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Abstract

Including invariance of global properties of a physical system as an intrinsic
feature in graph neural networks (GNNs) enhances the model’s robustness and
generalizability and reduces the amount of training data required to obtain a desired
accuracy for predictions of these properties. Existing open source GNN libraries
construct invariant features only for specific GNN architectures. This precludes
the generalization of invariant features to arbitrary message passing neural network
(MPNN) layers which, in turn, precludes the use of these libraries for new, user-
specified predictive tasks. To address this limitation, we implement invariant
MPNNs into the flexible and scalable HydraGNN architecture. HydraGNN enables
a seamless switch between various MPNNs in a unified layer sequence and allows
for a fair comparison between the predictive performance of different MPNNs. We
trained this enhanced HydraGNN architecture on the ultraviolet-visible (UV-vis)
spectrum of GDB-9 molecules, a feature that describes the molecule’s electronic
excitation modes, computed with time-dependent density functional tight binding
(TD-DFTB) and available open source through the GDB-9-Ex dataset. We assess
the robustness (i.e., accuracy and generalizability) of the predictions obtained using
different invariant MPNNs with respect to different values of the full width at
half maximum (FWHM) for the Gaussian smearing of the theoretical peaks. Our
numerical results show that incorporating invariance in the HydraGNN architecture
significantly enhances both accuracy and generalizability in predicting UV-vis
spectra of organic molecules.

This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with
the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article
for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government
purposes. DOE will provide public access to these results of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

1 Introduction

Scientific relevance. The ultraviolet-visible (UV-vis) spectrum of an organic molecule refers
to the pattern of ultraviolet and visible light that is absorbed or transmitted by the molecule [1].
When electromagnetic radiation in the UV and visible regions (typically in the range of 200 to 800
nm) passes through a sample of the organic compound, certain wavelengths of light are absorbed
by the molecule, while others are transmitted or pass through unaffected. This fact provides the
foundation of a powerful analytical technique used in chemistry to identify and characterize organic
compounds, particularly those with conjugated systems or chromophores (parts of the molecule
responsible for absorption of light). Predicting the UV-vis spectrum of compounds plays a crucial
role in biotechnology, pharmaceutics, and energy research. More specifically, the UV-vis spectrum
can be used to (1) identify chemical species present in a material or produced during a chemical
reactions, (2) grow bacteria for biological studies, (3) perform drug design by identifying molecules
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that are easy to engage in chemical reactions, or (4) quantify the amount of nucleic acids (DNA or
RNA) to determine their average concentrations in a mixture, as well as their purity.

State-of-the-art deep learning approaches. State-of-the-art methods for measuring a molecule’s
UV-vis spectrum involve labor-intensive experiments or computationally expensive first-principle
calculations [2, 3]. These methods limit efficient screening of vast parameter spaces for molecular
design. Recently, deep learning (DL) models have emerged as a promising alternative for predicting
the UV-vis spectrum of organic molecules.

DL models excel at capturing complex data trends, essential for mapping a molecule’s atomic structure
to its UV-vis spectrum. They also offer rapid predictions compared to experiments and first-principle
calculations, enabling efficient exploration of parameter spaces for desired optical properties. Some
prominent DL architectures, like DeepMD [4], Behler-Parinello Neural Network (BPNN) [5], and
DTNN [6], require costly atomic input descriptors, limiting their scalability for large atomic systems.
In contrast, graph neural networks (GNNs) [7] extract topological information naturally by treating
atoms as nodes and bonds as edges, eliminating the need for expensive descriptors and allowing
scalable training on large atomic systems. Open-source GNN libraries like PyTorch Geometric (PyG)
[8, 9], Deep Graph Library (DGL) [10–12], and TorchMD [13] lack crucial features for computational
chemistry, including multi-task learning (MTL), seamless model replacement, hyperparameter control,
distributed data parallelism (DDP), and regular maintenance.

An Oak Ridge National Laboratory (ORNL) open-source GNN implementation, HydraGNN [14, 15],
addresses these gaps. HydraGNN supports MTL [16], is open-source1, offers an object-oriented inter-
face for message passing policies, provides HPC capabilities for scaling with DDP on supercomputers
[17], and maintains compatibility with required software packages through continuous integration
(CI) tests. However, the current HydraGNN version does not support MPNNs that preserve critical
topological properties, like invariance, crucial for quantum chemistry applications. Invariance ensures
a model yields consistent output despite certain input data transformations. For molecular applica-
tions, GNN predictions of total system properties (e.g., the UV-vis spectrum) should be invariant to
rotations and translations to ensure robustness and generalization across structurally similar, unseen
molecules.

Our contribution. We implement invariant message passing layers into the HydraGNN framework,
enabling accurate and scalable learning for molecular properties. In particular, we (1) include
positional inputs and user specified invariant embeddings into HydraGNN, (2) incorporate the
invariant embeddings and message passing policies of the SchNet [18], DimeNet++, and EGNN
and (3) provide a study on the robustness of the invariant features using the UV-vis spectrum of the
open-source GDB-9-Ex dataset.

The HydraGNN architecture enhances each invariant model by allowing for a generalized encoding
and decoding mechanism. The expansion of the HydraGNN architecture to include invariant models
improves the flexibility and seamless MPNN switching by allowing for user specified positional
inputs and invariant feature embeddings. By being included in the HydraGNN architecture, the
invariant models can inherently take advantage of the built-in distributed computing capabilities of
HydraGNN to ensure effective scaling on leadership class supercomputing facilities.

Our numerical results show the benefit of the new invariant features for improved predictions of the
UV-vis spectra by training the HydraGNN model on the open source GDB-9-Ex dataset [19]. We
assess the generalizability of the HydraGNN predictions with respect to variations in the Gaussian
smearing applied to the theoretical peaks of the quantum chemical UV-vis spectra. Ensuring robust-
ness with respect to different intensities of Gaussian smearing is a desirable property of surrogate
models for UV-vis spectroscopy, as different experimentalists may need to tune such parameters
based on the resolution and physical conditions of operability of the experimental instruments. In this
respect, our study is the first of its kind.

Organization of the paper. The paper is organized as follows: In Section 2, we present the
architecture of HydraGNN as well as several invariant GNNs. In Section 3, we provide a detailed
review of the related works. In Section 4, we present the spectrum prediction task of the GDB-9-Ex

1https://github.com/ORNL/HydraGNN
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Figure 1: Fixed GNN architecture for HydraGNN with input features H and adjacency matrix A.
Graph convolutional layers are shown in green and channel mixing layers are shown in purple.

Figure 2: The object oriented programming structure of HydraGNN, in which each class inherits
all of the functions from the Base class, and over-ride the selected functions that allow for the full
functionality of the MPNN.

dataset. In Section 5, we detail the incorporation of invariant MPNNs into HydraGNN. In Section 6,
we illustrate the advantage of using invariant features in the HydraGNN framework.

2 Background

Notation. We denote scalars by lower-case letters, vectors with lower-case boldface letters and
matrices with upper-case boldface letters. For a vector a, we use ∥a∥ and ∥a∥∞ to denote its ℓ2 and
ℓ∞ norms, respectively. We denote vector concatenation as a ⊕ b. For a matrix A, we denote its
induced ℓ2 norm by ∥A∥. Given matrices A and B, we denote their entry-wise product as A⊙B.

2.1 HydraGNN architecture

The HydraGNN architecture is implemented in an object oriented programming structure which com-
bines message passing and channel mixing layers for multi-task predictions of molecular properties.

Figure 1 illustrates the forward pass of the HydraGNN architecture. For graph structured input data
G = (V, E), we denote the number of nodes as |V| and the number of edges |E|. The input data
consists of node features H ∈ Rhinput×|V| and graph connectivity matrix A. The input features and
their dimension hinput is determined by the task. For our application, each data batch contains |B|
molecules, and a molecule indicator function B(A). The inputs are fed through L-message passing
layers which update the hidden features H l with hidden dimension hmpnn × |V| at each layer. The
hidden features are then extracted from the atomic nodes to the molecular batch using a batch pooling
function. A further C-layers of channel mixing are applied to update the internal features Ỹ c with
layer dependent feature dimensions hc × |B|. The final predictions are made in a multi-task format
with N outputs of task dependent dimension hn × |B|. The non-task dependent layer count and
feature dimensions {L,C, hmpnn, hc} are chosen via hyperparameters.

Figure 2 details the object oriented programming structure utilized by each of the MPNN models in
HydraGNN. The inheritance of the Base class for each MPNN enables the seamless change between
message passing policies. It also enables a direct comparison between MPNNs in a unified framework
of the Base class.
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2.2 Invariant message passing

In an invariant MPNN, the internal features H l are unchanged when subjected to a group action.
Atomic structured data augments the internal features with Euclidean positional data X l. The group
responsible for preserving Euclidean distances in a 3D space is the Euclidean group known as E(3).
The E(3) group action encompasses all rotations, reflections and translations in the three dimensional
space. Specifically, we say that an MPNN is E(3)-invariant if it satisfies the following

MPNN(H l,X l) = MPNN(H l,QX l + b) (1)

for any orthogonal matrix Q ∈ R3×3 and any vector b ∈ R3.

To preserve invariance in the message passing policy, E(3)-invariant MPNNs use invariant feature
embeddings to construct invariant features fij between two nodes, and use the invariant features in
the construction of the message. An feature embedding is invariant if it satisfies fij = ϕinv(X) =
ϕinv(QX+b). The message passing policy uses the invariant feature embedding to generate messages
ml

ij and update the hidden feature hl
i at layer l as follows

fij = ϕinv(x
l
i,x

l
j), ml

ij = ϕe(h
l
i,h

l
j ,fij , eij)

ml
i =

⊕
j∈N (i)

ml
ij hl+1

i = ϕh(h
l
i,m

l
i)

(2)

where hl
i is the i-th column of H l, eij are the edge attributes for edge (i, j) ∈ E ,

⊕
is a permutation

invariant differentiable operator, N (i) is the neighborhood of i determined by the edges E and ϕe, ϕh

are learnable functions parametrized by the neural network.
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Figure 3: Procedural illustration of each invariant GNN model. The components highlighted in yellow are the
essential capabilities of each invariant model that have been retained in their respective re-implementations in
HydraGNN.

2.3 Invariant GNN models

Three state-of-the-art invariant GNN models with message passing policies are SchNet[18],
DimeNet++[20] and EGNN[21]. Figure 3 illustrates each GNN architecture and a rigorous definition
of the message passing policy is given in Appendix A.

SchNet. The SchNet[18] model uses distance based graph rewiring, and a parametrized Gaussian
filter to construct invariant features fij . The feature encoding of SchNet also uses a parametrized
dictionary D to encode the atomic numbers of each atom, denoted Hatom. The message passing
policy of SchNet can be seen in Figure 3(a) where the edge features fij are used in each layer. The
feature decoding is regulated by the DIPOLE hyperparameter and is task-specific. The SchNet model
is limited in its adaptability to diverse feature inputs and outputs due to the atomic number encoding
and task-specific decoding processes.
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DimeNet++. The DimeNet++ [20] model directly updates the messages using directional message
passing. The invariant features of DimeNet++ are constructed via radial basis and spherical basis
functions. These embeddings use both the distance between two nodes, as well as the angles αijk

among all triples of nodes to encapsulate directional information. Like SchNet, the feature encoding
uses a dictionary parametrized encoding of the atomic numbers. Unlike SchNet, DimeNet++ [20]
uses the invariant features to generate the initial feature encoding. The message passing policy of
DimeNet++ is outlined in Figure 3(b). The DimeNet++ model directly updates the messages using
the aggregation of directional messages which are generated by the parametrized function ϕdime(·).
The DimeNet++ model is limited in its adaptability to diverse feature inputs due to the atomic number
encoding. It also is limmited in expressivity due to its lack of a feature decoding processes.

EGNN. The invariant EGNN[21] model is identical to the equivariant EGNN model, except that it
does not perform positional updates. EGNN directly uses the distance between nodes as invariant
features. Unlike SchNet and DimeNet, EGNN uses a flexible feature encoding. The message passing
policy shown in Figure 3(c) is dependent on an edge mask M due to the model requiring all molecules
to be zero-padded to the same length. This is the major limmiting factor for EGNN, as zero-padding
is known to introduce numerical artifacts and boundary effects[22] and also increases memory usage
and computational overhead.

3 Related Work
DL for UV-vis Spectroscopy. In [23], the authors compared the predictive performance of three
different DL architectures, namely multilayer perceptrons (MLPs), convolutional neural networks
(CNNs), and deep tensor neural networks (DTNNs) by represting the input molecular structures
with a Coulomb matrix, which is an N ×N square matrix where N denotes the number of atoms in
the molecule. Since MLPs can process only data with fixed input size, the Coulomb matrices have
been zero padded to ensure constant size of the molecule’s representation across the entire dataset.
Because of the zero padding, the MLP training may incur numerical artifacts and use an excessive
memory storage. CNN and DTNN architectures can seamlessly handle Coulomb matrices of varying
size, by treating the Coulomb matrix as a pixeled image. Although the accuracy and memory storage
for CNNs and DTNNs improved with respect to MLPs, their performance does not scale well with
the number of atoms in the molecule because they treat the Coulomb matrix as a dense matrix and do
not take advantage of sparsity in the connectivity. GNN models are effective in reducing memory
storage and training costs by representing molecular structures as graphs, which leverage the inherent
sparsity in graph connectivity. In a study referenced in [24], various GNN models, employing
MPNN layers, were evaluated for their ability to predict the UV-vis spectra of GDB-9 molecules,
and their performance was compared to the DTNN model. The findings indicated that SchNet, a
specific GNN variant, outperformed all other models considered in the study. However, there are
two noteworthy aspects that warrant further consideration. Firstly, the study used electronvolts (eV)
as the unit of measurement for quantifying the energy states of the UV-vis spectrum. In contrast,
computational chemists typically prefer nanometers (nm) as the unit of measurement for quantifying
UV-vis spectrum wavelengths. This choice facilitates a clearer distinction between various electronic
excitation modes. Although energy and wavelength are inversely proportional, the conclusions drawn
from a deep learning model’s performance assessment using ’eV’ may not directly apply to an
analysis employing ’nm’, as elaborated in section 4. Secondly, it’s important to note that the quantum
chemistry dataset used in the study is not available as an open-source resource. This limitation raises
concerns about the reproducibility of the presented results.

Invariant Feature Learning for GNNs. Neural networks designed to achieve invariance have
been introduced in previous works such as Tensorfield Networks (TFNs) [25], and similar ideas have
been extended in the covariant Cormorant [26], NequIP [27], and SE(3)-Transformer [28] models,
incorporating attention mechanisms into their structures. This family of models ensures invariance by
mapping the original data structure, defined in the spatial domain, onto a functional space defined by
spherical harmonic functions. Other similar approaches map the spatial domain to higher-dimensional
spaces, like Lie group spaces, as seen in [29]. However, this mapping to high-dimensional functional
spaces is computationally intensive and memory-intensive. To address this computational complexity
and memory requirement, recent research introduced Steerable E(3) Equivariant Graph Neural
Networks (SEGNN) [30]. SEGNN employs non-linear invariant features to capture local node
interactions, enabling a reduction in the graph construction radius. This results in a sparser graph
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representation, significantly reducing computational training time and memory usage. An alternative
research direction suggests implementing invariant operations directly in the original Cartesian
space. This approach efficiently maintains invariance, avoiding costly high-dimensional feature
construction. This alternative approach’s effectiveness is supported by various contributions in the
literature, including E(n)-GNN [21], invariant GNN with attention mechanisms [31], GVP [32, 33],
PaiNN [34], ET-Transformer [35], and graph attention transformers [36] architectures. For accurate
modeling of complex, large atomic structures (e.g., proteins with 10k atoms), these models often
require maintaining high graph connectivity, increasing training computational costs significantly.
To tackle this challenge, Han et al. [37] introduced Equivariant Graph Hierarchy-based Network
(EGHN), which identifies local input system substructures and establishes hierarchical connectivity
between graph nodes. Fine-scale hierarchy captures local interactions among neighboring nodes,
while coarse-scale hierarchy models long-range interactions among node clusters. The development
of all these models has been motivated by different scientific needs, and this resulted in validating
each model with respect to different datasets and/or target properties, which does not allow for a
practical identification of what model could perform well on a new dataset. Moreover, the open-source
implementations of these models are hardly comparable to each other because they each require
a very specific format for the input features. This precludes the flexible handling of an arbitrary
customizable set of features according to the user’s needs.

4 Dataset: GDB-9-Ex
The SMILES strings of GDB-9 molecules [38] have been converted into 3D Cartesian coordinates,
and geometry optimization has been performed, first by using the inexpensive Merck force field
MMF94 implemented in RDKit, and then by refining the geometry optimization using static density
functional tight-binding (DFTB). The optimized atomic structure of each molecule has been used as
input to excited states calculations to compute the first 50 electronic excitation modes and oscillator
strengths of the UV-vis spectrum. More quantum chemical details about the computational approach
performed to compute the UV-vis spectrum are provided in [39].

Gaussian smearing. Experimental measurements of the UV-vis spectrum can be affected by various
factors, including precision of the instrument, temperature effects, and the finite size of the sampling
intervals used during data collection. All these factors contribute to a broadening of the energy levels
of the measured UV-vis spectrum. First-principles calculations are typically performed at absolute
zero temperature, where the electrons occupy the lowest energy states available. This results into a
calculated UV-vis spectrum characterized by a set of sharp theoretical peaks, each associated with
a discrete energy excitation gap. The discrepancy between the physical conditions under which
the UV-vis spectrum is measured with experiments and quantum chemical approaches does not
allow for a direct comparison between experiments and simulations. Gaussian smearing, also known
as Gaussian broadening or Gaussian convolution, is a common technique applied to the quantum
chemical UV-vis spectrum (computed with first-principle calculations) to mimic the broadening of
experimental measurements. By convoluting the sharp theoretical peaks with Gaussian functions, the
peaks in the quantum chemical UV-vis spectrum are spread out and become broader. The degree of
broadening applied to the theoretical peaks is often selected according to the instrumental resolution
and experimental conditions to maximize the resemblance between the theoretical peaks and the
experimental broadened peaks. The degree of the broadening is either controlled by the standard
deviation σ of the Gaussian function, or by the Full Width at Half Maximum (FWHM), which is the
width of the Gaussian function at half of its maximum height. The FWHM and σ are related by the
formula FWHM = 2σ

√
2 ln(2).

Electronvolts vs. nano-meters to represent the UV-vis spectrum. The excitation states of a
molecule described in the UV-vis spectrum can either be described in electronvolts (eV) or nano-
meters (nm). The measure unit ‘eV’ quantifies the energy of an excited state of an orbital, whereas
the measure unit ‘nm’ quantifies the wavelength of the excited state. Wavelength and energy of an
excited state of a molecule are related by the formula E = ℏν = ℏ c

λ , where E is the energy, ℏ is the
Planck’s constant, ν is the frequency, c is the speed of light, and λ is the wavelength. Since GDB-9
molecules are relatively small in size (they contain at most nine non-hydrogen atoms), they are very
stable (and therefore very difficult to excite) from a chemical standpoint. Therefore, most of the
theoretical peaks of the quantum chemical UV-vis spectrum for each molecule are concentrated in a
narrow ‘eV’ region in the high energy range. The Gaussian smearing condenses the majority of the
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(a) 0.0nm FWHM smearing (b) 5.0nm FWHM smearing

(c) 0.0eV FWHM smearing (d) 0.5eV FWHM smearing
Figure 4: Electronic excitation spectrum of C4HFO4 plotted in wavelength(top) and energy(bottom) with
exact peaks (left) and Full Width Half Maximum (FWHM) smearing (right).

theoretical peaks under the same smeared peak, and this results into a very simple curve with few
modes that can be easily learnt by a DL model. Since wavelength and energy are inversely related to
each other, using ‘nm’ to represent the UV-vis spectra of GDB-9 molecules results into spreading
out the theoretical peaks into a broad range of values. The Gaussian smoothing now transforms the
theoretical peaks into a more complex curve (with more peaks), which makes the DL learning more
challenging, but also more informative. In the numerical results of this work, we will perform an
ablation study that describes the predictive performance of each GNN models using both ‘eV’ and
‘nm’ as measure units for the UV-vis spectrum. The use of ‘eV’ allows us to compare our results with
the ones of previous works in the context of DL for UV-vis spectroscopy [23, 24], whereas the use
of ‘nm’ ensures that our analysis can provide meaningful results for researchers in the domains of
computational chemistry and chemical engineering.

Gaussian smearing applied to UV-vis spectra of GDB-9-Ex molecules. In Figure 4, we show
the effects of different Gaussian smearing on the graph of the UV-vis spectrum when the UV-vis
spectrum is represented in ‘eV’ and ‘nm’. The grey-shaded curves illustrate the effect of the Gaussian
smearing applied to each individual theoretical peak, and the black solid curve represents the sum of
the distributions from each smoothed theoretical peak and that defines the smeared UV-vis spectrum.
Figures 4(a) and 4(b) show the smeared UV-vis spectrum using the wavelength of the light in ‘nm’
on the abscissas, without Gaussian smearing (FHWM set to 0.0nm) and with a Gaussian smearing
FWHM parameter set to 5.0nm, respectively. By contrast Figures 4(c) and 4(d) illustrate the same
spectrum using the excitation energy level in ‘eV’ on the abscissas, without Gaussian smearing
(FHWM set to 0.0eV) and with a Gaussian smearing FWHM parameter set to 0.5eV, respectively.

5 Proposed Model Architecture

We generalized the software infrastructure of HydraGNN to support invariant MPNNs. Specifically,
the invariant MPNNs that we incorporated in HydraGNN are: SchNet, DimeNet++, and EGNN. The
software development tasks that we performed to include invariant MPNNs in HydraGNN are the
following: (1) generalize the type of data structures accepted as input by the MPNN layers to allow
a customizable type of feature embedding; (2) customize feature embedding mechanisms for each
invariant MPNN to enable the construction of model-specific invariant features; (3) include new
MPNN classes that implement invariant message passing policies and that respect the underlying
object oriented class inheritance characteristic of the HydraGNN architecture.

In Figure 3 we presented the core components of the SchNet, DimeNet++, and EGNN models.
Components retained during their re-implementation into the HydraGNN architecture are highlighted
in yellow. This re-design addresses the main limitations of each individual model and maintains
invariance in the message passing layer.
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For the SchNet model, both the graph rewiring and positional feature encoding via Gaussian smearing
are combined into the customizable feature embedding, preserving the entire message passing layer.
For DimeNet++, radial and spherical basis encodings are integrated into the customizable feature
embedding, retaining the complete message passing layer. Additionally, the EGNN model inherits
the feature embedding, thereby preserving both the edge attribute constructor and the hidden feature
update components of the message passing layer.

Figure 5: Changes in the object oriented programming structure of HydraGNN to include invariant
MPNN layers SchNet, DimeNet++, and EGNN.

This restructuring and generalization of the HydraGNN capabilities brought the new MPNNs included
(SchNet, DimeNet++, EGNN) into alignment under the HydraGNN umbrella, as shown in Figure
5. More specifically, through their inclusion in the HydraGNN architecture, these MPNN layers
have been generalized with respect to their original implementations, as their implementation in
HydraGNN allows users to use their own customized input features. This comprehensive setup makes
HydraGNN a distinct GNN architecture that enables to seamlessly switch between different MPNN
layers, thereby allowing to treat them as hyperparameters, and provides effective scalability across all
the MPNN layers supported.

6 Numerical Results
In this section, we perform numerical tests to illustrate (1) the improvement of predictions on the
the UV-vis spectrum of organic molecules using the new MPNN layers included in the HydraGNN
architecture and (2) the efficacy of adding customized user-defined invariant features as input to
the models. To this effect, we perform an ablation study on the FWHM in both ‘eV’ and ‘nm’ and
on the MPNN layers SchNet, DimeNet++, EGNN, and PNA to determine the most robust model
hat maintains accuracy and generalizability across different FWHM and different measure units to
describe the spectrum. We then compare the invariant and non-invariant schemes for the SchNet
model (the most performing model from the ablation study).

Training Procedure. In the ablation study across different MPNN layerswe compare HydraGNN’s
existing non-invariant PNA implementation with newly added SchNet, DimeNet++, and EGNN
message passing policies. SchNet has two variants based on invariance, one using provided edge
feature embeddings denoted as SchNet-feat, and the other utilizing graph rewiring for edge
features reconstruction, detailed in Figure 3. Node and edge feature descriptions for each model
are in Appendix B. The ablation study covers four variations of the GDB-9-Ex dataset, differing in
spectrum description units and Gaussian smearing breadth. For energy state-based UV-vis spectra,
we apply Gaussian smearing with 0.5eV and 1.0eV FWHM values. For wavelength-based spectra,
we use 5.0nm and 10.0nm FWHM values. All versions use an 80%/10%/10% training/validation/test
split, with fixed data splits for reproducibility. Training each HydraGNN model allows a maximum
of 200 epochs with a batch size of 32 samples. Early stopping occurs if there’s no improvement in
validation loss after 20 epochs, and test results use the model with the lowest validation loss. We
employ the AdamW optimizer with cosine annealing, reducing the learning rate to 1e-5 after 200
epochs. Hyperparameter optimization (HPO) is conducted for each MPNN layer type (PNA, SchNet,
DimeNet++, EGNN) over the number of MPNN layers L, hidden dimension hmpnn for each MPNN
layer, and initial learning rate. We use the Optuna library’s Tree of Parzen Estimator (TPE) as the
HPO methodology, sampling eight hyperparameter configurations sequentially. Due to computational
constraints, HPO is performed on the ’eV’ measurement unit dataset with a 0.5eV FWHM Gaussian
smearing. These best-performing hyperparameter configurations are then applied to other dataset
versions. Further details on these hyperparameters are in Table 2 of Appendix C.

8

https://doi.org/10.26434/chemrxiv-2023-9n306 ORCID: https://orcid.org/0009-0009-1685-1372 Content not peer-reviewed by ChemRxiv. License: CC BY-NC 4.0

https://doi.org/10.26434/chemrxiv-2023-9n306
https://orcid.org/0009-0009-1685-1372
https://creativecommons.org/licenses/by-nc/4.0/


Invariant Features for Accurate Predictions of Quantum Chemical UV-vis Spectra of Organic Molecules

Ablation Study on Type of MPNN Layer, Measure Unit, and FWHM Values. Table 1 reports
the test MAE for each HydraGNN model on each version of the GDB-9-Ex dataset. We observe that
the SchNet invariant model outperforms all other models across all the measure units and FWHM
values. Model 0.5eV 1.0eV 5nm 10nm

DimeNet++ 16.84 30.29 15.18 26.64
EGNN 3.76 4.26 5.65 7.16
PNA 3.60 4.11 5.57 7.24

SchNet-feat 3.39 3.63 5.29 6.49
SchNet-inv 3.15 3.31 5.19 6.32

Table 1: Test MAE values for each Gaussian smearing
level using the optimal hyper parameters for each model
found in Task 1.

Accuracy Improvement Using Invariant Fea-
tures in SchNet. To validate the improvement
in accuracy using invariant features, we show
the predictions of the SchNet-feat and SchNet-
inv architectures on some molecular samples of
the test data in Figure 6. The selected molecules
are characterized by spectra of increasing com-
plexity from left to right. In particular, these
data samples are extremely diverse in terms of molecular structure and in terms of number, location
and height of the smeared peaks of the UV-vis spectrum. We observe that SchNet-inv better predicts
the smeared spectrum across all three molecular samples. Additionally SchNet-inv better predicts the
location and amplitudes of each individual smeared peak.
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Figure 6: Predicted UV-vis spectrum of three molecules of increasing complexity using the SchNet-
feat and SchNet-inv models trained on the 0.5eV(top) and 10nm(bottom) datasets. The SchNet-inv
model is capable of more accurately predicting the intensity and location of spectral peaks.

7 Concluding Remarks
We enhanced HydraGNN, an open-source GNN architecture, by introducing invariant MPNN layers
among its message passing policies. This improves HydraGNN’s accuracy and generalizability in
predicting molecular properties invariant to structural rotations and translations. We demonstrated
this improvement by using invariant features to predict UV-vis spectra in the open-source GDB-9-Ex
dataset, enhancing the model’s ability to capture complex spectral features. Our model’s robustness
was confirmed across different measurement units and Gaussian smearing levels, showcasing its
potential for AI-driven molecular design aligned with the scientific goals of the US-DoE.

Future work will expand on this by incorporating equivariant MPNNs into HydraGNN, further
enhancing its accuracy and generalizability for predicting atomic properties in non-equilibrium
molecular structures, such as charge transfer, dipole moment, and interatomic forces. Additionally,
we aim to integrate the invariant and equivariant-preserving HydraGNN architecture into a generative
framework to address computational chemistry’s dimensionality challenge and efficiently solve
inverse problems [40].
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A A Brief Review of Message Passing Neural Networks
This section provides the core MPNN details for the PNA, SchNet, DimeNet++ and EGNN models.

MPNN Framework. The message passing neural network updates the set of node features H l at
layer l by aggregating messages among the nodes neighbors as follows.

ml
ij = ϕe(h

(l)
i ,h

(l)
j , eij)

ml
i =

⊕
j∈N (i)

ml
ij

h(l+1) = fh(h
(l),ml

i)

(3)

The messages ml
ij are generated among all edges in the graph using a parametrized function ϕe.

Then for each node i the messages are aggregated among its neighbors N (i) using the aggregation
function

⊕
. Finally the node feature is updated using a parametrized function ϕh. The particular

function parametrizations and aggregation mechanisms define the MPNNs behavior.

PNA[41]. The PNA model uses the following message passing network.

S(d, α) =

(
log(d+ 1)

δ

)α

, d > 0, 1 ≤ α ≤ 1

ml
ij = ϕe(h

(l)
i ,h

(l)
j , eij)

ml
i =

[
I

S(D,α = 1)
S(D,α = −1)

]
⊗

 µ
σ

max
min

(
ml

ij |j∈N(i)

)
h(l+1) = ϕh(h

(l),ml
i)

(4)

In the PNA model, the aggregation scheme is designed to amplify or attenuate edge statistics, for
instance the mean µ and/or standard deviation σ. The amplification factor S(d, α = 1) and attenuation
factor S(D,α = −1) can be controlled via hyperparameters α. Additionally, the selection of edge
feature statistics can be adjusted via hyperparameters.

SchNet[18]. The SchNet model uses the following message passing network.

fij = exp(−γ(||xi − xj || − µ))

ml
ij = hl

j ⊙ ϕve(fij))

ml
i =

∑
j∈N (i)

ml
ij

hl+1
i = hi +ml

i

(5)

In SchNet, the invariant features are captured using a Gaussian filter. The filter coefficients are
determined by γ and µ, with γ controlling the width and µ controlling the position of the Gaussian.
The messages are then generated by modulating the features along the neighboring nodes. The
HydraGNN architecture uses the default SchNet hyperparameters for controlling the Gaussian filter.

We also consider a variant of the above message passing network SchNet-feat which uses provided
edge features instead of invariant features. The message passing network is provided below.
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ml
ij = hl

j ⊙ ϕve(eij))

ml
i =

∑
j∈N (i)

ml
ij

hl+1
i = hi +ml

i

(6)

DimeNet++[20]. The DimeNet++ model utilizes the directional messsage passing architecture
of DimeNet. In particular, it updates the messages directly at each step as opposed to the hidden
features.

e
(ji)
RBF = ϕe(||xi − xj ||)

a
(kj,ji)
SBF = ϕa(||xi − xj ||, αijk)

m0
ji = ϕin(ϕ

0
RBF(eRBF)⊕D[Hatom])

ml−1
ji =

∑
k∈N (j)/{i}

ϕdime(e
(ji)
RBF,a

(kj,ji)
SBF ,ml−1

kj )

ml
ji = ϕe(h

l
i,h

l
j , e

(ji)
RBF,m

l−1
ji )

ml
j =

∑
j∈N (i)

ml
ji

hl+1
i = ϕh(ϕ

l
RBF(eRBF)⊙ml

j)

(7)

The initial message of the DimeNet framework is built from the parametrized dictionary encoding of
the atomic numbers. The invariant features are constructed via raidal and spherical basis functions
dependent upon the distances between nodes and angles among all node triplets.

EGNN[21]. The EGNN model is designed to be equivariant. However, as the authors of [21] note,
if the positional update is removed the model becomes invariant. The invariant message passing
network of EGNN is given below.

fij = ||xl
i − xl

j ||2ml
ij = ϕm

(
hl
i,h

l
j ,fij , eij

)
ml

i =
∑

j∈N (i)

ml
ij

hl+1
i = ϕh(h

l
i,m

l
i)

(8)

In this model the invariant features are the squared Euclidean distances between pairs of nodes.

B Additional Details on Molecular Datasets
The node features selected for the UV-vis spectrum datasets are

• the number of valence electrons
• the electron affinity
• the atomic weight
• the ionic energy.

Additional edge features are used the supporting models PNA, SchNet-feat and EGNN. For these
models, the following edge features are used

• if the bond is a single bond
• if the bond is a double bond
• if the bond is a triple bond
• if the bond is an aromatic bond
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• The bond length
• the planar angle
• the azimuth angle.

C Additional Details on Hyperparameter Optimization

hidden_dimension num_conv_layers learning_rate
Model (L) (hmpnn) (lr)

DimeNet++ 64 4 0.01
EGNN 512 5 0.0005
PNA 512 6 0.0005

SchNet-feat 256 2 0.0005
SchNet-inv 1024 3 0.0005

Table 2: Optimal hyperparameters for HydraGNN with varying MPNNs.

D Additional Ablation Studies
In Figure 7 we illustrate several more comparisons between SchNet-feat and SchNet-inv models. We
also compare between 0.5eV(left) and 10nm(right) datasets predictions. In general SchNet-inv is able
to more accurately capture the intensity and location of the peaks. Additionally, capturing outlying
peaks in the 10nm dataset is significantly more challenging as illustrated in molecules 047788 and
017766.
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Figure 7: Additional comparisons between SchNet-inv and SchNet-feat for several molecules in the
test split of 0.5eV and 10.0nm GDB-9-Ex datasets.
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