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Abstract

Bioenergetic processes in cells, such as photosynthesis or respiration, integrate so

many time and length scales that they hinder the simulation of energy conversion with

a mere single level of theory. Just like the myriad of experimental techniques required

to examine each level of organization, an array of overlapping computational tech-

niques are necessary to model energy conversion. Here, a perspective is presented on

recent efforts for modeling bioenergetic phenomena with focus on molecular dynamics

simulations and its variants as a primary method. An overview of the various clas-

sical, quantum mechanical, enhanced sampling, coarse-grained, Brownian dynamics,

and Monte-Carlo methods is presented. Example applications discussed include multi-

scale simulations of membrane-wide electron transport, rate kinetics of ATP turnover

from electrochemical gradients and finally, integrative modeling of the chromatophore,

a photosynthetic pseudo-organelle.

Introduction

Biological energy transfer is central to all life on earth. Living cells can be considered as

engines producing work while transferring energy between a source and a sink.1 However,

delineating the mechanisms of energy storage and directional transfer is nontrivial due to the

complexities associated with monitoring coupled reactions in confined and/or crowded envi-

ronments. Molecular dynamics (MD)* of such processes often entails simulating a network

of stochastic events under deterministic constraints,2 and sometimes the converse.3,4 We

ground this perspective on such integrative or so-called multiscale approaches for studying

the emergence of directional energy changes in bioenergetic membranes.

Historically, the areas of photosynthesis and mitochondrial respiration have offered a

test bed for studying energy transfer in primitive organisms, plant and animal cells. These

investigations have opened application areas in artificial light harvesting,5 biomarkers for

cardiovascular diseases and cancer cells6,7 and more recently in brain sciences.8 One of the

*Abbreviations: BChl: bacteriochlorophyll; Chl: chlorophyll; cyt: cytochrome; CpHMD: constant pH
molecular dynamics; MC: Monte Carlo; MD: molecular dynamics; PSI/PSII: photosystem I/II; QM/MM:
quantum mechanics/molecular mechanics; RC: reaction center; SMD: steered MD
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first breakthroughs in understanding how energy is transfered in biology came from the

discovery of chemiosmotic coupling. It described how electrochemical gradients can be em-

ployed to store energy in cells by the use of light- or nutrients-driven ion pumps.9 Soon after,

the notion of chemomechanical coupling was explored. It explains how these ion gradients

are utilized to drive chemical reactions of metabolites by controlling directed movements of

the proteins.10 Efficiency of forward versus backward chemo-mechanical movements depends

on the flexibility of the proteins. Finally, the directionality of the chemo-osmotic and chemo-

mechanical cycles is contingent on the availability of the metabolites, which highlights the

need for metabolite-carrier enzymes.11

The activity of the carrier proteins can be regulated even to reverse the cycles by changing

the metabolite concentration and, hence, bias the direction of the protein movements. This

reversibility underscores a mechanism often used for robust functioning across stresses. So

a simple model of energy metabolism will encompass metabolite regulation, electrochemical

gradient and chemo-mechanical changes. Examples of such bioenergetic mechanisms can be

seen in different variants of the so-called electron transport chain,12 rotatory catalysis13 and

Warburg effect.14

Many researchers, including ourselves have conceived a number of top-down and bottom-

up approaches for multiscale modeling of energy conversion and transport processes. Pre-

sented in this work (Table 1) is a representative list of computational models made over the

last two decades, which includes the simulations of light-harvesting, charge transfer, and as-

sociated diffusive and conformational transition steps. Some essential reviews of the systems

biology oriented approaches in studying bioenergetics are provided elsewhere.15,16 Presently,

we focus on the detailed molecular simulations for studying biological energy transfer.

The organization of this manuscript is as follows. In the next section, computational

methods for integrating energy conversion processes are discussed in terms of their advan-

tages and shortcomings. Subsequently, some exemplary studies that employ such methods

are reviewed. Lastly, future outlook for integrative simulations is discussed.
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A survey of integrative simulation methods

Computational chemistry has evolved into an indispensable tool for the routine investiga-

tion of bioenergetic systems.17 These methods have provided details of the electronic and

molecular structural changes that underpin reaction mechanisms, energetics, and dynamics

of proteins ranging from antenna complexes18 to soluble charge carriers,19 up to redox-driven

pumps20 and to ATP driven motors.10,21 Thus, it is possible to simultaneously investigate

both conformationally-coupled charge transitions and diffusive transformations that underlie

energy transfer networks. Here, we briefly discuss the development, application and chal-

lenges of popular methods sampled from Table 1 with an emphasis on those interfacing MD

simulations.

Classical molecular dynamics simulations:

Conformational dynamics of a system can be assessed through MD simulation.22,23 In this

approach, every atom of the system, including the macromolecules (proteins, nucleic acids,

cofactors), membrane, and the explicit solvent surrounding them is modeled using Newton’s

Second Law by integrating over energy functions called force field parameters. With the

inception of customized hardware,24–28 there has been a dramatic growth in the system-size

and complexity handled by MD, which reflects in the area of bioenergetics (Fig. 1). MD offers

an ideal tool for the visualization of sub-nanosecond collective phenomena, such as excitation

transfer events .29,30 In particular, the explicit modeling of lipid bilayers and membrane-

protein systems lends to an accurate description of thermal disorder for computing the

efficiency of light absorption by antenna complexes.31

A well-known shortcoming of MD simulations stems from inability to access larger system

sizes32 and longer time-scales.33 Additionally, the lack of polarizable force fields for the

related cofactors hinders quantitative estimation of long-range spatial information transfer

even over short timescales.34,35 The sub-microseconds timescale accessible in MD for the

nanoscale bioenergetic complexes that are typically 300 KDa to 1000 KDa in weight remain

several orders of magnitude smaller than those probed by microscopy or imaging experiments

and even smaller than those needed to study diffusive energy transfer.
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Figure 1: Significant bioenergetics MD simulations in the last couple of decades. The Y-
axis describes computational expense in terms of a logarithmic scale of the simulation length
multiplied by the atom number of each system. Four simulations with thumbnails displaying
their simulated biomolecular structure, are pioneering works; a) the first MD simulation of a
bioenergetic complex with a computational expense as big as ∼85 kiloatom nanoseceond, b)
the longest course grained MD simulation of a bioenergetic system, c) the longest all-atom
MD simulation on a bioenergetic system, and d) the largest simulated bioenergetic system
with 136 million atoms.
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Another restriction of conventional MD simulation in bioenergetics is that the chemical

state (e.g. redox or protonation) of all residues and cofactors is predefined and kept fixed

throughout the simulation.34 Pigment molecules are parameterized and their force fields are

additively extended for potentially every new species-specific substitution to the cofactors

(Fig. 2), which sometimes requires weeks to months of multi-dimensional fitting.36 Despite

this laborous stage in the set up, MD simulations at best sample only those molecular struc-

tures aligning with the most probable region in the harmonic potential. The chemistry of

the system, which evolves with the conformations is overlooked. Simultanious computation

of mechanical and chemical changes warrants the inclusion of the electronic degrees of free-

dom in MD, particularly for the computations of bioenergetic chemical gradients.37 To this

end, augmentations to MD are made either semi-classically (e.g. via CpHMD schemes) or

quantum mechanically by introducing multi-physics computations.38–40

Quantum Mechanics/Molecular Mechanics:

Quantum mechanical (QM) calculations provide electronic structure information of a molecule

by solving the Schrödinger equation for all interacting electrons in the field generated by the

nuclei. Reviewed in,41,42 single or multi-reference QM methods, such as Density Functional

Theory (DFT), configuration interaction (CI),43 or couple cluster (CC) provide description

of the ground-state energy of a molecule with different levels of accuracy, but are often

limited to less than 100 atoms due to complexities that arise from the increasing number

of atoms. The photosynthetic chromophores require an robust description of the excited

electronic states in addition to their ground state. Time-dependent analogue of the DFT

has provided an accurate description of these states, offering insights into properties such

as excitation energies and polarizability.44,45 The combination of DFT with multi-reference

configuration interaction (DFT/MRCI), is also used to study excited states of a system.46,47

Photosynthetic systems further require an accurate description of the dispersion inter-

actions to account for exciton migration, and interactions between pigments and protein

residues. Hence, DFT calculations have been refined to include the dispersion forces, com-

monly known as Dispersion-Corrected DFT.51 More accurate methods, such as DFT + many-

body dispersion, are also available, and go beyond the pairwise dispersion corrections to
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Figure 2: Biological chlorophyll a type pigments. (A) Chemical diversity of the chlorophyll
porphyrin scaffold. Red colored components correspond to functional groups that distin-
guish the select group of pigment types designated in the table. (B) Truncated chlorophyll
molecule (in green), taken from crystal structure (PDB:6NWA),48 shown ensconced in a pro-
tein environment (backbone in teal, sidechains in blue) that tunes its energetic properties
dynamically. Visualization was done with VMD with the chlorophyll and protein sidechains
rendered in licorice, and protein backbone in ribbon. (C) Side by side comparison of electro-
static partial charges for the chlorophyll a 49 and BChl a 50 atoms in the porphyrin skeleton
(in green) determined via quantum mechanical calculations.
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include higher-order terms to account for many-body effects.52

The effect of the protein and environment has to be included, given the electronic struc-

ture has a very strong parametric dependence on the so-called bath variables. To study

multiscale processes, QM/MM hybrid method is employed, in which a quantum mechanical

description is embedded in a molecular mechanics environment.53 Semi-empirical methods

enable large QM region, longer simulations,54 and have been parameterized against absorp-

tion and circular dichroism spectra of pigments. As such, methods like AM1, PM3 up to PM6

have successfully been coupled with classical CHARMM or Amber force fields within light

harvesting systems to study the broad absorption spectra of bacteriochlorophyll rings.18,55

Finally, the presence of open shell electronic structure in bioenergetic systems such as

charge-separated chlorophylls, semi-quinones or reactive oxygen species, pose a challenge

to routinely used DFT functionals.56 These systems may suffer from spin contamination

due to the lack of a spin adaption description. In the modern architecture of QM, several

variants of MRCI or MRCC have been developed to provide a reasonable description of open-

shell species.44,57,58 Density-fitting approaches and local correlation methods have also been

developed, which may be applicable for medium-sized (150-200 atoms) systems.59 Examples

of such methods include DFT with broken symmetry60 and the Tao-Perdew-Staroverov-

Scuseria functional.61 The latter is a so called meta-GGA functional combining exchange

and correlation terms with additional gradients of the electron density, and has been used

to study metal centers such as [4Fe–4S] cluster in diphosphate reductase IspH protein and

metalloproteins.62

Enhanced Sampling Methods:

Bioenergetic systems undergo large-scale structural transformations and reassembly pro-

cesses in response to cellular stresses. Motor-like protein complexes, such as NADH dehy-

drogenase or ATP synthase undergo directional movements that is tuned by the direction

of osmolyte fluxes (quinones, ADP, ATP, NADPH) across the membrane. To model these

processes, it is crucial to generate an ensemble of the transient conformations, classify them

in a physically interpretable yet ‘reduced space’ of reaction coordinate(s), and pinpoint the

interactions that act as rate-determining bottlenecks in the structure and energy cascades.
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Although a few microseconds of MD simulations are routine now, the resulting ensemble of

structures might not conform to the ergodicity principle, requiring more exhaustive sampling

of the conformational space.

Several enhanced sampling simulation algorithms have been developed to improve the

description of thermodynamic ensembles within reasonable computing resources.63,64 These

methods aim to capture lower probability regions on the potential energy surface that are

associated with high-energy barriers. Two broad categories of methods have emerged, im-

portant or biased sampling and generalized sampling. While the former requires a priori

information of the reaction coordinates, along which the ensembles are generated, the latter

family of methods do not need any such dimensionality reduction.

Given the amenability to work with large system sizes, biased sampling methods have

been quite popular in simulations of bioenergetic complexes.65–67 For starters, steered MD or

SMD simulations have been used extensively to study such systems. This type of simulations

have provided initial insights on binding and dissociation events of electron carriers. For

example, the Rhodobacter sphaeroides’s RC complex reduces a quinone to semiquinone

upon receiving electron from its core protein. An experimental study observed a significant

difference in the dissociation of the neutral and anionic quinone at their binding site.68

Then SMD simulations were used to dissect the mechanistic differences of the reduced and

oxidized quinone binding.69 Similar studies have also been utilized to study redox protein

binding to the respiratory complexes.70 However, such simulations are highly driven by the

investigators’ intuition and often fail to capture movements orthogonal to the direction of

steering71,72 leading to the inception of more sophisticated importance sampling tools.

Metadynamics improves conformational sampling by discouraging the simulation to visit

previously sampled states.73,74These simulations have successfully modeled protein-protein

dissociation events or rearrangement of cofactors at different binding sites,75,76 resolving

some of the slowest steps in bioenergetic processes and elucidating the properties of the

dissociated state.77–79 A major advantage of metadynamics over other free energy methods

is that, provided the knowledge of putative reaction coordinates, the free energy profile can

be extracted from the accumulated bias potential without requiring separate simulation for

each state.
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Another common method for enhance sampling along a predefined reaction coordinate is

umbrella sampling. A harmonic potential is employed to improve the sampling points along

the reaction coordinate of a transformation, which is discretized by a series of windows.

The relative free energy change of this transformation is determined by de-weighting this

potential from all the windows.65

The major challenge with both metadynamics and umbrella sampling simulations is that

these methods are limited to simultaneously handle only a few reduced degrees of freedom,

also called collective variables (typically up to four). Not to mention, the lack of sampling

other degrees of freedom aside from the chosen collective variables can produce misleading

outcomes. The computational cost is further increased by the requirement of statistical

methods, such as bootstrapping analysis, to quantify the convergence and uncertainty in

the calculated free energy values. This issue is being overcome by integrating experimental

data inside simulations of large protein complexes either as direct force field bias80 or as

a probability bias81 that focuses the enhanced MD sampling on relevant parts of the free

energy landscape.82

Coarse grained modeling:

The all-atom MD simulations are generally limited to few tens of microseconds of time and

few nanometers of system size. Coarse-grained (CG) MD simulations aim to capture larger-

scale rearrangement of such systems by reducing the number of particles and interaction

details, and thus increasing both accessible temporal and spatial scale without any significant

increment in computational resources.83,84 Coarse graining involves grouping of multiple

atoms (3-6 non-hydrogen atoms) to form a single, larger particle, known as bead, and is

based on the idea that not all atomic details are relevant for the dynamics and behaviour of

the system can be averaged without much loss of important information. Still, brute force

CG MD simulations are of limited use for studying systems where atomic-level interactions,

such as hydrogen bond which are important for protein secondary structures, are crucial.

Approaches are being developed that offer CG dynamics, yet with corrections that account

for atomistic interactions , such as the multiscale force-matching 85 or Upside.86

Simulations of bioenergetic systems were performed using CG MD to probe the slow
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membrane dynamics, and the influence of diffusive lipid binding on the structure and func-

tion of integral membrane proteins.19,87–89 Significantly reducing the number of particles, CG

MD simulations have been performed in the range of a few hundred microseconds.90 The

primary challenge in studying bioenergetic systems using coarse graining is the accurate pa-

rameterization of the cofactors, such as chlorophyll a/b in photosystems.91 Nonetheless, CG

force field parameters for several cofactors involved in bioenergetics have been developed.

In particular, the MARTINI force field, which is one of the most commonly used CG force

fields,92 has been extended for photosynthetic systems by developing parameters for its com-

ponents, such as chlorophyll a/b, plastoquinone and β-carotene.91,93 These parameters are

based on values obtained from the corresponding all-atom simulations and are compatible

with their partition coefficient in hydrated organic solvents, such as octanol/water, cyclohex-

ane/water. The MARTINI simulations are also employed to study the formation of LHCII

assembly and the dynamics of PS II cofactors embedded in the thylakoid membrane.88,94

Other methods:

Monte Carlo simulation. As a versatile, non-MD sampling method, MC is used to

explore the conformational and energy landscape of complex biomolecular systems, includ-

ing the bioenergetic ones. During a standard MC simulation, a large number of random

conformations of the system are generated by altering various structural features and an

energy-based criterion, such as Metropolis, is used to direct the simulation to an energy

minimum and provide statistical-relevant properties. In the context of bioenergetics, MC

simulations are employed to study processes such as the reconfiguration of protein-protein

interfaces on the organization of bioenergetic complexes,95,96 or the influence of amino acid

mutations on the interaction energies in photosystems.20,97 Protein backbones are often kept

fixed when the side chains are sampled.98 Nonetheless, a recent study found that inclusion

of protein-protein interactions during MC simulation increases the computational cost, but

offers a more accurate description of the arrangement of photosynthetic proteins within the

thylakoid membrane compared to single-particle MC simulation.99 The limitation of slow

convergence can be overcome by employing temperature replica exchange MC (t-REMC)

method,100,101 sometimes with solute tempering.102,103
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MC simulations are also being extended to investigate the electronic structure by the

development of Quantum Monte Carlo (QMC) simulations.104 These simulations can be used

to study the electronic structure of ground and excited states with thousands of electrons as

well as the electron transfer pathway and are highly useful to study bioenergetic systems and

processes.105,106 Moroever, QMC simulations have been used to study light absorption and

energy transfer by photosynthetic pigments in light harvesting complexes of higher plants.107

Constant pH simulation. The effects of different pH conditions on the dynamics of a

system can be studied by CpHMD simulations.108 The strength of these methods lies in their

ability to sample various protonation states of residues and other ionizable groups during the

course of the simulation trajectory. This opens the door for assessing relationships between

ionization states of different groups inside a biomolecule and the structural and functional

properties of the system, such as stability and internal interactions respectively.

In the discrete CpHMD simulation, based on a hybrid MD/MC approach,109,110 the

ionizable residues of the system are initially assigned a specific protonation state according to

the chosen pH value. Then, MD simulation is used to produce a trajectory to obtain possible

configurations at which different redox states of the the stated residues are energetically

allowed. Performing MC sampling, configurations at a specific time interval are selected

from the MD trajectory, and the protonation state of each titratable residue is decided

based on Metropolis criterion.111 For example, CpHMD simulation at six different pH values

(from 3 to 8) were performed for PSII subunit S and the frequency of protonation for all

titratable residues at each pH was determined.112 The protein was observed to undergo

secondary structural changes depending on the pH value, primarily due to the change in

the protonation states of multiple Glu residues. Similar studies have been performed for

bioenergetic systems, such as light-harvesting complex stress-related of moss Physcomitrella

patens and RC of Rb. sphaeroides, with a focus on determining their pH sensitivity.113,114

Brownian Dynamics or BD simulation. Diffusive transport of charge within the cel-

lular medium via soluble proteins (cytochromes, ferredoxins or plastocyanins) is one of the

key steps of biological energy transfer. Such long-range interactions play a crucial role in

enabling the recognition of binding partners despite crowded environments. This step, which
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occurs at a slower rate compared to conformational transitions, represents a rate-determining

bottleneck, further challenging the limits of MD simulations.

In BD simulations, the environment is modeled as a mean field of electrostatic and

van der Waals potential, wherein the atom-resolved binder proteins diffuse to mutually

interact.115–117 The statistics of binding conformations derived from these simulations are

employed to delineate the key recognition motifs of the binders. A major advantage of

this simulation is that it manages to overcome the entropic bottlenecks of MD simulations

by sampling multiple binding and unbinding events within a finite compute time. The

mean-field approximations allow even larger timesteps than CG simulations. However, the

macromolecules are often treated as rigid bodies. Hence, despite capturing the interaction

surface, mechanisms like induced fit are beyond the scope of these simulations. Hybrid

methods switching between MD and BD have been proposed for studying the binding of

ions to proteins to include the induced structural changes in proteins.118,119

Resulting applications

In this section, three exemplary applications are discussed that highlight the theory and

simulation method for modeling molecular mechanisms of biological energy transfer. We

will start with a summary of work on redox processes within the electron transport chain,

continue to chemo-mechanically coupled conformational changes, and finally discuss an in-

tegrative model of light harvesting.

Electron transport chain:

The role of thermal disorder in sustaining long-range excitation transfer in light-harvesting

complexes has been investigated using MD simulations.120 Following site-energy computa-

tions of the pigments,55 the Försters theory of excitation transfer is employed with a so-called

effective Hamiltonian model to determine fluorescent resonant energy transfer in pigment-

protein complexes of different architectures.121 A remarkable result was that several dark

states of low oscillator strength were found below the main Soret band for solvent complexes

and chlorophylls and bacteriochlorophylls in the protein environment.122 These states were
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predicted to be intermediate states for excitation energy transfer in photosynthetic com-

plexes, which was subsequently verified by two-dimensional electron spectroscopy.123 Fur-

ther MD simulations of PSI and PSII revealed that the relative flexibility of the subunits,

which can influence the photosynthesis regulation, is further controlled by exposure to the

membrane and water environment.88,124 It allowed to monitor the extent and time scales

of geometrical deformations of pigment and protein residues at room temperatures.125 A

comparison of the average distances and angles between the B850 BChls to those found in

the crystal structure reveals an increased degree of dimerization within the B850 ring, as

compared to the crystal structure.

Following light absorption, the next major step in energy harvesting is charge separa-

tion so the optical energy is converted to electrochemical energy for longer-time storage

and transduction. Computations with TDDFT method (see Methods) using the quantum

mechanics/molecular mechanics/polarizable continuum model (QM/MM/PCM) method of-

fered a seminal insight on the role of aromatic amino acid residues in reducing the energy

barrier for charge separation. For example, in the RC protein, Tyrosine residues near the

accessory BChl drastically accelerates charge separation by overcoming the electron–hole in-

teraction.126 The symmetry-breaking of the chlorophyll conformation further dictates the di-

rection of the resulting electron transfer to membrane-bound charge carriers quinone species.

Studies have utilized MD simulations to probe the dynamics of RC molecules in the

light-harvesting complex LH-II embedded in a lipid bilayer in an explicit water environment.

These simulations shed light on the sequential dynamics of BChl and quinone molecules as

well as the role of water molecules on their interactions.55 Since the timescale of quinone

unbinding to proteins is intractable by MD, SMD simulations followed by umbrella sampling

are employed to measure the energy required for removing a reduced quinone from the RC in

the photosynthetic membrane,69 or from analogous quinone-reducing NADH-dehydrogenase

complex in the mitochondrial membrane.20 The values were found to be quite varied between

multiple systems, anywhere between the range of 4-12 kcal/mol.

The reduced quinone is ubiquitously shuttled to the bc1 complex. Here, two electrons are

abstracted to reintroduce the oxidized quinone back into the membrane. These abstracted

electrons make way through the bc1 into the heme groups of the soluble transport proteins
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cyt. c/c2 that diffuse back to the RC to complete the cyclic electron transfer. A combination

of MD and Brownian Dynamics simulations have revealed the mechanisms of diffusion,

attachment and detachment of cyt. c/c2 between the bc1
127 and RC.128 A key finding in these

studies, which has been verified by AFM and EPR measurements,129 is the redox-controlled

electrostatic nature of cyt. A number of basic residues at the protein-protein interface were

shown to switch conformation and modulate the the redox complementarity of the electron

donor and acceptor sites. Upon the single-electron redox reaction, the charged residues at

the interface rearrange, resulting in reduced flexibility compared to when the donor-acceptor

complex contains two holes or electrons.

Electron transport from the quinone binding site to the cyt. c site within the bc1 complex

remains a mystery. The series of charge transfer reactions between different cofactors, known

as the Q-cycle, involves reduction of a quinone to quinol, which diffuses to the cyt. bc1

complex and is oxidized back to quinone releasing two electrons to cyt c1 heme groups via

proton-coupled electron transfers reactions.130 Insights into these charge transfer reactions

have been gained through MD simulations and QM calculations.131–133 One such study

revealed the binding pathway of quinol to the bc1 complex and assessed the influence of

nearby residues on the electron transfer between quinol and Fe-S cluster.131 Another study

used microsecond MD simulations of the membrane-bound Rhodobacter sphaeroides’s RC

bacterium to understand the role of primary and secondary quinone in modulating electron-

transfer across the two symmetrical RC.50 The study highlighted the effect of neighboring

water on electron transfer between cofactors.

ATP synthase:

Two protons are pumped into the periplasmic space per reduction of one quinone molecule

at the bc1, which contributes to the proton-gradient or proton motive force. Over the

reduction of two quinones, and hence the release of four protons, an ATP is generated

chemo-mechanically by the ATP synthase motor. This formation of ATP completes the

entrapment of light energy from the photosystems into the synthesis of a P - O chemical

bond. This last step has been a focus of intense molecular simulations for close to two

decades now.
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The motor complex is composed of two subsystems, a transmembrane and a soluble part,

each of which can independently perform directional rotatory movements. The F-type ATP

synthase is the most studied given its ubiquity among both aerobic and anaerobic lifeforms.

This type of ATPases exist in the bacterial plasma membrane, the mitochondrial inner

membrane, and the thylakoid membrane within chloroplasts. On the other hand, driven by

an array of new structures, the evolutionarily linked vacuolar or V- and Archeal or A-type

ATPases are also recently simulated.134

Proton transport driving rotation of the transmembrane Fo domain was modeled re-

vealing a coupled protonation/deprotonation of two conserved acidic residues,ASP.21 An

ancillary mathematical model suggested the feasibility of torque generation guided by this

molecular mechanism. Remarkably, this work was performed when the complete structure

of the proton channel (the a - subunit) across the Fo domain was not known. Only in the

last decade, with the inception of near-atomic resolution structure of Fo and Vo motors, the

enhanced sampling simulations of these systems are getting traction.135 A key discovery is

that the proton-transport-driven rotation of an isolated Fo motor is random, while that of an

isolated Vo motor remains inhibited. Furthermore, the classic half-channel picture of proton

transport is gradually being updated. In the traditional view, one half-channel needed to be

dewetted before the opening of the other half-channel on the opposite side of the membrane.

This is being replaced by an alternate-access mechanism which is promoted by sidechain

re-orientations that prevent energetically expensive channel opening and closing.136

The soluble F1/V1 domains has been the focus of some of the longest possible MD

simulations,137 SMD simulations,138 and elastic models.139 These studies have revealed that

protein flexibility is crucial for reducing the energy barrier in proton pumping or ATP

hydrolysis-driven power-strokes in the rotor, which stationary structures cannot uncover.

And yet, major contention remains on whether the clockwise or counter-clockwise movement

of this motor is driven by the power-stokes using a local elastic storage unit or is it purely

driven by diffusion a.k.a a Brownian Ratchet.140 A unified view is emerging, wherein the

kinetics of the motor is controlled by the power-stroke, while the rotational direction is tuned

by a ratcheting mechanism.
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Integration of energy conversion from electronic to cell scales in

purple photosynthetic bacteria:

Integration of time and length scales across interlocking processes provides a primary chal-

lenge in the study of bioenergetic processes in photosynthesis, both computationally and

experimentally, as exemplified by studies of purple phototrophic bacteria.31,141,142 These dis-

parate length and time scales necessitate a combination of computational approaches for

determining structure and function at atomic, supra-molecular, organelle, and cell levels of

organization (Fig. 3). At the core of such integrative modeling approaches are atomic detail

structural models based upon experimental data on the supramolecular organization of the

bioenergetic domains. In the Rhodobacter sphaeroides the primary photosynthetic domain

is organized as the so-called chromatophore, a spherical pseudo-organelle of 60 nm diameter

comprising over a hundred proteins and up to around 3,000 bacteriochlorophylls (Bchls)

(Fig. 3B). A sequence of atomic detail structural models of increasing complexity were

built for the chromatophore143–146 based on atomic force microscopy,147,148 cryo-electron mi-

croscopy,145,149 crystallography,150–153 optical spectroscopy,144,154 mass spectroscopy,145 and

proteomics155–157 data. These structural models provide the basis for a corresponding set of

functional models for energy conversion.

Energy conversion in a photosynthetic domain such as the chromatophore begins with

the electronic excitation transfer (picoseconds), which can be described in an effective Hamil-

tonian formulation (Fig. 3 E, F).121,146,166 Exciton transfer to the RC initiates charge trans-

fer events (microseconds) through the so-called electron transfer chain.167–169 These two

quantum mechanical processes of excitation and electron transfer are followed by classical

diffusion processes (milliseconds) involving the migration of charge carriers between differ-

ent energy conversion proteins. As a case in point, charge carriers in the chromatophore

are cyt. c2 and quinone/quinol (Fig. 3G). Such diffusion processes are often rate limiting

to the overall energy conversion rate as is the case in the chromatophore.146,157,170,171 MD

simulations are particularly suitable to address these intermediary timescales where charge

migration can be addressed as a classical process;31 specifically, the spatial inhomogeneity

of the photosynthetic domain can be taken into account in terms of its electrostatic in-
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Figure 3: Determination of cell-scale observables31,141,142,146 from structural and functional
models of bioenergetic processes at atomic, protein, organelle, and cell levels. (A) Under low
light-growth, the purple phototrophic bacterium R. sphaeroides expresses a dense network
of hundreds of chromatophore vesicles for light-harvesting.142,158 (B) Each of these vesicles,
in turn, comprise hundreds of membrane-bound proteins,143–146,159 primarily, LH2160 (C;
green) and LH1-RC161 (red-blue), cyt. bc1 complex162 (purple), and ATP synthase10,163,164

(orange). The bacteriochlorophylls, represented in (D) as porphyrin rings, form an exci-
tation transfer network described in an effective Hamiltonian formulation,121 expressed in
terms of electronic eigenstates161 (E) and inter-pigment couplings143,146 (F). (G) Excitation
transfer is followed by the steps of charge carrier diffusion, proton-motive force generation,
and ATP synthesis described in a multi-scale model for energy conversion.31,142,146,158,159 (H)
The ATP synthesis rate per chromatophore (black)145,146 is computed as a function of illu-
mination along with the corresponding return-on-investment time (blue),141 i.e., the time for
a chromatophore to produce enough ATP to pay for a copy of itself. (I) A 130 million atom
MD simulation of the chromatophore31 determines the salinity dependence of the diffusion
of cyt. c2, a critical charge carrier in the energy conversion pathway. (J) Structural model
of a low-light adapted cell142 featuring 985 chromatophores (non-chromatophore inclusion
bodies absent) with size (1.6 µm) and the radial distribution of chromatophores correspond-
ing to cryoEM tomography data;165 the model comprises a total of 2,431,965 BChls. (K)
The doubling time of the bacterium (black line: computed, circles: experimental) is deter-
mined141 from the return-on-investment time in (H) in terms of the time required for the
entire cell to produce enough ATP, beyond base metabolism, to manufacture a whole new
cell, reproducing, in particular, the low-light saturation behavior typical of R. sphaeroides.
(L) The visualization techniques necessary for computational modeling through multiple
scales also enable outreach narratives to non-scientists about the oldest story of humanity:
how from light, life grows; shown is a still from the IMAX dome theater movie ‘Birth of
Planet Earth’.142
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fluence on charge carrier mobility. However, diffusion timescales typically remain beyond

the reach of brute force all-atom MD simulations and are instead addressed by MD-based

coarse-grained protocols such as atomic resolution Brownian Dynamics (ARBD).172,173 The

resulting charge gradient generated across the membrane as a consequence of the aforemen-

tioned charge migration processes drives the synthesis of ATP (tens of milliseconds) at the

ATP synthase,146,167 culminating the conversion of solar energy into stable chemical bonds

for later use.

An integrative computational model for energy conversion in a photosynthetic domain,

by necessity, needs to involve multiple mathematical formulations that overlap in-sequence,

i.e., with the output of each formulation being used as an input to the formulation at the next

scale.141,145,146 Through such overlapping formulations, primary observables such the ATP

production rate (Fig. 3H) can be computed as a function of external conditions such as light

intensity.146 The structural and functional model constructed in this manner guides MD

simulations, enabling inquiry of refinements to energy conversion dynamics. This includes

studying the effects of salinity on charge carrier diffusion.31 When integrated over a cell-scale

model incorporating a network of hundreds of chromatophores (Fig. 3J), the ATP production

rate allows the quantification of a performance metric for the entire photosynthetic cell as

an energy conversion device. his metric is known as the return-on-investment time (Fig. 3H)

defined as the time it takes for the cell (or a part thereof) to produce enough ATP to pay

for its initial construction cost in ATP. When adjusted for base metabolism, the return-on-

investment time thus computed predicts the light dependence of cell doubling times (Fig. 3K)

of R. sphaeroides over a wide range of light intensities.141

The integrative approach for the energy conversion modeling presented above is modular,

meaning that the mathematical formulations of rate kinetics at each scale can be refined

further by simulations of spatial detail (e.g., via MD) as computational resources become

abundant. Future challenges to computational studies of photosynthesis will involve both an

expansion of time and length scales –to the cell level and beyond– as well as the refinement

of each modular step in greater detail through simulation.
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Outlook

As computational resources become cheaper and more powerful as outlined in Fig. 1, it

is tempting to imagine that in order to achieve an integration of scales for bioenergetic

processes, all one needs is to simply... wait. Namely that, perhaps, if we wait long enough,

computational power would soon reach a scale that binds together the disparate scales of

energy conversion. Alas, there are two primary problems with such optimism. First, though

computational resources are becoming more abundant, the individual operation speed is no

longer increasing prominently,174 and, therefore, basic timesteps of integration–typically on

the order of a femtosecond for all-atom MD175 or an order of magnitude faster for CG-MD176

–and, therefore, the timescales accessible directly by simulation do not improve substantially.

Thus, the wide range of timescales for energy conversion, up to 12 orders of magnitude

from excitation transfer to ATP synthesis,141,146 will remain out of reach of integration by

brute force simulation alone. Second, sampling of rate-limiting steps, particularly combined

with the aforementioned difficulty of simulating slower processes, requires novel statistical

approaches that rely on more than increasing simulation volume alone. These two problems

combined imply that the future outlook for integrative simulations of bionergetic processes

will for the foreseeable future involve computational advances and analytical advances in

equal measure.

In recent years, there has been surge of interest in the study of active matter, espe-

cially in the exploration of living or artificial systems that use self-propulsion mechanisms

to navigate through a fluid. Particles capable of absorbing energy from an external source,

such as a laser beam, and subsequently utilizing that energy to induce motion through the

dissipation of thermal energy, serve as an example of active matter.177 Prominent examples

of such objects include diffusiophoretic colloidal Janus particles in a water-lutidine com-

posite,178 chemically active microstructures,179,180 thermophoretic microswimmers,181 and

magnetically responsive particles,182 among a plethora of others.183 Recently, such active

particles have found applications in phtosynthetic biotechnology.184 Cell organelles coated

with photosystem II complexes are powered by light shows propulsion accross the stomach

of the bowl-shaped vesicles. The oxygen produced by the water-splitting reaction by plant
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organelles in visible light and the photophoresis effect due to the transparent nature of the

supramolecular assembly are the main driving forces for bio-nanomotors. From a theoretical

physics perspective, active particles can be examples of inherently non-equilibrium systems.

The associated non-equilibrium attributes, such as the absence of detailed balance, inter-

relate with unconventional forms of interactions. To study these systems, the utilization

of coarse-grained models in order to reduce the enormous degrees of freedom is critically

important. These models must also describe key attributes such as sustained motion and

the interactions among particles and the surrounding solvent. One foundational model aptly

suited for this purpose is the active Brownian particle. This model integrates features from

both translational and rotational Brownian motion, complemented by the introduction of

a self-propulsive force acting upon the particle’s body, while disregarding hydrodynamic

interactions.185

Energy conversion in the chromatophore (Fig. 3) provides an exemplar of how combined

computational and analytical advances can bridge the disparate time and length scales suf-

ficiently to have predictive power for cell scale observables, such as the cell doubling time as

a function of growth light intensity.141 Similar efforts are underway for cyanobacterial186,187

and plant granal188 photosynthetic systems. Bolstered by the dawn of exascale supercom-

puters (example, Oak Ridge National Laboratory’s Frontier) that can perform up to 1018

floating point operations per second, molecular modeling is pushing the boundaries of cell-

scale simulations. This new horizon of analytical and computational advances stands to

broaden the range over which bioenergetic processes can be integrated. Such integration

would eventually enable rational design and optimization of bioenergy solutions189,190 as

well as assist biomedical approaches to respiratory diseases.191 Furthermore, energy access

is known to correlate with economic, environmental, and social benefits to human life,192

with biological systems surpassing comparable human technologies in efficiency at systems-

level.141 A renewable energy future will, therefore, benefit from advances in integrative

modeling where we are challenged to not simply explain the behavior of a single protein, a

single organelle, a single subsystem, or a single cell, but to optimize efficiency across many

scales and systems, including all the way to that of the humans interacting with them.
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Table 1. Prominent simulations of molecular bioenergetic systems over the last two decades: A chronological overview.

Year, System, Size Method (Software), Length Discovery Experimental verification

2002, LH-II complex, 87 000
atoms55

QM/MD (NAMD), ∼1ns

Constructed a polaron model that allowed for
the calculation of room temperature
absorbance spectra and circular dichroism of
LHII, which revealed de-localization of B850
BChl ring over 5 pigments.

LHII complex CD and Abs
spectra193

2004, F0-ATPase, 111714
atoms21

MD (NAMD) and mathematical
modeling, 10 ns

Combining all-atom MD simulation and
mathematical modeling to study how torque is
generated in F0.

Heteronuclear single quantum
coherence spectroscopy
(HSQC) spectroscopy194

2004, cyt. c oxidase aa3 type,
∼13000 atoms195

GRID - MD, 1.125 ns
Providing insights into proton pumping by
describing the hydrogen-bonded network and
identifying key water molecule sites.

FTIR196

2005, Photosynthetic in-
tegral proteins and mobile
carriers,‡ 96

MC

Observed organizational effects among
non-interacting particles that could be
significant in reducing binding site
obstructions.

N/A

2005, POPC bilayer with
Beta Carotenes, ∼15000
atoms197

MD (AMBER), 4 ns
Beta carotenes induce ordering effect on both
chains of POPC

NMR and EPR198,199

2006, PS II, 236161 atoms200 QM/MM (NAMD), 8ns

Calculated absorbance spectra, assigned PSII
chlorophyll/Pheo site energies, and
investigated the influence of thermal dynamic
fluctuations on quantum efficieny.

Site directed mutagenesis and
Spectroscopy201,202

2010, cyt. c - bc1 complex,
275000 atoms203

MD (NAMD), sub-nanosecond
(150 ps)

The first MD simulation on the cyt c-bc1
complex interaction. Identified important salt
bridges and hydrogen bonds between key
residues at the interface.

X-Ray crystallography204,205
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2011, Purple bacterial RC,
∼47000 atoms69

SMD (GROMACS), ∼10 ns

Provided evidence for a larger Dissociation
barrier for SQ− compared to neutral Q in QA

site of RC in contrast to their similar
thermodynamic affinities.

Double-flash kinetic
analysis206

2013, PS II, 1M atoms87 MD (AMBER), 10 ns
Proposed potential and relevant pathways of
water movement in and out of PSII complex
based on rms fluctuation analysis.

X-Ray crystallography207

2013, PS II and LHCII
particles in stacked grana
membranes,‡ 208

MC
Formation of PSII arrays as evidence for
co-existence of crystalline and fluid phases in
thylakoid grana.

Electron Microscopy and
Fluorescence induction209,210

2013, Complex III and IV in
POPC-CL membrane, 70000
beads211

Course Grain
(GROMACS/MARTINI), 490 µs

Identification of the favored interfaces of CLs
on the respiratory chain complex III (cyt. bc1).

CryoEM / EM212

2014, PS I in detergent belt,
∼1M atoms213

MD (NAMD), 40 or 200 ns
Lipid molecules play a role in stabilizing the
PS1 trimer, some lipids are crucial for
PsaL-mediated trimer stability.

X-Ray crystallography of
integral membrane
proteins214,215

2014, PS II RC, 580000
atoms29

QM/MM (GROMACS), 30ns
Investigating how protein dynamics affect
pigment site energies, influencing the
preference for excitation pathways in the RC.

X-ray crystallography,
transient absorption and 2D

electronic
spectroscopy207,216,217

2014, Complex I, ∼212000
atoms218

850 ns MD (NAMD) and 25 ps
QM/MM

Proposed that transient water chains create
efficient paths for proton transfer, providing
insights into long-range energy conversion in
redox-driven proton-pumps.

FTIR219

2015, LHCII monomer, 100
K atoms220

MD (GROMACS), 1 µs

Excitonic coupling strengths may be regulated
and correlated to structural features such as
N-terminus conformational disorder and
Neoxanthin bending.

EPR, X-ray
Crystallography221,222
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2015, PbRC, 94421 atoms50 MD (Anton), 11 µs
Proposed different wetting situation as the
reason for unidirectionality of charge transfer
between two quinone cofactors.

Spectroscopic data, The
construction of a simple

electronic device, a rectifier.
Use of a single organic

molecule223

2015, Complex I, ∼810000
and 870000 atoms224

MD (NAMD), QM/MM (QChem),
1.5 µs

Suggested that a distinctive interplay of
electrostatic and conformational changes
trigger proton pumping in complex I.

Electrochemistry experiments
(redox activity

measurement)225

2015, Plant and
Cyanobacterial thylakoid
membranes∼130 K atoms226

CG(GROMACS), 10 µs

Only nanoscale heterogeneities were deteceted
in thylakoid membranes the cyanobacterial
version of which, were shown to be thicker and
less fluid than those of plants owing to high
proportion of saturated tails.

N/A

2016, Purple bacterial cyt. c
oxidase A1 type,‡ 227

CpHMD (GROMACS), 20ns
(packing lipids) and 60 ns CpHMD

Conformational changes in specific Arginine
residues may modulate protonation state of
heme propionate residues that may be
implicated in proton pumping.

N/A

2016, complex 1, 101440
atoms228

QM/MD (MD (NAMD) and QM
calculations based on perturbed

matrix method), 250 ns

Developed an approach of energy gap usage for
the estimation of the electron transfer rate by
adding the polarizability effect.

Stark effect spectroscopy229

2016, Photosynthetic cyt. c2
- bc1 redox complex, 0.5 M
atoms127

MD/SMD and rigid body docking
(NAMD), 200 ns (150ns MD and

50ns SMD)

Proposed mechanisms for the reversible
binding interactions that mediate efficient
electron transfer between cyt c2 and bc1
complex including the formation of a lysine
molecular switch.

X-ray crystallography,
Voltammetry230

2017, PS II,‡ 88 CG (GROMACS), 60 µs

Differences exist in orientation between
membrane-embedded PSII oligomeric states
and in the mobility of photosynthetic cofactors
depending on their location and type.

X-Ray Crystallography
(B-factors)207
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2017, phosphoglycerate mu-
tase 1, ∼29000 atoms∗ 231

MD (Amber) and docking
(Autodock), 200 ns

Proposed how phosphorylation at tyrosine 26
enhances the binding of phosphoglycerate
mutase 1 (PGAM1) to its substrates.

N/A

2017, V1-ATPase, 4.9 M
atoms∗ 10

enhanced sampling and free energy
methods, MD (NAMD), 65 µs

Energy is harnessed at the subunit interfaces of
the rotor ring whose central stalk exhibits
mechanical properties suitable for rotation
kinetics and the observed millisecond timescale.

X-ray crystallography232

2018, Purple bacterial LH2
and LH3 pigment proteins,
∼160000 atoms233

MD and QM/MM (NAMD), 10ns
(LH2) and 20ns (LH3)

Faster excitation trasfer within and between
B820 and B800 rings in LH3 compared to LH2
rings.

N/A

2019, Purple Bacterial Chro-
matophore, 136 M atoms31

MD, QM, BD, CG (NAMD), 0.5 µs

Proteins influence membrane curvature
affecting light absorption, while the dynamics
of soluble carriers play a role in ATP
production’s energetic output.

AFM, Cryo-EM,
Spectroscopy145,234,235

2020, Complex I, 1 M
atoms20

MD (N/A) and free-energy
calculations, 9.4 µs

Redox switches within complex I, allosterically
couple the dynamics of the quinone binding
pocket to the site of NADH reduction.

EPR236

2022, Hexokinase 2 with dif-
ferent ligands∗,‡ 237

Docking (instaDock) and MD
(GROMACS), 100 ns

HK2 readily forms stable protein-ligand
complexes with both EGCG and quercitrin,
maintaining stability throughout the entire
simulation trajectory.

N/A

2022, V1-ATPase, 300 K
atoms75

MD (NAMD) and metadynamics
calculation, 6.7 µs

Multiple intermediates along rotatory catalysis
pathway of V1-ATPase.

Single molecule rotation
assays238,239

2023, F1-ATPase, 150 K
atoms76

MD (GROMACS) and Bias
exchange umbrella sampling, 4 µs

Nondissipative and kinetically fast progression
of the motor in the synthesis direction requires
a concerted conformational change.

N/A

∗ Entries with this indicator are simulated without any membrane. ‡ Atom number not reported for entries with this indicator.
Abbreviations: CL: cardiolipin; CD: circular dichroism; EGCG: epigallocatechin gallate; POPC: phosphatidylcholine; SQ: semiquinone.
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(18) Janosi, L.; Kosztin, I.; Damjanović, A. Theoretical prediction of spectral and optical properties of bacte-

riochlorophylls in thermally disordered LH2 antenna complexes. The Journal of chemical physics 2006,

125, 014903.

(19) Van Eerden, F. J.; Melo, M. N.; Frederix, P. W.; Periole, X.; Marrink, S. J. Exchange pathways of

plastoquinone and plastoquinol in the photosystem II complex. Nature communications 2017, 8, 15214.

(20) Gupta, C.; Khaniya, U.; Chan, C. K.; Dehez, F.; Shekhar, M.; Gunner, M.; Sazanov, L.; Chipot, C.;

Singharoy, A. Charge transfer and chemo-mechanical coupling in respiratory complex I. Journal of the

American Chemical Society 2020, 142, 9220–9230.

(21) Aksimentiev, A.; Balabin, I. A.; Fillingame, R. H.; Schulten, K. Insights into the Molecular Mechanism

of Rotation in the Fo sector of ATP Synthase. Biophys. J. 2004, 86, 1332–1344.

(22) Karplus, M.; McCammon, J. A. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 2002,

265, 654–652.

(23) Dror, R. O.; Dirks, R. M.; Grossman, J.; Xu, H.; Shaw, D. E. Biomolecular simulation: a computational

microscope for molecular biology. Annual review of biophysics 2012, 41, 429–452.

(24) Jones, D.; Allen, J. E.; Yang, Y.; Drew Bennett, W. F.; Gokhale, M.; Moshiri, N.; Rosing, T. S. Ac-

celerators for classical molecular dynamics simulations of biomolecules. Journal of chemical theory and

computation 2022, 18, 4047–4069.

(25) Stone, J. E.; Phillips, J. C.; Freddolino, P. L.; Hardy, D. J.; Trabuco, L. G.; Schulten, K. Accelerating

molecular modeling applications with graphics processors. Journal of computational chemistry 2007, 28,

2618–2640.

29https://doi.org/10.26434/chemrxiv-2023-zrsll ORCID: https://orcid.org/0000-0001-6620-969X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-zrsll
https://orcid.org/0000-0001-6620-969X
https://creativecommons.org/licenses/by-nc-nd/4.0/
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ulations of the trimeric major light-harvesting complex II. Physical Chemistry Chemical Physics 2021,

23, 7407–7417.

(57) Lischka, H.; Nachtigallova, D.; Aquino, A. J.; Szalay, P. G.; Plasser, F.; Machado, F. B.; Barbatti, M.

Multireference approaches for excited states of molecules. Chemical reviews 2018, 118, 7293–7361.

(58) Werner, H.-J.; Knowles, P. J. An efficient internally contracted multiconfiguration–reference configuration

interaction method. The Journal of chemical physics 1988, 89, 5803–5814.

(59) Goll, E.; Leininger, T.; Manby, F. R.; Mitrushchenkov, A.; Werner, H.-J.; Stoll, H. Local and density

fitting approximations within the short-range/long-range hybrid scheme: application to large non-bonded

complexes. Physical Chemistry Chemical Physics 2008, 10, 3353–3357.

32https://doi.org/10.26434/chemrxiv-2023-zrsll ORCID: https://orcid.org/0000-0001-6620-969X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-zrsll
https://orcid.org/0000-0001-6620-969X
https://creativecommons.org/licenses/by-nc-nd/4.0/
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(71) Boubeta, F. M.; Contest́ın Garćıa, R. M.; Lorenzo, E. N.; Boechi, L.; Estrin, D.; Sued, M.; Arrar, M.

Lessons learned about steered molecular dynamics simulations and free energy calculations. Chemical

biology & drug design 2019, 93, 1129–1138.

(72) Ozer, G.; Valeev, E. F.; Quirk, S.; Hernandez, R. Adaptive steered molecular dynamics of the long-distance

unfolding of neuropeptide Y. Journal of Chemical Theory and Computation 2010, 6, 3026–3038.

(73) Laio, A.; Parrinello, M. Escaping free-energy minima. Proceedings of the national academy of sciences

2002, 99, 12562–12566.

(74) Barducci, A.; Bonomi, M.; Parrinello, M. Metadynamics. Wiley Interdisciplinary Reviews: Computational

Molecular Science 2011, 1, 826–843.

(75) Shekhar, M.; Gupta, C.; Suzuki, K.; Chan, C. K.; Murata, T.; Singharoy, A. Revealing a hidden interme-

diate of rotatory catalysis with X-ray crystallography and Molecular simulations. ACS Central Science

2022, 8, 915–925.
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of Rhodobacter sphaeroides. J. Mol. Biol. 2005, 349, 948–960.

40https://doi.org/10.26434/chemrxiv-2023-zrsll ORCID: https://orcid.org/0000-0001-6620-969X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-zrsll
https://orcid.org/0000-0001-6620-969X
https://creativecommons.org/licenses/by-nc-nd/4.0/


(150) Koepke, J.; Hu, X.; Muenke, C.; Schulten, K.; Michel, H. The Crystal Structure of the Light Harvesting

Complex II (B800-850) from Rhodospirillum molischianum. Structure 1996, 4, 581–597.

(151) McDermott, G.; Prince, S. M.; Freer, A. A.; Hawthornthwaite-Lawless, A. M.; Papiz, M. Z.; Cogdell, R. J.;

Isaacs, N. W. Crystal structure of an integral membrane light-harvesting complex from photosynthetic

bacteria. Nature 1995, 374, 517–521.

(152) Papiz, M. Z.; Prince, S. M.; Howard, T.; Cogdell, R. J.; Isaacs, N. W. The structure and thermal motion

of the B800-850 LH2 complex from Rps. acidophila at 2.0 Å resolution and 100 K: New structural features
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(170) Lavergne, J.; Verméglio, A.; Joliot, P. In The Purple Phototrophic Bacteria; Hunter, C. N., Daldal, F.,

Thurnauer, M. C., Beatty, J. T., Eds.; Springer, 2009; pp 509–536.

(171) Niederman, R. A. Membrane development in purple photosynthetic bacteria in response to alterations in

light intensity and oxygen tension. Photosyn. Res. 2013, 116, 333–48.

(172) Scherf, M.; Scheffler, F.; Maffeo, C.; Kemper, U.; Ye, J.; Aksimentiev, A.; Seidel, R.; Reibetanz, U.

Trapping of protein cargo molecules inside DNA origami nanocages. Nanoscale 2022, 14, 18041–18050.

42https://doi.org/10.26434/chemrxiv-2023-zrsll ORCID: https://orcid.org/0000-0001-6620-969X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-zrsll
https://orcid.org/0000-0001-6620-969X
https://creativecommons.org/licenses/by-nc-nd/4.0/


(173) Maffeo, C.; Chou, H.-Y.; Aksimentiev, A. Single-molecule biophysics experiments in silico: Toward a

physical model of a replisome. Iscience 2022, 25, 104264.

(174) Theis, T. N.; Wong, H.-S. P. The end of moore’s law: A new beginning for information technology.

Computing in science & engineering 2017, 19, 41–50.

(175) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.;

Kale, L.; Schulten, K. Scalable molecular dynamics with NAMD. Journal of computational chemistry

2005, 26, 1781–1802.

(176) Souza, P. C.; Alessandri, R.; Barnoud, J.; Thallmair, S.; Faustino, I.; Grünewald, F.; Patmanidis, I.;
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major light-harvesting complex at 2.72 Å resolution. Nature 2004, 428, 287–292.

(223) Aviram, A.; Ratner, M. A. Molecular rectifiers. Chemical physics letters 1974, 29, 277–283.

(224) Sharma, V.; Belevich, G.; Gamiz-Hernandez, A. P.; Róg, T.; Vattulainen, I.; Verkhovskaya, M. L.; Wik-

ström, M.; Hummer, G.; Kaila, V. R. Redox-induced activation of the proton pump in the respiratory

complex I. Proceedings of the National Academy of Sciences 2015, 112, 11571–11576.

(225) Verkhovskaya, M.; Knuuti, J.; Wikström, M. Role of Ca2+ in structure and function of Complex I from

Escherichia coli. Biochimica et Biophysica Acta (BBA)-Bioenergetics 2011, 1807, 36–41.

(226) van Eerden, F. J.; de Jong, D. H.; de Vries, A. H.; Wassenaar, T. A.; Marrink, S. J. Characterization

of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations.

Biochimica et Biophysica Acta (BBA)-Biomembranes 2015, 1848, 1319–1330.

(227) Oliveira, A. S. F.; Campos, S. R.; Baptista, A. M.; Soares, C. M. Coupling between protonation and con-

formation in cytochrome c oxidase: Insights from constant-pH MD simulations. Biochimica et Biophysica

Acta (BBA)-Bioenergetics 2016, 1857, 759–771.

(228) Dinpajooh, M.; Martin, D. R.; Matyushov, D. V. Polarizability of the active site of cytochrome c reduces

the activation barrier for electron transfer. Scientific reports 2016, 6, 28152.

(229) Lockhart, D. J.; Boxer, S. G. Stark effect spectroscopy of Rhodobacter sphaeroides and Rhodopseu-

domonas viridis reaction centers. Proceedings of the National Academy of Sciences 1988, 85, 107–111.

(230) Battistuzzi, G.; Borsari, M.; Bortolotti, C. A.; Di Rocco, G.; Ranieri, A.; Sola, M. Effects of mutational

(Lys to Ala) surface charge changes on the redox properties of electrode-immobilized cytochrome c. The

Journal of Physical Chemistry B 2007, 111, 10281–10287.

47https://doi.org/10.26434/chemrxiv-2023-zrsll ORCID: https://orcid.org/0000-0001-6620-969X Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-zrsll
https://orcid.org/0000-0001-6620-969X
https://creativecommons.org/licenses/by-nc-nd/4.0/


(231) Wang, Y.; Cai, W.-S.; Chen, L.; Wang, G. Molecular dynamics simulation reveals how phosphorylation of

tyrosine 26 of phosphoglycerate mutase 1 upregulates glycolysis and promotes tumor growth. Oncotarget

2017, 8, 12093.

(232) Arai, S.; Saijo, S.; Suzuki, K.; Mizutani, K.; Kakinuma, Y.; Ishizuka-Katsura, Y.; Ohsawa, N.; Ter-

ada, T.; Shirouzu, M.; Yokoyama, S. et al. Rotation mechanism of Enterococcus hirae V1-ATPase based

on asymmetric crystal structures. Nature 2013, 493, 703–707.

(233) Mallus, M. I.; Shakya, Y.; Prajapati, J. D.; Kleinekathöfer, U. Environmental effects on the dynamics in
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