energy variations
cover a broader energy range than phenothiazine which
spans between -82.39 (55.18) and 51.84 (213.77) kcal
mol−1.

The 2,2’-bipyridinium subset counts 45 derivatives. It
is composed of unbridged 2,2’-bipyridiniums (3 deriva-
tives), ethene (3 derivatives), ethane (19 derivatives),
propane (6 derivatives) and butane 2,2’-bipyridiniums (3
derivatives) as well as other types of 2,2’-bipyridiniums
(11 derivatives). Their reduction Gibbs free energy vari-
ations span between -228.58 and -5.67 kcal mol−1 while
their oxidation ones varies between 182.06 and 402.04
kcal mol−1.

Finally, the viologen subset is composed of 49 deriva-
tives, belonging to core (20 derivatives), symmetric
(12 derivatives) and asymetric (7 derivatives) substi-
tuted viologens as well as other types of viologens (10
derivatives). Their reduction (oxidation) Gibbs free en-
ergy variations cover a similar energy range as 2,2’-
bipyridinium. It spans between -226.69 (185.29) and -
10.59 (407.36) kcal mol−1.

Please note that a more complete description of the
database is provided in the Supporting Information file,
and the structures and respective energies and Gibbs free
energies are accessible through the GitHub platform [25].

III. COMPUTATIONAL DETAILS

With the collected database, we now perform the nec-
essary computations and prediction of the redox poten-
tials. FIG. 3 exhibits the workflow of the procedure,
which breaks down into five steps. Three steps during
the training procedure include: (I) Computing the redox
potentials for each compound in training set using DFT.
The corresponding computational method is detailed at
the following part of this section. (II) Constructing the
descriptor representation for each compound in the train-
ing set, which is detailed in Section IV A. (III) Training
a ML model with the given descriptors and redox poten-
tials. The list of models used in this paper is described in
Section IV B. After that, a ready-to-use model is estab-
lished. When a new chemical compound with unknown
redox potentials is given, we (IV) construct the descrip-
tors for this compound the same way as in step (II), and
then (V) use these descriptors as the input for the trained
model, and take the output of the model as the predicted
redox potential.

We first present the QC methodology to generate the
reference data (I). The Gibbs free energy variations in
reduction and oxidation (see Eq. 1 and 2) are computed
in gas phase with density-functional theory (DFT). The
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FIG. 2: Distribution of the reduction and oxidation Gibbs free energy variations (kcal mol−1) covered by the
ORedOx159 database. Indices 1, 2, 3 and 4 refer to the phenothiazine, quinone, 2,2’-bipyridinium and viologen

subsets of the database.
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FIG. 3: The workflow for the redox potential
prediction.

structures of the 159 organic derivatives are fully opti-
mized in their neutral ground-state as well as in their
reduced and oxidized states. Their geometries are thus
fully relaxed. In other words, we do not consider vertical
electron removal or attachment. Each of the 477 resulting
minimum energy structures is then fully characterized by
a frequency computation (within the harmonic approxi-
mation) from which the thermal, vibrational and entropy
contributions are computed at room temperature using
standard statistical physics formulae.

The PBE0 global-hybrid density functional approxi-
mation for the exchange-correlation energy [26] and the
def2-SVP basis set [27] are chosen as a good accuracy/-
cost trade-off to estimate the requested energy property
for this large number of compounds. All the computa-
tions are performed with the release C.01 of the Gaus-
sian’16 program [28] using a tight energy threshold cri-

terion as well as an ultrafine integration grid.
It should be underlined that only gas phase values are

here considered. Obviously, experimental data are in gen-
eral related to measurements in solution. However, an ac-
curate description of solvation effects in redox processes
is far from being straightforward, and is clearly outside
the scope of this paper. The same remark applies for a
detailed assessment of the chosen QC methodology. We
refer the interested reader to the valuable works, among
others, by the groups of Gillmore [29] and Grimme [30].

IV. MACHINE LEARNING FRAMEWORK

With redox potential references generated, we now pro-
vide an in-depth elucidation of the ML framework uti-
lized in this paper. We begin with introducing the de-
scriptors utilized, and we subsequently delineate the ML
models employed, corresponding respectively to steps (II)
and (III) in FIG. 3.

A. Descriptor design

As stated in introduction, our models will be grounded
in graph theory. In a nutshell, a graph G is an ordered
pair, G = (V,E), of vertices (also named points or nodes)
and edges (also known as links or lines) that are un-
ordered pairs of vertices. In a chemical context, we first
construct a graph from any molecule by identifying atoms
as nodes and by modeling chemical bonds by edges. It is
thus obvious that the usual molecular representation of a
chemical compound can be straightforwardly translated
into the language of graph theory.
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FIG. 4: Descriptors used for the machine learning models.

This does not mean that only interactions between
bonded atoms exist. Actually, a full molecular graph
will be in principle a complete graph (i.e. all pairs of
nodes are linked - which is not a synonym of bonded -
together), and one can for in principle evaluate the in-
teraction energies between all nodes (for instance, us-
ing Pendás’ Interacting Quantum Atoms (IQA) scheme
[31]. However, such graphs rapidly become huge since
they involve n(n − 1)/2 edges (with n the number of
atoms), so that their use would introduce a computing
complexity that can be prohibitive for large databases
of extended molecules. Conversely, a linear molecule
(i.e. without rings or cages) exhibits (as a direct con-
sequence of the Poincaré-Hopf relationship within the
framework of Bader’s Quantum Theory of Atoms-In-
Molecules (QTAIM) [32]) only n−1 bonds, so that linear
scaling may be possible with such graph assumption. An
important point to notice is that, in principle, the node
properties, if relevantly chosen, can reflect both bonded
and non-bonded interactions.

Then, once the molecular graphs established, we con-
sider in total 3 types of descriptors for graph-based mod-
els in this research. As we intend this paper to have some
didactic content, we have decided here to describe them
into more detail with no prerequisite on chemoinformat-
ics. They are also represented in FIG. 4.

(A) Atom + Bond Types: This descriptor considers
element types (for instance carbon, hydrogen...) as node
features and chemical bond types (either single, double,
triple, aromatic, see more details in type B) as edge fea-
tures. Since these features are discrete, they are encoded
in a one-hot manner. These descriptors, while affording
a simplistic description of a molecule, are widely used in

various databases for the evaluation of machine learning
models, such as TUDataset [33]. However, this descrip-
tor may lack the ability to capture sufficient information
for effective learning.

(B) One-Hot Features: Such descriptors encompass
common features for both atoms and chemical bonds,
each of them represented as one-hot coded node and edge
features, respectively. These descriptors are inspired by
the featurizers in DeepChem [34], based on WeaveNet
paper [35]. They can all be directly obtained from the
RDKit [36] software without the need for computation-
ally intensive quantum chemistry-informed descriptors.

In practice, they are actually very often directly gen-
erated from the Simplified Molecular Input Line Entry
Specification (SMILES) [37] molecular code (see an ex-
ample of the top left corner of FIG. 4) using the stan-
dard rules of chemistry based on Lewis representation ,
without resorting to any kind of advanced calculations.
For relatively simple molecules in organic chemistry, the
bond pattern predicted by SMILES code is fully con-
sistent with ones from more elaborated approaches (for
instance QTAIM already mentioned, which affords uni-
vocal definition of chemical bonds) based on QC analysis.
This is one of the main strengths of SMILES code since
it can be produced and processed in an almost instan-
taneous manner. However, as it does not encode any
3D information, it cannot distinguish between the differ-
ent conformers (resulting for instance from free rotations
around single bonds) of a given molecule.

More precisely, the node features include a 32-
dimensional one-hot vector (see middle part in FIG. 4).
The first 10 components encode the chemical symbol with
the following possible categories: C, N, O, F, P, S, Cl,
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Br, I, and others. For instance, a carbon atom will be
coded by (1 0 0 0 0 0 0 0 0 0) while an oxygen atom will
be represented by (0 0 1 0 0 0 0 0 0 0). The hybridization
type is encoded by three components depending on it is
sp, sp2 or sp3 (a carbon engaged into a double bond will
hence be coded as (0 1 0).

The other atom descriptors are the electronic charge
(as its evaluation is not straightforward - ideally it re-
quires a QC calculation -, we decided to disregard it by
setting it to zero for all atoms), its aromaticity (repre-
sented by a boolean depending whether the atom belongs
to an aromatic system or not), its so-called “Degree”
(corresponding to the coordination number, the number
of hydrogen atoms linked to the studied node (one-hot
coded as a 6-dimension feature), and its possible chiral-
ity (R or S absolute configuration, once more in one-hot
encoding) in the case of an asymmetric carbon atom.
This representation is thus able to address stereochem-
istry issues.

The edge features consist of an 11-dimensional one-
hot vector (see bottom part of FIG. 4) representing bond
type (four categories: single, double, triple and aromatic)
, whether the atoms at the end of the bond share the same
ring (no matter the type) and whether the bond belongs
to a conjugated system (both encoded as a boolean), and
the possible stereoisomerism of the bond in a 5-dimension
feature).

Notice that some structure information is implicitly
embedded into the node features through “Aromatic”,
“Degree”, and ”Chirality”. This may benefit the mod-
els that can not deal with edge features or rings. We
emphasize that these features are easy-to-get and non-
expensive, thus exhibiting how much ML models can
benefit from a short amount of effort of descriptor en-
gineering.

(C) One-Hot Features on Nodes + Distances on
Bonds: This descriptor employs the same node features
as the descriptor (B), but replaces edge features with
the Euclidean distances (here expressed in Angström) be-
tween the nuclei of the corresponding bonded atoms (see
bottom right corner in FIG. 4). We utilize distances to
maintain a 3D equivariant system (that-is-to-say the val-
ues remain the same when the molecule is translated and
rotated as a whole), making it applicable to any models
with the ability to handle continuous edge features (at
variance with the previous bond descriptions that used
only discrete descriptors). It can be remarked that in-
ternuclear distances are also the main ingredient of the
celebrated Coulomb matrices (CMs) [38] that enter many
ML models in chemistry. However, it should be noticed
that distances, here (at variance with that is currently
done when using CMs) are not computed for non-bonded
pair of atoms even if they can add additional information
on the geometry adopted by the molecule.

To obtain these distances, we search for the most sta-
ble conformer for all compounds using the freely avail-
able Balloon [39] software with the MMFF94 molecular
mechanics force field, starting from the SMILES code,

with the following options: –nconfs 20 –nGenerations
300 –rebuildGeometry. We then compute the distance
from the corresponding Cartesian coordinates of the nu-
clei. This computation, though probably less accurate
than a QC geometry optimization, has however an al-
most negligible computational cost, fulfilling one of the
targets of our ML modelling.

For the same reason, no QC descriptors are used at
all. Obviously, some of them would be certainly use-
ful for an accurate prediction of redox properties. For
instance, the energy of the Highest Occupied Molecular
Orbital (HOMO) energy (in Kohn-Sham DFT) is known
to be exactly equal (this is due to the asymptotic form of
the electron density in the exponential tail) to the oppo-
site of the electronic component (thus without thermody-
namic contributions) of the vertical (i.e. without geom-
etry relaxation) ionization energy if the exact exchange-
correlation functional is used (which is unfortunately not
known in analytical form). It is also known that the en-
ergy of the lowest unoccupied molecular orbital (LUMO),
while differing in principle from the opposite of the verti-
cal electron affinity (as a consequence of the discontinu-
ity of the exchange-correlation potential), is nevertheless
linked to electron capture (see for instance a detailed dis-
cussion by Baerends [40]).

These descriptors, which have already been used in
the literature to build predictive models, unfortunately
require the computationally demanding task of a DFT
calculation. This is exactly what we would like to avoid
thanks to a well tailored ML model based on descriptors
that can be computed at an almost zero cost.

B. Machine learning models

This section introduces three types of models, rep-
resented in FIG. 5, employed in this paper to ad-
dress graph prediction problems: Graph Edit Distances
(GEDs), Graph Kernels (GKs), and Graph Neural Net-
works (GNNs), baselined upon a set of vector-based ma-
chine learning models.

Graph Edit Distances: GEDs measure the dissim-
ilarity between two graphs by evaluating the amount of
distortion required to transform one graph into another.
Various basic edit operations, each assigned with a cost,
are used to measure this distortion, and the minimum
total cost represents the GED between the two graphs.
Commonly used edit operations include an insertion, re-
moval, or substitution of vertices or edges. FIG. 5(III)
shows a simple instance of an edit procedure. In this
basic example, the first operation is the removal of the
bottom vertex, followed by the removal of the bottom
edge.

Then an edit path π, which in FIG. 5 goes from graph
G to graph G′, can be defined as the sequence of these
operations, whose total cost c is the sum of the costs of
all edit operations in the path, namely c(π) = ∑e∈π c(e),
where e denotes an elementary operation. Then, the
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GED between two graphs G1 and G2 is defined as the
minimum cost associated with any possible edit path:

ged(G1,G2) = min
π∈Π(G1,G2)

c(π), (4)

where Π(G1,G2) denotes the set of all possible edit paths
from G1 to G2. We mention here that we only consider
in this paper a constant value for the cost (i.e. it is
independent of the labels of nodes and edges) of every of
the six elementary operations.

Since computing GED is an NP-hard problem [41], ap-
proximation methods have been proposed to estimate it.
In this paper, we use a milestone method, Bipartite
[42], where the edit costs are optimized using a method
from [43]. This approach boils down the quadratic assign-
ment problem (QAP) to a linear one by finding a subopti-
mal edit path only based on local structural information.
Edit costs are optimized in a bi-alternate optimization
scheme. This approach constitutes a good trade off be-
tween computational time and accuracy. More accurate
methods based on the QAP have been proposed [44, 45],
at the cost of an higher computational time. We rec-
ommend in-depth papers [46, 47] on GEDs to interested
readers.

As GEDs are a distance measure, we combine them
with the k-Nearest Neighbor regressor (KNN) [48] for
the final prediction. To predict the output value of an
example, this approach simply consists in averaging the
target values associated to its k nearest neighbors ac-
cording to the GED, with the hypothesis that the target

values of similar examples are close to each other. The
contribution of each neighbour can be weighted according
to distance values.

The advantages of GEDs inherit from their flexible and
explicit application of edit operations, which allows for
capturing complex structural differences between graphs,
as well as an explicit demonstration of the modification
process of graphs. This latter merit helps establish the
explainability of the model, which is conductive to their
application on the generative tasks. However, the se-
mantic meaning of graph elements may not be captured
by GEDs. Moreover, as a NP-hard problem, calculating
GEDs can be computationally expensive, especially for
large or dense graphs. The lack of providing a continu-
ous space to interpolate between graphs and invariance
to graph size may also limit their applications to certain
tasks.

Graph Kernels: Graph kernels compute a similarity
measure between graphs by implicitly mapping them into
high-dimensional spaces where the inner product is com-
puted. Such a measure can be defined as a symmetric,
positive semi-definite function k ∶ G × G → R on a space
of graphs G, where a map φ ∶ G → H exists into a Hilbert
space H, so that

k(G1,G2) = ⟨φ(G1), φ(G2)⟩H (5)

for all pairs of graphs G1,G2 ∈ G. Here ⟨⋅, ⋅⟩H is the inner
product in H, as shown in FIG. 5(II). The results are
then processed by a kernel machine for final prediction,
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specifically Kernel Ridge Regression (KRR) [49] in this
paper. By altering the design of the mapping, various
graph kernels can be constructed. A commonly design
strategy inherits from R-convolution kernels, which mea-
sures similarity between two objects, by measuring the
similarities between their substructures [50].

Normally, a series of sub-kernels are first constructed
between pairs of sub-structures of two graphs, then a
graph-level kernel is established upon the summation of
these sub-kernels. In our paper, we examine a set of base-
line graph kernels, including Shortest Path Kernel (SP)
[51], Structural Shortest Path Kernel (SSP) [52], Path
Kernel [16], Treelet Kernel [53], and Weisfeiler-Lehman
Subtree Kernel (WLSubtree) [54], each of them named
after the sub-structures from which it builds the kernel.
These kernels are able to tackle linear and non-linear
sub-structures. Detailed descriptions and comparisons
of graph kernels can be found in [55–58].

Graph kernels are able to work directly with the graph
structures, while tackling the similarity measure on high
or infinite dimension spaces, thanks to the kernel trick
[59]. This allows bypassing acquiring fixed embeddings,
extends their expressiveness and flexibility of design and
integration of prior-knowledge. The proper design can
lead to the invariance to graph isomorphism as well. The
other size of the coin minted their lack of the ability of
automatic learning of the representation, especially com-
pared to graph neural networks. The choice of the ap-
propriate kernel is thus crucial for achieving good perfor-
mance.

Graph Neural Networks (GNNs): GNNs are a
class of neural networks that specialize in learning from
graph-structured data. They often utilize a message-
passing scheme, wherein information from nodes, edges,
and the overall graph structure, are aggregated from the
neighbors of each node through a series of graph convolu-
tional operations, as shown in FIG. 5(IV). With denoting
x
(k−1)
i ∈ RF node features of node i in layer (k − 1), and

ej,i ∈ RD denoting (optional) edge features from node j
to node i, update of node features using message passing
graph neural networks can be described as

x
(k)
i = γ(k)

⎛
⎝
x
(k−1)
i , ⊕

j∈N(i)
φ(k) (x(k−1)i ,x

(k−1)
j ,ej,i)

⎞
⎠
,

(6)
where ⊕ denotes a differentiable, permutation invariant
function (e.g. sum, mean or max), and φ denote differen-
tiable functions such as MLPs (Multi Layer Perceptrons).
γ(k) can be thought of as the node’s update or processing
function at that particular layer, which can be as well im-
plemented as a neural network layer. This formula cap-
tures the message-passing operation of GNNs. At each
layer, information is propagated from neighboring nodes
to the central node i [60]. Following this message-passing
process, a pooling operation (such as sum, mean, or max)
over node features, is often applied to obtain a graph-
level representation; a MLP can then be used for graph-
level predictions. We refer to [61–64] readers interested

in GNNs.
Several representative GNN architectures have been

considered for study. The Message Passing Neural Net-
work (MPNN) [65] employs message passing and aggre-
gation mechanisms in combination of an edge network to
capture relational information. In contrast, the Graph
Convolutional Network (GCN) [66] utilizes convolution-
like operations with weight sharing for neighbor node
information aggregation. The Deep Graph Convolu-
tional Neural Network (DGCNN) [67] distinguishes itself
through the use of edge features and sort pooling to learn
graph embeddings invariant to permutation of the nodes.
The Graph Isomorphism Network (GIN) [68] combines a
graph isomorphism test with learnable functions to inte-
grate global and local information. On the other hand,
the Graph Attention Network (GAT) [69] employs atten-
tion mechanisms to selectively weight neighboring node
contributions.

Finally, the Unified Message Passing Frame-
work (UniMP) [70] integrates message passing and
transformer-based architectures, harnessing both rela-
tional and self-attention mechanisms for comprehensive
graph representation learning. These diverse models
offer distinct approaches to address our problem.

One significant advantage of GNN models lies in their
time complexity during inference, setting them apart
from GEDs and graph kernels. In the case of GEDs and
graph kernels, it is typically necessary to perform metric
or Gram matrix computations, involving the calculation
of similarity values between each data point in the train-
ing set and the data point to be inferred. This matrix
serves as the inner product in kernel machines and aids
in finding the K nearest neighbors in K-Nearest Neigh-
bors algorithms. The catch is that the computational
time associated with this matrix scales linearly with the
size of the training set, rendering it prohibitively time-
consuming for large datasets. As a result, the scalability
of these models becomes constrained.

In contrast, GNN models usually feature a linear or
nearly linear time complexity during inference. This effi-
ciency is intricately linked to the model’s design, partic-
ularly the scale of weight parameters. In practice, GNN
computations predominantly involve basic matrix oper-
ations like multiplication and addition. Consequently,
GNN models excel in efficiently handling graphs of vary-
ing sizes, making them exceptionally well-suited for real-
world scenarios. These scenarios often involve graph data
that ranges from small and simple to large and intricate,
then underlining the substantial benefits of GNNs in real-
world applications.

More advantages are offered by GNNs, notably in their
ability to automatically learn representations, which alle-
viates the need for explicit feature engineering. By aggre-
gating and propagating attributes associated with nodes
and edges within the graph, the incorporation of both
local and global information is facilitated for a compre-
hensive understanding of the graph’s context. Addition-
ally, GNNs allow for knowledge transfer through a pre-
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training and fine-tuning strategy. However, they come
with certain limitations. GNNs often require substantial
amounts of training data and memory resources, which
can be restrictive in real-world applications.

The lack of proper interpretability and explainability
poses challenges, potentially diminishing trust among do-
main experts. Furthermore, GNNs inherit unresolved
fundamental issues, such as over-smoothing, where nodes
tend to lose their distinctiveness after a certain number
of GNN layers, limiting the feasibility of designing deep
GNN architectures. These complexities need further in-
vestigation and innovation to fully harness GNNs’ poten-
tial in practical settings.

In addition to graph-based models, we also con-
sider vector-based models [49] as baselines, namely
Linear Regression (LR), Gaussian Kernel Ridge Re-
gression (GKRR), Support Vector Regression (SVR),
Gaussian Process Regression (GPR), Random Forest
(RF), Gradient-boosted Decision Trees (GBDT), and K-
Nearest Neighbor Regression (KNN). Given the vector-
focused nature of these models, a graph-level pooling step
is required beforehand to derive fixed size vectors from
varying size graphs. For this purpose, we adopted the
strategy outlined in [71], wherein statistics are computed
for each feature over all nodes within each graph (stats).
Indeed, the number of nodes varies along the molecular
dataset, so that the vector gathering the node features
would have, in general a different size for one chemical
system to another one, precluding the use of standard ML
methods. To avoid this, for a given feature, we compute
the minimal, maximal, mean and standard deviation val-
ues on all nodes, resulting in four descriptors that can be
evaluated for all molecules.

Additionally, we introduced a novel pooling approach,
where we quantified the frequency of each feature. As dis-
cussed in Section IV A, the node features, which encom-
pass Atom and Bond Types (A) and One-Hot Features
(B), are encoded using a one-hot representation in this
paper. When two feature vectors are summed, it results
in a vector where each element corresponds to the total
count of that feature. To illustrate this concept, consider
a simple two-node toy graph with feature vectors (1 0 0 1
0) and (0 1 0 1 0) assigned to the two nodes. After apply-
ing our pooling approach, the graph-level representation
becomes (1 1 0 2 0), obtained through element-wise sum-
mation of the two node feature vectors.

This means that features at the first, second, and
fourth positions occur once, once, and twice, respectively,
in the entire graph, while the other features do not ap-
pear. For a visual representation, refer to FIG. 5. Our
ML experiments show that this pooling strategy outper-
forms the one proposed in [71] in most cases, as illus-
trated in Section V. It is important to note that these
models primarily emphasize node features and that, dur-
ing the experiments, edge features were disregarded.

V. RESULTS AND DISCUSSION

Performance evaluations are carried out on ten differ-
ent random splits. Each split is partitioned into 80%,
10%, and 10% for training, validation, and testing, re-
spectively. We calculate the Average Mean Absolute Er-
rors (MAEs) over the 10 splits as the final results, es-
timated on the respective test sets. For the sake of re-
producibility, the code is available through the GitHub
platform [72].

TABLE I presents the MAE values obtained for each
ML experiment. The ± sign indicates the 95% confidence
interval computed over the 10 repetitions. Unsupported
descriptors for each model are denoted by “-”. Notably,
the best descriptor for each model is highlighted in bold,
the optimum result for each descriptor across all mod-
els is marked in green, and the superior results across
all experiments are underlined. In the case of vector-
based models, we focus on the results obtained through
count pooling as it consistently outperforms statistical
pooling. This count pooling thus represents an inter-
esting improvement over the methods previously used
by us to deal with the non-constant number of nodes
along the whole dataset. An exception is observed for
the GPR model with the One-Hot descriptor, where sta-
tistical pooling yields better results, and thus we present
both pooling methods.

When comparing different descriptors, a clear
trend emerges with the One-Hot descriptor prevailing in
most models: 16 out of 19 for reduction Gibbs free en-
ergies and 15 out of 19 for oxidation Gibbs free energies.
In the context of graph-based models, this dominance
continues as 8 out of 11 models for both targets. The fol-
lowing is The Atom Bond Types descriptor. Importantly,
the performance gap among descriptors is significant on a
model-wise basis, which often surpasses the differences in
performance between models. This phenomenon is par-
ticularly pronounced for vector-based models, likely due
to their limitation in handling only node features. The
One-Hot descriptor, encoding implicit structural infor-
mation, proves highly beneficial in this context.

A similar pattern is observed for most GNN models,
emphasizing the crucial role of feature engineering in
their performance. An exception is for reduction values
Red, where the One-Hot descriptor excels. This suggests
the intriguing potential of transformer-like models in cap-
turing core information for graphs with limited features,
even on smaller datasets. Conversely, the Distance de-
scriptor is evaluated only for models supporting contin-
uous edge features. While its performance closely aligns
with that of the One-Hot descriptor, it never surpasses
the latter. This can be attributed to the reduction in
information when utilizing distances instead of 3D coor-
dinates, and the fact that none of the models are specif-
ically designed for a 3D equivariant system, especially
with limited learning space.

Further insights emerge when comparing different
models. Notably, all optimal results are obtained by
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TABLE I: The prediction MAE (in kcal/mol).

Models
∆rG0

Red ∆rG0
Ox

AB Types One-Hot Dis AB Types One-Hot Dis

LR 56.0±10.8 29.4±2.7 56.1±11.1 31.0±2.5 -
GKRR 28.9±7.5 14.4±5.0 - 30.5±10.4 17.5±4.4 -
SVR 26.0±9.2 14.1±3.7 - 31.4±10.3 17.2±5.2 -

GPR (stats) 42.3±6.5 21.0±5.5 - 43.2±8.8 22.0±3.0 -
GPR (count) 36.8±7.3 26.2±4.6 - 37.6±8.8 29.6±5.1 -

RF 19.7±5.0 14.3±4.6 - 22.3±5.4 15.2±4.0 -
GBDT 19.6±5.1 11.9±4.1 - 20.4±4.9 13.7±3.2 -
KNN 25.3±9.9 10.2±3.9 - 26.2±8.2 11.3±5.4 -

SP 29.6±14.4 12.5±2.1 - 31.9±13.9 14.0±2.1 -
SSP 9.5±2.3 14.7±2.8 14.4±3.2 11.9±2.7 16.6±2.8 16.9±3.4
Path 9.7±2.1 10.7±2.4 - 12.8±2.7 12.8±2.3 -

Treelet 9.9±2.7 25.1±15.9 - 13.2±2.9 23.0±11.3 -
WLSubtree 12.4±2.1 12.0±1.8 - 12.0±1.8 13.6±2.2 -

GED (fitted) 11.9±4.2 8.0±1.8 9.5±4.0 14.3±5.1 12.1±2.7 13.8±4.9

MPNN 8.2±3.7 5.8±1.9 5.6±0.6 8.7±3.2 7.2±2.5 10.7±3.3
GCN 21.5±7.6 8.4±3.2 - 24.5±8.4 8.8±2.0 -

DGCNN 17.7±6.2 8.8±3.2 - 22.1±6.2 13.5±4.8 -
GIN 26.9±9.0 13.7±5.0 - 24.7±9.7 13.0±2.9 -
GAT 11.5±4.9 6.9±1.4 8.0±2.3 11.1±6.6 8.5±1.5 9.9±2.2

UniMP 7.3±1.5 7.4±3.0 7.9±1.0 18.0±18.3 9.1±2.6 20.3±24.5

graph-based models, particularly GNNs when using the
One-Hot descriptor. The best performances across all
experiments for both targets are achieved by GAT on the
One-Hot descriptor, underlining the flexible capabilities
of graph-based models and the representational power of
GNNs. However, when a better-engineered descriptor is
applied, the performance of a “simpler” model tends to
approach that of a more complex model.

For instance, with the One-Hot descriptor, the perfor-
mance of KNN closely rivals and surpasses the best graph
kernels, while GED outperforms 3 out of 5 GNNs for re-
duction and 2 out of 5 for oxidation. Comparing GKRR
and graph kernels, both employing Kernel Ridge Regres-
sion for predictions, GKRR achieves similar performance
to three graph kernels, including WLSubtree, and sur-
passes one of them. It is important to highlight that
with the One-Hot descriptor, numerous graph kernels,
GED, and even vector-based models outperform GNNs
with the Atom Bond Types descriptor, underscoring the
critical role of descriptor engineering.

On the whole, with the chosen low-level and
computational-friendly descriptors, the best ML model
achieves a prediction MAE of 5.8 kcal mol−1 for reduc-
tion and 7.2 kcal mol−1 for oxidation on the ORedOx159
database. It corresponds to a MAE ranging between 0.2
and 0.3 V on the potential, an error which is in line with
the state-of-the-art approach recently developed in com-
putational chemistry [30].

We collected the test data from all cross-validation
splits, comprising a total of 180 compounds. Subse-
quently, we generated plots comparing the Gibbs free
energies calculated by DFT with their predicted coun-

terparts, as shown in FIG. 6. These comparisons were
made using the best-performing prediction system, which
includes the MPNN model, as well as the Dis descriptor
and the One-Hot descriptor for reduction and oxidation
tasks, respectively. The figure displays high correlations
between the DFT-calculated and the predicted values.
Specifically, the R2 scores amount to 0.992 for reduction
and 0.988 for oxidation. These substantial correlation co-
efficients validate the accuracy of our predictive model for
these tasks and affirm its predictive abilities. This level
of agreement reflects the model’s suitability for practical
applications in predicting reduction and oxidation poten-
tials.

Lastly, we briefly discuss the computational effort as-
sociated to these ML procedures. Figure 7 illustrates the
reference time required for each datapoint or compound.
The values are presented in seconds and log-scaled with a
base of 10. In this representation, faster reference times,
characterized by smaller values, are indicated by the blue
color, while slower times are depicted in red. Among
the evaluated models, GNN models demonstrate supe-
rior efficiency in terms of reference times compared to
graph kernel and GED models. For GNN models, ref-
erence times can be as low as 10−4 seconds, as seen in
the case of GCN, DGCNN, and GIN. The most accurate
model, MPNN, achieves reference times of approximately
0.001 seconds for reduction and 0.01 seconds for oxida-
tion. These values represent, as expected, a dramatic im-
provement in efficiency compared to quantum chemistry-
based methods, for which minutes or hours are needed
for a molecule.
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FIG. 6: Potentials computed by DFT vs the ones predicted via the best descriptor and model.
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FIG. 7: Reference time per datapoint for graph-based
models, in log-scaled with base 10, and in seconds.

VI. CONCLUSION AND FUTURE WORK

In this study, we proposed a comprehensive, homo-
geneous, and reliable database ORedOx159 (based on
density functional theory calculations), which collects
one-electron reduction and oxidation reactions involv-
ing large-size organic compounds of experimental inter-
est. We then applied a series of machine learning models
on this dataset to predict the reduction and oxidation
Gibbs free energies using several descriptors computed
from the structures of the compounds obtained at the

cheap molecular mechanics level. The analyses of the re-
sults suggests that with the proper choice of descriptors
and machine learning models, a relatively high prediction
accuracy can be achieved, where the prediction time is
considerably reduced.

Looking ahead, future research work will include sev-
eral dimensions. Firstly, from the chemical point of
view, the next important step will be to (i) include to
our model solvation effects, and (ii) extend the train-
ing database to other chemical families of high interest
in electrochemistry. Then, in comparison to tabulated
reference potentials, our research output will become a
robust built-in package to fast and accurately predict re-
dox potentials of organic compounds in solutions, as it is
for instance the case for NMR spectrum simulations.

Secondly, state-of-the-art machine learning models
may serve as better prediction tools, especially the ones
tailored for our problem. For example, Graph Neural
Networks and transformer-like models, particularly fo-
cusing on leveraging 3D coordinates and leveraging state-
of-the-art models may unlock new capabilities and in-
sights. Other machine learning strategies, such as pre-
training, may also unlock the potential of better predic-
tion. Thirdly, we aim at exploring more suitable descrip-
tors that can better balance the representation ability
and the acquiring time complexity. Lastly, we plan to
broaden our evaluation criteria to incorporate additional
important metrics such as robustness, interpretability
and explainability, and overall model trustworthiness.

Finally, from a more general perspective, we are con-
vinced that significant progress can be made mainly if
the two involved scientific communities (i.e. theoretical
chemistry researchers and data scientists) enter a fruitful
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dialogue, and manage not only to share their tools but
also to build a common language.
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