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ABSTRACT  Kinetic modelling of catalytic reaction systems can yield detailed insight into 

mechanisms, enabling in particular the identification of rate- and turnover-limiting steps. 

Empirical models fitted to observed kinetics do not always unambiguously resolve the microscopic 

nature of the mechanism, while ab initio models with rate constants derived from statistical rate 

theories and quantum chemistry invariably lead to mismatches between predicted and observed 

rates, sometimes even to the extent that the dependence of the rate on key variables such as 

temperature or concentration is incorrect. We have shown previously that when using accurate 

quantum chemical methods, agreement with experiment of ab initio kinetic models can be good, 

and can be further improved by performing limited fitting of the ab initio values. Here we show 

that a detailed assessment of the remaining mismatches with experiment combined with a careful 

fitting protocol and with additional quantum chemical calculations can yield much improved 

accuracy and improved microscopic understanding of the reaction mechanism, for the important 

test case of propene hydroformylation by Co2(CO)8. 

Introduction  
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The traditional approach to understanding catalytic reaction mechanisms with quantum chemical 

methods relies on computation of potential energy surfaces and, through the use of statistical 

mechanics methods, of the corresponding Gibbs energy surfaces.1-15 For complex systems 

involving many intermediates and many elementary steps, however, these surfaces do not always 

reveal the full story. Kinetic modelling of some or other variety has been shown to yield far more 

insight, e.g. enabling one to identify rate- and turnover-limiting steps.1, 13-22 In our group, we have 

been combining quantum chemistry with kinetic modelling for several years. Based on calculated 

activation Gibbs energies from quantum chemical calculations we compute the rate constants for 

individual elementary steps based on transition state theory (TST), followed by integrating the 

kinetic rate equations to predict the kinetics of reaction networks, which can then be used to 

compare with the experimental data. We have in particular used versions of this approach in two 

studies of the hydroformylation of propene catalyzed by HCo(CO)4.23, 24 In both studies, through 

use of very accurate CCSD(T)-F12 electronic energies, as well as careful attention to issues such 

as standard-state corrections and the diffusion-controlled nature of some reaction steps, we were 

able to obtain very good agreement with experiment,25 within better than a factor of ten for 

predicted rates for a wide range of experimental conditions. Other literature studies have also 

managed to reproduce qualitative or quantitative features of observed reactivity using this same 

sort of approach.26-34 Nevertheless, kinetic models based on quantum-chemical methods invariably 

lead to some degree of mismatch between predicted and observed rates, and our published models 

also show such shortcomings. 

How do we understand these differences between theoretically-predicted kinetics and 

experimental observations? The question is in principle so broad as to not be directly answerable: 

there are too many possible sources of error in the theory, such as the quantum chemical level, the 

approximations within the statistical mechanics and rate theory, the solvent treatment, and so on. 

Even quite small errors in calculated relative Gibbs energies can cause big errors in rate constants 

due to the exponential nature of the relation between these quantities. In favorable cases, these 

errors only change the predicted kinetics quantitatively (the predicted rate is wrong by some – 

perhaps even quite large – factor). In this case, provided that the model captures the key qualitative 

observations correctly, which is quite often the case,26-35 then the kinetic model based on the ‘raw’ 

quantum chemical Gibbs energies is still sufficient to understand the chemistry and to provide 

further insight compared to the quantum-chemical results alone. 
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However, the errors can also be qualitative, such that some important feature of the kinetics (for 

example the dependence of the rate on temperature or concentration of a key species, or the nature 

of the main product) is not correctly reproduced by the model. Such qualitative errors can occur 

for many reasons, such as the above-mentioned ones that affect the accuracy of the calculated 

Gibbs energies. A more pernicious source of error is missing steps in the modelled mechanism: 

one or several intermediates or TSs have been omitted from the quantum-chemical modelling. In 

these cases, attempts to correct the model are needed. This can be done through a combination of 

chemical intuition and manual inspection of the model and the experimental results, leading to 

elaboration of a revised model which may include additional intermediates or reaction steps, or 

may include a significantly revised Gibbs energy for one or more key species. Automated potential 

energy surface exploration techniques can also assist in this respect.36-41 In some cases, this model 

revision step may also involve dialogue with the group having performed the experimental work 

leading to new experiments or to a revision of the experimental data, which can also be subject to 

error. If the revised model now only has quantitative mismatches with experiment, then one returns 

to the above situation where the kinetic modelling can be considered to have fulfilled its mission. 

An example of this iterative approach was our study of the cis-trans isomerization of alkenes, 

where initial quantum chemical models based on catalysis by a monomeric palladium species 

failed to account for observed reactivity, with experimental observations leading to a revised 

model in which a binuclear palladium complex performs the catalysis.42 

We note that the literature discussing the impact of electronic structure theory errors on kinetic 

models is more advanced in some other areas of computational chemistry, particularly 

heterogeneous catalysis, where detailed analysis of similar qualitative disagreement between 

theory and experiment has e.g. been used to conclude that catalysis is not predominantly performed 

by perfect low crystallographic index catalysts surfaces, as in the quantum-chemical models, but 

instead by other surfaces or at defect sites.43 These studies have also emphasized that correlation 

between errors in predicted Gibbs energies of structurally related species plays a large role in 

determining the nature of errors in predicted kinetics. Also in computational modelling of 

combustion chemistry, detailed analysis of uncertainty resulting from inaccurate reaction 

parameters has been performed, with the role of error correlation also being explored in detail.44 

In this study, we show that detailed numerical examination of the quantitative mismatch between 

predicted and observed rates, and numerical fitting of the model to experiment, can itself directly 
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yield additional insight that can lead to a revised model and to improved agreement with 

experiment. We return to the already mentioned case that has been previously studied in our group 

and which is characterized by the availability of high-accuracy quantum-chemical results as well 

as of quite systematic experimental data for rate as a function of several variables including 

temperature as well as concentration of catalyst and reagents.23-25 This is the cobalt-catalyzed 

hydroformylation of propene by Co2(CO)8 whose kinetics have been studied experimentally in 

some detail.25 We will show that exploration of the remaining errors in our previous kinetic 

models, involving numerical fitting to experimental results, can lead to new mechanistic 

hypotheses and a much-improved agreement with experiment. 

The first of our proposed models for this reaction accounts quite well for reactivity and for the 

dependence of rate on the reactants and catalysts concentrations, even for the ‘raw’ model based 

directly on the quantum-chemical results.23 In this sense, this was a model that could be described 

as having only quantitative errors with respect to experiment. However, in this model, no attempt 

was made to predict the linear to branched selectivity of the reaction, and the temperature 

dependence of the rate of catalysis was also not modelled. These limitations motivated a second 

study, which can be viewed as a manual cycle of model revision as described above, in which 

additional steps were added and improvements in the theoretical protocol were made, leading to 

an improved model.24 This revised model can account reasonably well for both the linear to 

branched selectivity, and the temperature dependence of the rate. Nevertheless, it still has some 

quite significant errors with respect to experiment, some of which, such as the nature of the 

predicted dependence of rate on carbon monoxide pressure, are best described as being qualitative 

errors using the nomenclature mentioned above. 

For both models, as well as reporting the ‘raw’ kinetic model based on the quantum-

chemical/statistical mechanics Gibbs energies as obtained, we included in our published reports 

the results of partially fitted models, in which modest adjustments to the calculated Gibbs energies 

were introduced in order to improve the quantitative agreement with experiment. Only modest 

adjustments were made, as our philosophy was that we had performed quantum-chemical work 

that was as accurate as possible, and that remaining errors on that level should be quite small.  

In the present study, we set out to see whether more aggressive fitting of the kinetic model to 

the experiment can help to highlight more severe mismatches between experiment and quantum 
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chemistry and thereby lead to a revision of the quantum-chemical model, and hence yield better 

insight. 

Results and Discussion  

As in our previous work, we explore the mechanism of propene hydroformylation by Co2(CO)8, 

using a combination of quantum-chemistry, kinetic modelling, and reference to experimental 

kinetics. The approach used initially closely mirrors that already described:24 first, the potential 

energy surfaces for the considered elementary steps are explored, leading to structures and energies 

for reactants, products, intermediates, and transition states. Where possible, the energies are based 

on very accurate explicitly correlated coupled-cluster theory, while for some species, density 

functional theory methods are used instead. Based on the structures, energies, rotational constants 

and vibrational frequencies, standard ideal gas statistical mechanics expressions are used to predict 

the ‘raw’ ab initio Gibbs energies for the different species, at the three temperatures of 110, 130 

and 150 °C that were used in the experimental studies.25 A linear fit of these Gibbs energies to the 

equation ΔG = ΔH – TΔS is then used to derive enthalpies and entropies for the different species 

and transition states in the modelled catalytic cycle, with standard enthalpies and entropies 

assumed to be temperature-independent. The ΔH and ΔS values obtained in this way are referred 

to as the ‘raw’ ab initio values, and a full list of these values is included in the supporting 

information. 

These ‘raw’ values are then used to generate a zero-th order kinetic model of the catalytic 

transformation. A first step in obtaining this model involved manual mechanism reduction, 

whereby consecutive steps involving low barriers are ‘folded in’ to preceding or following steps 

and thereby treated as single steps. The reduced kinetic model is shown in Scheme 1. 
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Scheme 1. Reduced kinetic model for the mechanism of propene hydroformylation by Co2(CO)8.  

Then, at each temperature, the Gibbs energies for each species are obtained using ΔG = ΔH – 

TΔS, and Gibbs energies of activation are used together with the Eyring equation to calculate 

forward and reverse rate constants. For some reaction steps, typically ligand addition to 

coordinatively unsaturated cobalt complexes, for which no potential energy barrier occurs, the rate 

constant is computed not from ab initio Gibbs energies for the TS, but instead from a simple 

equation for rate constants of diffusion-limited reactions, with as parameters the solvent viscosity 

and the temperature.24 These values are obtained at the three temperatures mentioned above, then 

the Eyring equation is inverted to yield an ‘activation Gibbs energy’, and in the same way as above, 

a linear fit of these Gibbs energies provides standard values of the enthalpy and entropy of the 
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associated barrierless transition states. For these steps, the rate constants for the reverse reactions 

are obtained from the rate constants for the forward reactions, the statistical mechanics-predicted 

equilibrium constants, and detailed balance. A further comment needs to be made concerning the 

steps leading to formation of butyraldehyde or propane, involving TSs 24, 26, 28, 30, 31, 32 in 

Scheme 1. In principle, these steps are reversible, and indeed some synthetic applications make 

use of reverse hydroformylation.45,46 Based on the ab initio free energies for n- and iso-

butyraldehyde, propene, H2 and CO (see supporting information), and on the various experimental 

pressures of CO and H2 used in the reaction,25 the lowest predicted ratio of the equilibrium 

concentrations of n-butyraldehyde and propene is larger than 100, making the reaction essentially 

irreversible. For this reason, and for convenience in the modelling, we treat these reactions as being 

irreversible, i.e. we set the reverse rate constants to zero. 

Based on the whole set of rate constants, the kinetic equations are propagated, holding the partial 

pressures of CO and H2 and the concentration of propene fixed, until steady-state is reached (the 

experimental measurements were carried out at steady-state; the partial pressures of CO and H2 

and the concentration of propene were in large excess so were effectively constant) . The resulting 

predicted rates for formation of the two main products, linear n-butyraldehyde and the branched 

isomer iso-butyraldehyde are then obtained, and can be compared directly to experimentally 

observed rates under a range of different experimental conditions (including variation of the 

temperature, the concentrations of catalyst and of propene, and the partial pressures of reagents H2 

and CO). 

The accuracy of the kinetic model can be assessed in a number of ways; for the purposes of this 

study, we find that the most useful metric is the root mean-square (RMS) error 𝜒 of the predicted 

rates (or more precisely of the ratio of the calculated and observed rates, 𝜒2 =

1 𝑁⁄ ∑ ((𝑅𝑖,𝑝𝑟𝑒𝑑 − 𝑅𝑖,𝑒𝑥𝑝) 𝑅𝑖,𝑒𝑥𝑝⁄ )
2

𝑖  where the sum runs over the N different experimental 

conditions, and 𝑅𝑖,𝑝𝑟𝑒𝑑 and 𝑅𝑖,𝑒𝑥𝑝 correspond to the predicted and experimental rates under those 

conditions) under the different experimental conditions, as used before,24 though we also consider 

two other metrics: the first of these is the maximum deviation between predicted and experimental 

rates, taken as the absolute value of the natural logarithm of the ratio Rpred/Rexp, i.e. | ln Rpred/Rexp |. 

A value of 1 for this metric indicates that one of the predicted rates differs from experiment by a 

factor 2.72 (either too large or too small). The second new metric is qualitative: the agreement of 

the shape of the curve of predicted rates as a function of the different variables with that observed 
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experimentally. Following assessment of the zero-th order model, modified models are generated 

by changing the zero-th order enthalpies and entropies of the different species and transition states, 

and seeking to minimize the RMS error. These changes are performed using various constraints, 

as described below. Finally, where a large mismatch between the raw enthalpy or entropy and the 

fitted value is obtained, the quantum chemical calculated values are reinvestigated. The starting 

point is the same zero-th order model as used before,24 which we refer to here as model ‘M0’ 

(Table S1), and which leads to an RMS error on predicted rates of 69.5%. This represents rather 

high accuracy considering that the rate constants are based on ‘raw’ unadjusted quantum chemical 

values, and remembering that at 150 °C, an error in Gibbs energy of 2.5 kJ mol−1 is sufficient to 

cause a change in a rate constant or equilibrium constant by a factor of 2, so the average agreement 

on rate with mean errors of ± 69.5% suggests that our ab initio protocol for the key steps delivers 

an average accuracy of this order of magnitude. Still, the model does include some qualitative 

errors, notably for the dependence of the rate on temperature and on partial pressure of CO (Figure 

1). Also, the metric | ln Rpred/Rexp |max is quite large, at 3.24, indicating that one of the rates is 

incorrect by a factor exp(3.24) or about 25.5 – which suggests that at least one of the Gibbs energies 

in the model is wrong by more than 10 kJ mol−1. 
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Figure 1. Predicted (lines) and experimental (points) rates for formation of n-butyraldehyde and 

iso-butyraldehyde under a range of different experimental conditions for M0. Experimental 

conditions: Top left: pCO=pH2=50 bar, [propene]=1.19 M; Top right: pCO=pH2=50 bar, 

[catalyst]=0.00292 M; Bottom left: pH2=25 bar, [catalyst]=0.0073 M, [propene]=1.19 M; Bottom 

right: pCO=25 bar, [catalyst]=0.0073 M, [propene]=1.19 M. Red, 423 K; Blue, 403 K; Magenta, 

383 K. Experimental rates for formation of n-butyraldehyde are shown as circles, and for iso-

butyraldehyde as squares. Calculated rates for formation of n-butyraldehyde are shown as solid 

lines, and for iso-butyraldehyde as dashed lines. 

 

Therefore, we aim to improve our kinetic model by carrying out modifications of the zero-th 

order enthalpies and entropies of the different species and transition states, and seeking to 

minimize the RMS error. In our earlier study,24 tight constraints were used with a maximum change 

of ab initio enthalpy and entropy values of 4 kJ mol−1 and 0.035 kJ mol−1 K−1. The maximum 

entropy change is equivalent to a change in Gibbs energy of 13 – 15 kJ mol−1 for the temperatures 

of 383 – 423 K modelled here. The modesty of the allowed changes was motivated by the high 

accuracy of CCSD(T) and of the initial M0 kinetic model, with the entropies considered to be more 

uncertain. Fitting with these allowed changes led to a best fit RMS error of 22%.24 Here, we 

repeated the fitting by allowing enthalpies and entropies for the same species 1, TS2, TS4, TS6, 

TS12, TS14, TS31, TS32 (species whose values have a higher uncertainty due to there being no 

CCSD(T) energies available or due to uncertainty in assigning rate constants for diffusion-limited 

reactions) to change, but with a more balanced maximum change of ab initio enthalpy and entropy 

values of 6 kJ mol−1 and 0.02 kJ mol−1 K−1. The maximum entropy change is equivalent to a change 

in Gibbs energy of around 8 kJ mol−1 for the temperatures of 383 – 423 K. In this fitting, we 

performed very thorough Monte-Carlo exploration of the space of H and S values in order to check 

that the optimum parameters had been found. This yields a best-fit RMS error of 22.7%, similar to 

the earlier result.24 The fitted ΔH, ΔS, and ΔG values and change with respect to ab initio values 

for this M1 model can be found in supporting information (Table S2). As in the previous study, 

this model yields much improved agreement with experiment particularly with regard to the 

dependence of rate on temperature (Fig. S1). However, qualitatively, as for the fitted model in the 

previous study,24 this model still shows a significant error related to the predicted rate dependence 
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for product formation on the partial pressure of CO. Also, | ln Rpred/Rexp |max remains quite large at 

0.96.  

To check that the species for which ΔH and ΔS had been varied were indeed the key species, we 

then calculated the derivative of the RMS error with respect to ΔH and ΔS for all species for M0, 

∂𝜒 ∂Δ𝐻⁄  and ∂𝜒 ∂𝑇Δ𝑆⁄  (Table S3). Both metrics yield similar info, so we used only ∂𝜒 ∂Δ𝐻⁄  to 

identify ‘important’ species (those where this metric is larger than 0.001, plus any n or iso 

counterpart where applicable). These species are 1, TS4, TS6, TS12, 13, TS14, 15, 21, 23, TS24, 

TS26, TS31, TS32. Then we again performed very thorough Monte-Carlo fitting by allowing these 

species to change and with a maximum change of ab initio enthalpy and entropy values of 6 kJ 

mol−1 and 0.02 kJ mol−1 K−1. This yields a best-fit model M2 (Table S4) with a RMS error of 

20.2%, slightly improved over M1, but the predicted rate dependence on the partial pressure of 

CO is not improved at all and | ln Rpred/Rexp |max remains quite large at 1.06 (Figure 2). 

 

Figure 2. Predicted (lines) and experimental (points) rates for formation of n-butyraldehyde and 

iso-butyraldehyde under a range of different experimental conditions for M2. See Fig. 1 for full 

reaction conditions. 
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These additional Monte-Carlo fittings confirm that a qualitatively accurate model (defined as 

having low RMS error, low maximum error, and correct dependence of rate on all experimental 

variables) cannot be found while maintaining Gibbs energies that match those obtained from the 

ab initio calculations within tight constraints. Therefore, we examined what would occur if we 

completely removed all constraints on the calculated enthalpy and entropy. Initially, this was done 

intuitively and by trial and error by carrying out a series of unconstrained Monte-Carlo fittings, 

leading as expected to major changes in ΔH and ΔS for many species and to unphysical relative 

Gibbs energy values and rate constants. Instead of a Monte Carlo search, we also implemented an 

unconstrained gradient-based minimization algorithm to minimize the RMS error from the raw ab 

initio values in order to obtain more accurate location of minima, with the enthalpy and entropy 

values for all the species being allowed to vary. This led to a new model, ‘M3’ (Fig. S2, Table S5), 

with a much lower RMS error of 7.8%, excellent dependence on CO partial pressure, and | ln 

Rpred/Rexp |max decreased to 0.23 (a maximum error by a factor of 1.3). An RMS error of the order 

of 8% starts to approach the type of accuracy that might be expected from the experimental study 

itself. Indeed, in the experimental study,25 a two-parameter empirical rate law was fitted to the 

experimental data, with separate fits at each of the temperatures, and this fit yielded agreement 

within 7%, so a fit achieving errors within 8% while relying on a first-principles model with a 

unique set of parameters for all temperatures probably represents something quite close to the 

maximum accuracy that can be expected. 

The parameters in M3 include major changes in ΔH and ΔS and relative Gibbs energies for many 

species, leading to values that are in some cases unphysical (Table S5). Clearly, the unconstrained 

fit of M3 is unrealistic in terms of the underlying elementary rate constants. Nevertheless, the 

significant improvement in the quality of the fit discussed above does suggest that M3, despite the 

unphysical values of some of the individual rate constants, may nevertheless capture the correct 

behavior of the whole kinetics for the right reasons in the broad sense. 

For this reason, we decided to investigate if nearly equivalent results could be obtained by 

carrying out partially unconstrained gradient-based minimization from the raw ab initio values, 

where we only allowed a small subset of enthalpies and entropies, which impact most significantly 

on the modelled rates, to vary without constraints but kept the values for other less important 

species fixed. Again, we use the absolute value of ∂𝜒 ∂Δ𝐻⁄  as a criterion for importance, retaining 

species where this metric exceeds 0.01, plus any n/iso counterpart, yielding species 1, TS4, TS6, 
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TS24, TS26. Optimization of these yields model M4 (Figure 3 and Table 1), still with a low RMS 

error of 13.3%, and | ln Rpred/Rexp |max of 0.42 (a maximum error by a factor of 1.5). This model 

again yields a qualitatively essentially correct dependence on the partial pressure of CO.  

 

Figure 3. Predicted (lines) and experimental (points) rates for formation of n-butyraldehyde and 

iso-butyraldehyde under a range of different experimental conditions for M4. See Fig. 1 for full 

reaction conditions. 

Table 1 shows that the properties of TS6, the TS for addition of propene to HCo(CO)3, undergoes 

substantial changes in ΔH and ΔS upon fitting, with the enthalpy and entropy going down by 116.8 

kJ mol−1 and 0.278 kJ mol−1 K−1, respectively. These changes partly cancel out in the resulting 

Gibbs energies, which thereby changes relatively little, with ΔG only decreasing by 10.2 kJ mol−1 

at 383 K.  

 

Table 1. The fitted ΔH (kJ mol−1), ΔS (kJ mol−1 K−1), and ΔG (kJ mol−1, T  = 383 K) values and 

change with respect to the ‘raw’ ab initio values for M4.   
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The major change in properties for TS6 suggest to us that the ab initio values for TS6 might be 

qualitatively wrong, perhaps due to incorrect description of solvation. As already shown, 24 

HCo(CO)3 can exist not only as an unsaturated free species under reaction conditions, but also as 

a complex with solvent if the latter is reasonably coordinating, as is the case for the toluene used 

in the experimental studies.25 If this complex is indeed formed under reaction conditions, then the 

reaction leading from HCo(CO)4 3 to HCo(CO)3(propene) 7 could proceed not dissociatively, but 

stepwise through concerted displacements (SN2-like) with intermediate formation of 

HCo(CO)3(toluene), where a CO ligand from HCo(CO)4 is first replaced by toluene to form 

HCo(CO)3(toluene) (TS4’), with a second step involving substitution of toluene by propene (TS6’) 

to form HCo(CO)3(propene) (Scheme 2). 

 

Scheme 2. Proposed associative substitution mechanism for propene hydroformylation by 

Co2(CO)8. 

 

Species ΔH (fitted and change) ΔS (fitted and change) ΔG (fitted and change) 

1 –91.6 –73.6 –0.157 –0.168 –31.6 –9.4 

TS4 149.9 –0.8 0.158   0.061 89.5   –24.0 

TS6 37.2 –116.8 –0.144 –0.278 92.3    –10.2 

TS24 8.2 –9.5 –0.267   –0.009 110.6 –5.9 

TS26 2.8 –8.2 –0.277   –0.014 108.7 –3.0 
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The complex and the two concerted associative TSs were then explored in new DFT calculations, 

including one explicit toluene solvent molecule (Table 2). The toluene complex 5’ is significantly 

lower in energy than HCo(CO)3 5 + toluene by 65.5 kJ mol−1, and importantly, the calculated 

Gibbs energy for 5’ is also lower than that of the fragments, by 9.0 kJ mol−1 at 383 K, supporting 

the idea that HCo(CO)3(toluene) 5’ is favored over 5 under reaction conditions. The calculated 

relative energies for TS4’ and TS6’ are also low, and similar to the experimental suggested 

activation energy of 77 kJ mol−1,25 as would be expected if the latter is close to the difference in 

energy between reactants and the bottleneck to reaction. The new Gibbs energies for TS4’ and 

TS6’ are similar to the old ones. Note that canonical CCSD(T)-F12 values are not possible for 

these new species. 

 

Table 2. Calculated relative energies (kJ mol−1) and Gibbs energies (kJ mol−1, T = 383 K) for 

concerted associative mechanism. 

Species ΔE ΔG 

HCo(CO)4 3 + toluene + propene 0.0 0.0 

TS4’ + propene 67.7 112.0 

HCo(CO)3(toluene) 5’ + CO + propene 60.8 60.2 

TS6’ + CO 57.6 101.9 

7 + CO + toluene 30.1 29.1 

HCo(CO)3 5 + toluene + CO + propene 126.3 69.2 

 

As before, a linear fit of the ab initio Gibbs energies at different temperatures for TS4’, 5’ and 

TS6’ was carried out to obtain new ab initio enthalpies and entropies for these species, which can 

be compared to the initial ab initio enthalpies and entropies for TS4, 5 and TS6 (Table 3). The 

new enthalpies and entropies are all significantly lower than the old ones, while the Gibbs energies 

change much more modestly. The ΔH and ΔS values for TS6’ are also closes to the corresponding 
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values in M4 (37.2 kJ mol−1 and –0.144 kJ mol−1 K−1). These results suggest that the concerted 

associative mechanism is more favorable than the dissociative mechanism. Taking these ‘new’ ab 

initio enthalpies and entropies for TS4’, 5’ and TS6’ together with the standard ab initio values 

for all other points, and modelling the kinetics, we get a ‘new’ ab initio model, which we refer to 

here as model MN, which has an RMS error on predicted rates of 84.0% and with | ln Rpred/Rexp  

|max quite large, at 2.90. The dependence of the rate on temperature is still poor. However, the 

model captures the dependence of the rate on partial pressure of CO (Fig. S3).  

 

Table 3. Ab initio enthalpies (kJ mol−1), entropies (kJ mol−1 K−1) and Gibbs energies (kJ mol−1, T  

= 383 K) for TS4, 5 and TS6 for dissociative mechanism (X = nothing) and TS4’, 5’ and TS6’ 

for associative substitution mechanism (X = toluene). 

Species ΔH/ΔS/ΔG (X = nothing) ΔH/ΔS/ΔG (X = toluene) 

TS: HCo(CO)4 –> HCo(CO)3[X] 150.6 0.097 113.5 76.8 −0.092 112.0 

HCo(CO)3[X] 144.7 0.156 84.9 68.6 0.022 60.2 

TS: HCo(CO)3[X] –> HCo(CO)3(propene) 154.0 0.134 102.5 71.5 −0.080 101.9 

 

Again, we decided to carry out fitting to improve the kinetic model, allowing species for 

which ∂𝜒 ∂Δ𝐻⁄  exceeds 0.001 (and their n/iso counterparts, see Table S6 for a full list of ∂𝜒 ∂Δ𝐻⁄  

and ∂𝜒 ∂𝑇Δ𝑆⁄  for the ‘new’ ab initio model) i.e. species 1, TS4’, TS6’, TS12, 13, TS14, 15, 21, 

23, TS24, TS26, TS31, TS32 to have modified enthalpy and entropy values.  Fitting was 

performed using a Monte-Carlo approach with a maximum change of ΔH and ΔS values of 6 kJ 

mol−1 and 0.02 kJ mol−1 K−1, except for TS4’ and TS6’, where a larger maximum change of 

respectively 20 kJ mol−1 and 0.06 kJ mol−1 K−1 was allowed as the ab initio values are obtained 

with DFT and have a higher uncertainty. This yields M5 (Figure 4 and Table S7) with an excellent 

RMS error of 11.7%, very good dependence of rate on CO partial pressure, and a small | ln 

Rpred/Rexp |max of 0.31 (a maximum error by a factor of 1.4).  
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Figure 4. Predicted (lines) and experimental (points) rates for formation of n-butyraldehyde and 

iso-butyraldehyde under a range of different experimental conditions for M5. See Fig. 1 for full 

reaction conditions. 

The largest remaining errors in this model are at the lowest CO partial pressure of 10 bar at the 

highest temperature, 423 K, where the predicted rate for formation of n-butyraldehyde is larger 

than the experimental one by 1.2×10−4 M s−1 and that for formation of iso-butyraldehyde is smaller 

than experiment by 1.4×10−4 M s−1. As these errors nearly cancel, the predicted overall turnover 

rate agrees well with experiment under all conditions (see Fig. S4). M5 therefore provides an 

accurate model of the experimental rates, and suggests that the reaction mechanism indeed 

involves formation of a toluene complex of HCo(CO)3. 

Assuming that M5 is very close to the correct kinetic model, we can address the question of 

which step is rate-limiting. According to Table S6, TS6’ has the largest absolute value of ∂𝜒 ∂Δ𝐻⁄ , 

suggesting that the corresponding toluene-propene exchange step plays an important role as it 

impacts most significantly on the modelled rates. However, a more powerful way to analyze this 
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question is to use the degree of rate control (DRC) metric32,47 for the individual elementary steps, 

𝜒RC,𝑖. This is defined as the derivative of the logarithm of the rate R with respect to the logarithm 

of the rate constant for a given step, with all equilibrium constants and rate constants for other 

steps and the reaction conditions (e.g. the concentrations C of the reactants and the temperature T) 

held constant, eq. (1). In case the step i is reversible, i.e. in case the inverse rate constant 𝑘−𝑖  is 

non-zero, then the derivative is taken while holding the equilibrium constant for that step constant. 

In practice, to compute 𝜒RC,𝑖, the kinetic model is integrated to obtain a predicted turnover rate R, 

then a given rate constant is multiplied by a small factor, and the model recomputed, and the 

numerical derivative is evaluated. For reversible steps, both 𝑘𝑖 and 𝑘−𝑖 are scaled by the same 

factor. A value of 𝜒RC,𝑖 = 0 for a given step indicates that this step is completely unimportant for 

determining the rate of turnover, while 𝜒RC,𝑖 = 1 indicates that the given step is the only one that 

is turnover-limiting, with intermediate values indicating partial control (in that case, the sum of 

the 𝜒RC,𝑖 for all steps will equal 1).  

 𝜒RC,𝑖 = (
𝜕 ln 𝑅 

𝜕 ln 𝑘𝑖
)

𝑘𝑗 ,𝐾,𝐶,𝑇
=

𝑘𝑖

𝑅
(

𝜕𝑅 

𝜕𝑘𝑖
)

𝑘𝑗 ,𝐾,𝐶,𝑇
 (1) 

We have computed 𝜒RC,𝑖 for each step in Scheme 1, and for each of the reaction conditions of 

Figures   1-4, for the reference rate constants of model M5. These results are shown in Table 4 and 

Figures 5 and S5-6. For the purpose of computing the degree of rate control, the ‘rate’ can be taken 

to be the overall rate of formation of butyraldhydes, or the rate of formation of the linear n--

butyraldehyde isomer, or of the branched iso-butyraldehyde, and these are shown separately. Note 

that in the case of mechanisms with competing pathways, as here, 𝜒RC,𝑖 can be lower than zero, 

which occurs for steps which lead to decreased rate of turnover if their rate constant is increased. 

We find such negative degrees of rate control for reactions along the n- pathway when computing 

𝜒RC in terms of the rate of production of iso-butyraldehyde, and vice versa. 

 

Table 4. Calculated degree of rate control (DRC) values for formation of n-butyraldehyde, iso-

butyraldehyde and overall butyraldehyde products for M5 (for pCO=pH2=50 bar, [propene]= 

1.19 M, [catalyst]=7.3×10−3 M, and T=423 K).   

Reactions DRCtotal DRCn DRCiso 
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We find that under many conditions, more than one step exerts an influence on the rate, with the 

magnitude of 𝜒RC,𝑖 for different steps depending quite strongly on the reaction conditions. Under 

many conditions, the largest degree of rate control is associated with step 3 in Scheme 1, i.e. the 

addition of propene to HCo(CO)3, which in model M5 actually corresponds to substitution of 

toluene by propene in HCo(CO)3(toluene). Under the ‘most typical’ reaction conditions (T = 423 

K, pCO = pH2 = 50 bar, [propene] = 1.19 M, and [catalyst] = 7.3×10−3 M), 𝜒RC for this step is 0.69 

(whichever rate is used to compute 𝜒RC, i.e. the total rate of butyraldhyde formation, or those for 

n- or iso- formation, Table 4). While this large value indicates that propene addition has the 

dominant effect on turnover, the fact that it is significantly smaller than one indicates that other 

steps play a role also, in particular steps 6 and 7 (for addition of CO to RCo(CO)3, with R being 

n- or iso-propyl) and 12 and 13 (for H2-mediated cleavage of product from RCOCo(CO)3). Having 

multiple steps each partly determine turnover indicates a complex reaction mechanism, and 

carefully optimized reaction conditions, under which the optimal behavior of the individual steps 

is achieved. 

Under different reaction conditions, the nature of the main turnover-limiting step can change. At 

low CO pressure, for example, step 12 (cleavage of the acyl-cobalt bond by hydrogen) becomes 

the dominant turnover-limiting step for formation of n –butyraldehyde (Figures 5 and S5). 

Changing the temperature also affects the contribution of the different steps to determining the rate 

of turnover. Under all conditions, though, multiple steps make non-negligible contributions. 

Overall, as already mentioned, the industrially most relevant experimental conditions with T near 

Step 3 0.69 0.69 0.69 

Step 6 0.06 0.15   –0.16 

Step 7 0.05 –0.12 0.44 

Step 12 0.16 0.37 –0.32 

Step 13 0.04 –0.08 0.33 

Step 17 0.00 –0.01 0.02 
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400 K, and high pressures of CO and H2, can be seen to emerge as conditions where the optimum 

turnover rate is controlled by several steps. 

 

Figure 5. Calculated degree of rate control (DRC) values for formation of overall butyraldehyde 

products for M5 under a range of different experimental conditions. Experimental conditions: 

Top left: pCO=pH2=50 bar, [propene]=1.19 M; Top right: pCO=pH2=50 bar, [catalyst]=0.00292 M; 

Bottom left: pH2=25 bar, [catalyst]=0.0073 M, [propene]=1.19 M; Bottom right: pCO=25 bar, 

[catalyst]=0.0073 M, [propene]=1.19 M. Black, step 3; Red, step 6; Magenta, step 7; Cyan, step 

12; Blue, step 13; Solid lines, 423 K; Dashed lines, 403 K; Dash double-dotted lines, 383 K. 

 

Another important mechanistic question can be examined based on our accurate kinetic model 

M5, and this relates to the relative contributions of the reactions of H2 and HCo(CO)4 3 to the 

formation of butyraldehydes from the acyl-Co(CO)3 species 17 and 19, respectively reactions 12 

and 13 (H2) and 16 and 17 (HCo(CO)4). At low temperature, under stoichiometric conditions, 3 is 

known to be able to effect the cleavage of acyl-Co(CO)3, but the contribution under practical 

catalytic turnover conditions is less well known. Here we have computed the proportion of the rate 
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of aldehyde formation corresponding to the bimetallic route compared to the total rate of formation 

for the different experimental conditions (Figure S7). As expected, this proportion increases upon 

increasing the total cobalt concentration, and decreases upon increasing the partial pressure of H2. 

It also varies slightly with temperature, with pCO and with the concentration of propene. The 

proportion of iso-butyraldehyde formed through the alternative mechanism is also typically higher 

than for n-butyraldehyde. However, in all cases, the proportion of the bimetallic mechanism 

remains quite small, under 12%. This suggests that the alternative mechanism does not play an 

essential role. 

This is confirmed by examining an alternative model, M6, which is constructed in the same way 

as M5, except that the bimetallic steps are removed. Starting from the ‘new’ ab initio model 

MN, reactions 16 and 17 were removed, and a new fit to experiment was performed. The 

enthalpies and entropies of species 1, TS4’, TS6’, TS12, 13, TS14, 15, 21, 23, TS24, TS26 were 

allowed to undergo changes, and fitting was performed using a Monte-Carlo approach with a 

maximum change of ΔH and ΔS values of 6 kJ mol−1 and 0.02 kJ mol−1 K−1, except 

for TS4’ and TS6’, where a larger maximum change of respectively 20 kJ mol−1 and 0.06 kJ 

mol−1 K−1 was allowed. Model M6 (Figure 6 and Table S8) has an excellent RMS error of 11.7%, 

very good dependence of rate on CO partial pressure, and | ln Rpred/Rexp |max of 0.42 (a maximum 

error by a factor of 1.5). This model M6 is thereby in terms of accuracy profile to M5 where the 

alternative bimetallic mechanism is included, further suggesting that the alternative bimetallic 

mechanism does not play an important role under industrial turnover conditions.  
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Figure 6. Predicted (lines) and experimental (points) rates for formation of n-butyraldehyde and 

iso-butyraldehyde under a range of different experimental conditions for M6. See Fig. 1 for full 

reaction conditions.  

 

Computational Details  

Quantum Chemical Calculations. All structures were optimized using the B3LYP48 density 

functional as implemented in Gaussian 16 rev. A03,49 using the Grimme dispersion correction with 

Becke-Johnson damping50 and the 6-311G(d) basis set51 on all atoms. Vibrational frequencies were 

computed at the same level of theory. Standard DFT integration grids were used throughout. For 

the Gibbs energy correction (computed at 383, 403 and 423 K), the rotational constants from the 

Gaussian 16 optimized structure were used together with the rigid rotor approximation, while the 

vibrational contribution was computed using the quasi-harmonic approximation,52 whereby 

vibrational frequencies with a magnitude smaller than a cut-off value of 50 cm−1 were replaced by 

frequencies of 50 cm−1 prior to computation of the harmonic oscillator thermal and entropic 
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contributions. A standard state concentration of 1 M was used for all species, except for CO (an 

ideal gas standard state of 1 bar), for computing the translational component. Note that for toluene, 

the standard state concentration at 25 °C is 9.4 M but we have not included the corresponding quite 

small contribution to Gibbs energies (roughly 5.6 kJ mol−1) since the uncertainty on Gibbs energy 

for these species is anyway quite high and kinetic fitting including changes in Gibbs energy by 

more than this term is performed.  

Kinetic Modeling and Fitting. Two different approaches have been applied to minimize the 

RMS error between predicted and experimental rates with an in-house code, by carrying out 

modifications of the ab initio enthalpies and entropies of the different species and transition states. 

One is a constrained Monte-Carlo method, where random changes are made to the ab initio 

enthalpies and entropies but with maximum allowed changes for each species. Then Gibbs 

energies for each species were recalculated and used together with the Eyring equation to calculate 

forward and reverse rate constants, followed by integrating the kinetic equation to predict the rates 

for formation of products. If these modified enthalpies and entropies lead to a reduction in the 

RMS error, the update is accepted and the process iterates until a lowest RMS is found. 

Another method is gradient-based minimization by implementing the Broyden–Fletcher–

Goldfarb–Shanno (BFGS) algorithm to minimize the RMS error. The derivative of the RMS error 

with respect to ΔH and ΔS for each species, ∂𝜒 ∂Δ𝐻⁄  and ∂𝜒 ∂Δ𝑆⁄ , are calculated numerically by 

re-propagating the kinetics with slightly modified ΔH and ΔS values. For this, we use a central 

difference approximation with step widths of 0.0001 kJ mol−1 for ΔH and 0.0001 J mol−1 K−1 for 

ΔS. The BFGS algorithm was then applied to seek a minimum of the RMS error with respect to 

ΔH and ΔS. 

Conclusions   

In summary, we explore the mechanism of propene hydroformylation by Co2(CO)8, using a 

combination of quantum-chemistry, kinetic modelling, and reference to experimental kinetics. We 

explore the origin of the remaining discrepancies between predicted and observed rates by carrying 

out systematic numerical fitting of the ‘raw’ ab initio kinetic model to the experiment, and propose 

this as a protocol for refined mechanism development in homogeneous catalysis. Initial attempts 

to obtain a high quality fit of the ‘raw’ ab initio model to the experimental kinetics while making 
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only modest adjustments to the ab initio enthalpies and entropies of the key species were 

unsuccessful, but much improved agreement with experiment was obtained upon allowing some 

key species to undergo much larger adjustments of the ab initio enthalpy and entropy. This occurs 

in particular for the key transition state TS6 for addition of propene to HCo(CO)3, and has led us 

to suggest that the molecular representation of this TS in our previous models is qualitatively 

incorrect. If we assume that free HCo(CO)3 is not formed, being replaced in the mechanism by a 

solvated species HCo(CO)3(toluene), then TS6 is re-interpreted as a TS for exchange of toluene 

and propene. 

Based on this suggestion emerging from the kinetic fitting process, we re-examined the 

corresponding steps using quantum chemical methods, and we indeed could locate the 

HCo(CO)3(toluene) and its TSs for exchange of toluene by CO or propene. The raw ab initio free 

energy for these species confirm that they could in principle compete with the coordinatively 

unsaturated HCo(CO)3 species. Kinetic modelling using the ab initio enthalpies and entropies 

computed for this new microscopic model led to acceptable agreement with experiment, but 

crucially, tightly constrained fitting using these new ab initio values as starting points led to a 

highly accurate model which surpasses previous models in terms of ability to reproduce 

experimental rate data and yields new microscopic insight into the mechanism. 

Where enough high-quality experimental kinetics data is available, we suggest that this type of 

combined experimental, quantum-chemical and microkinetics modelling approach can yield the 

highest level of insight available into microscopic reaction mechanisms in catalysis or elsewhere. 

Experiments are of course essential as purely computational techniques are not routinely able to 

provide quantitative results. Quantum chemistry is essential in order to provide detailed 

microscopic models. Kinetic simulations provide a bridge between the two approaches, and the 

synergy between all three techniques can lead to refinement of the models put forward based on 

only some of the approaches. 

Catalysis of hydroformylation by cobalt carbonyl complexes is shown to follow a complex 

mechanism, with the coordination of propene to the cobalt center shown to be the main turnover -

limiting step, but several other steps are also partly turnover-limiting, with the role of each step in 

determining catalytic rate depending in part on the reaction conditions. 
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