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Abstract

The identification of protein-reactive electrophilic compounds is critical to the de-

sign of new covalent modifier drugs, screening for toxic compounds, and the exclusion

of reactive compounds from high throughput screening. In this work, we employ tra-

ditional and graph machine learning algorithms to classify molecules being reactive

towards proteins or nonreactive. For training data, we built a new dataset, ProteinRe-

activeDB, comprised primarily of covalent and noncovalent inhibitors from DrugBank,

BindingDB, and CovalentInDB databases. To assess the transferability of the trained

models, we created a custom set of covalent and noncovalent inhibitors, which was

constructed from recent literature. Baseline models were developed using Morgan fin-

gerprints as training inputs, but they performed poorly when applied to compounds

outside the training set. We then trained various Graph Neural Networks (GNNs),

with the best GNN model achieving an Area Under the Receiver Operator Character-

istic (AUROC) curve of 0.84, precision of 0.92, and recall of 0.73. We also explore the

interpretability of these GNNs using Gradient Activation Mapping (GradCAM), which

shows regions of the molecules GNNs deem most relevant when making a prediction.
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These maps indicated that our trained models can identify electrophilic functional

groups in a molecule and classify molecules as protein-reactive based on their presence.

Introduction

Proteins can undergo a range of chemical reactions with endogenous and exogenous molecules.1–3

The amino acids cysteine, serine, lysine, threonine, and tyrosine can act as nucleophiles in

reactions with electrophilic compounds. The covalent linkage formed through these reactions

provides a more durable connection to the ligand than intermolecular interactions alone, so

these reactions are often used to inhibit or label proteins.4,5 These reactions typically occur

between the amino acid side chain and a reactive moiety of the molecule, referred to as the co-

valent “warhead.” Michael acceptors like acrylamides and α-haloacetamides commonly mod-

ify cysteine residues, while epoxides and lactones often target serine residues. In recent years,

many warheads have been identified, including alkynes, cyclopropanes, chloropyridines, and

benzaldehydes. The reactive warhead of a variety of covalent inhibitors is highlighted in

Figure 1. The number of types of covalent warheads is large and growing; a database of

covalent inhibitors (CovalentInDB) is organized into 63 different warhead categories.6 Addi-

tional protein-reactive electrophilic functional groups are still being identified.7
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Figure 1: Examples of protein-reactive inhibitors. The substructure that reacts with the
protein side chain (a.k.a., the warhead) is indicated in red.
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While covalent inhibitors have significant therapeutic uses, there are other instances

where it is important to detect protein reactivity because it is a liability in a specific appli-

cation. Protein-reactive compounds can have off-target activity due to promiscuous reactions

with other cellular components8 and can be metabolized at faster rates due to higher elec-

trophilicity.9 Likewise, the development of non-covalent inhibitors now routinely uses high-

throughput screening of the compounds in large chemical datasets to a protein target.10,11

Alternatively, generative AI methods are now being used to design new compounds optimized

to bind to a target.12,13 Both of these cases, protein-reactive compounds should generally

be excluded from the searches for non-covalent inhibitors. These applications would benefit

from an efficient, automatic approach for identifying protein-reactive compounds.

There have been several efforts to predict the reactivity of compounds towards proteins

using quantum chemistry.14,15 Some model the reaction of a specific covalent inhibitor with

its target,16,17 while others attempt to predict the intrinsic reactivity of a warhead to model

thiols.18–21 These limitations require 3D structures of the warheads to be constructed and

for quantum chemical calculations to be performed. Thio-Michael additions are a uniquely

challenging chemical reaction for conventional DFTmodels,22,23 and these methods have been

limited to narrow classes of warheads and are not amenable to automated high-throughput

screening.

One approach to identifying protein-reactive compounds would be to search for warhead

substructures in a molecule. The Pan-Assay INterference compoundS (PAINS) criteria in-

cludes some electrophile motifs because compounds that promiscuously modify proteins can

be false positives in high-throughput screening campaigns. Methods have been developed

to automatically check if a compound matches the criteria set for PAINS compounds, such

as the PAINSfilter24 set of SMARTS search strings. Although these strings are efficient

and well-defined, these filters are not entirely effective for detecting protein reactive com-

pounds; only 7% of the CovalentInDB are identified as PAINS compounds, so many modes

of protein reactivity are missed by these searches. The diversity of warheads means it is less
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practical to define search patterns for each of them individually. Further, searching for a

specific substructure ignores the reality that neighboring atoms in the molecule can amplify

or attenuate the reactivity of any of these groups; for example, certain acrylamides that

are normally non-reactive become potent covalent inhibitors of S6 kinase RSK2 if they are

β-substituted with cyano groups.25

A machine learning classifier could provide a more general approach for predicting protein

reactivity without requiring a researcher to define specific warhead substructures individu-

ally. These methods can leverage large quantities of data to define algorithms to classify

molecules or predict their properties. These methods require a method to encode the molec-

ular structure into a representation that is amenable to machine learning methods. Chemical

fingerprints are a popular input to ML algorithms.26–28 These fingerprints are vectors that

contain ordered elements encoding for physical, chemical, and structural properties. A widely

used class of chemical fingerprints is Extended Connectivity Fingerprints (ECFP),29 which

is based on the Morgan algorithm.30 This produces binary sequences of fixed length, where

a positive bit at a given position indicates the presence of a chemical substructure inside the

molecule. Morgan fingerprints have been successfully used as a molecular representation in

numerous chemical machine learning applications.27,31–33 Graph representations of molecules

are an alternative to these fingerprint methods.34 In these models, atoms are represented as

nodes of a graph and the bonds between them are represented as edges. Atomic and bond

properties can be added as features to the graph nodes and edges, respectively. This allows

extensive chemical data to be encoded in the graph. These graphs can be used as the inputs

to Graph Neural Networks,35 which can be trained for both classification and regression

tasks.34–36

GNNs have been used to predict some modes of protein-molecule reactions. For example,

Xenosite is a machine learning method that can predict if a compound can undergo a bioor-

ganic transformation like epoxidation, glutathione conjugation, or alkylation.37 A drawback

of this model is that it was trained using data from the Accelrys Metabolite Database, which
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cannot be distributed openly, so neither the model nor the training set are widely available.

Generally, an open and extensible model for protein reactivity will require the use of publicly

available datasets that can be extended as new compounds are synthesized and their modes

of inhibition are reported. In this paper, we use machine learning techniques to develop

a classifier to designate a molecule as being reactive towards proteins or non-reactive. We

construct a training dataset using publicly accessible databases and an external test set from

the recent literature.

Methods

The general workflow of the project is described in Figure 2. The methods developed in this

paper take the chemical structure of a molecule as its input and output a classification of the

molecule as being protein-reactive (positive class) or non-protein-reactive (negative class).

These methods are trained using machine learning methods from datasets of molecules that

are labeled as protein-reactive or non-reactive. A separate test set was curated to assess the

transferability of these models. The construction of the training and test sets are described

in the following sections. The training data and source code for all our models are deposited

on GitHub.38
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Figure 2: Schematics for the workflow of the ML protein reactivity classifiers. The models
are trained exclusively from sets of inhibitors in public databases of covalent and noncovalent
inhibitors. This labeled data is used to train models to classify molecules as being covalent
or non-covalent using GNN and fingerprint-based ML models.

Data - Training

For training, we have built a new dataset, ProteinReactiveDB. This dataset was constructed

from the data in three publicly available datasets: DrugBank,39 BindingDB,40 and Co-

valentInDB.6 The DrugBank is predominantly composed of drug molecules. The BindingDB

contains a broader set of molecules reported in the chemical literature. These two datasets

served as the bulk of the negative (non-protein-reactive) set of molecules in the training

set. The CovalentInDB is a database of inhibitors that have been determined to inhibit

their targets by covalently modifying them. This dataset served as the bulk of the positive

(protein-reactive) set of molecules in the training set.
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These molecules from these datasets were curated and combined into a dataset appropri-

ate for the available representations. All compounds containing inorganic components were

excluded (i.e., containing only the elements H, B, C, N, S, O, F, Cl, Br). The RDKit (version

2023.03.2) toolkit41 was used to convert the database entry into a molecular representation.

If this library failed to generate a structure for a compound, it was not included in the data

set.

An immediate challenge was that both the DrugBank and BindingDB contain some com-

pounds that are covalent modifiers, so an extensive manual effort was made to identify these

compounds and move them from the non-protein-reactive class training set to the protein-

reactive class. This included 88 compounds in the DrugBank database that were annotated

as DNA alkylating agents, insecticides, or broad-spectrum antibacterial compounds. Ad-

ditional compounds that were believed to be misannotated or were not suitable for the

representations used in these models (e.g., metal-containing compounds, antibodies, medical

adhesives, etc.) were removed from the training set entirely (n=291). Compounds annotated

as prodrugs were also excluded (n=64).

Compounds were removed from the protein-reactive set if there was experimental evidence

in the literature that they act through a covalent mechanism. All compounds that were

present in both the DrugBank and the CovalentInDB were categorized as protein-reactive.

We performed an additional search of the compounds in our non-protein-reactive set that

our first models classified as positive to determine if they act through a covalent mechanism.

For these compounds, we searched the Protein-Databank for crystallographic structures of

protein-ligand complexes and searched the macromolecular Crystallographic Information

File (mmCIF) file for a covalent linkage between the compounds and the proteins. Lastly, a

literature search was performed to identify any published studies where the enzyme kinetics

were analyzed to determine if the mode of inhibitor was reversible or irreversible. 162

compounds in the DrugBank and 285 compounds from the BindingDB dataset were added

to the covalent set through this process.
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In total, the training set used in this study were composed of 45,244 noncovalent inhibitors

and 6,259 covalent inhibitors. The dataset and lists of compounds included from the source

databases are included in our GitHub repository.38

Data - Testing

The models presented in this paper are evaluated using two test sets. The first test set

is generated by randomly extracting 10% of the compounds in ProteinReactiveDB using

stratified sampling. We will refer to this set as the Internal Test Set. A second test set

was constructed to test the transferability of these models to the types of compounds that

might be evaluated in a modern medicinal chemistry campaign. This set will be referred

to as the External Test Set, which is composed of covalent and non-covalent inhibitors that

were not present in the training set (Table 1). These compounds were manually curated

from the recent chemical literature, and are split into three groups: covalent inhibitors, first

disclosures, and nonreactive decoys.

Covalent Inhibitors (positive class)

This test is composed of compounds reported to be covalent inhibitors, mostly collected from

the recent literature highlighted on the weblog Covalent Modifiers.42 This set is divided into

subcategories of covalent warheads of inhibitors with a variety of covalent warheads, including

aldehyde, alkyne, aziridine, boronic acid, chloropyridine, epoxide, furan, alkenes, lactones,

nitrile, epoxides, furans, haloacetamides, isothiocyanate, lactones, nitriles, quinones, and

sulfonyl. Compounds that do not fall into any of those groups are combined into a group

called atypical covalent inhibitors.

First Disclosures (negative class)

The noncovalent component of the test set was collected from experimental drugs first dis-

closed 2021–2023, sourced from journal articles and DrugHunter.com.43 These compounds
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Table 1: Breakdown of the external test by class and by type of compounds

Class Type Count

Noncovalent First Disclosures 105
Nonreactive Decoys 49

Covalent aldehyde 5
alkyne 13
aziridine 6

chloropyridine 6
epoxides 18
furan 3

haloacetamides 11
isothiocyanates 1

lactone 27
nitrile 6
atypical 28
quinone 3
sulfonyl 47

thioketones 6
boronic 4
alkenes 175

were selected because were not present in the versions of the DrugBank and BindingDB

used in the training set but have the chemical features of modern drug candidates. None

of these compounds were reported to act through a covalent mechanism in their disclosures

and were manually inspected to ensure they did not contain a potential covalent warhead,

so the classifier should assign these as being not protein-reactive.
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Nonreactive Decoys (negative class)
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Figure 3: Examples of compounds from the non-reactive “decoy” set that contain a deac-
tivated warhead (red). These compounds have been determined experimentally determined
to react with nucleophiles at a slow rate.

One challenge for classifiers of covalent inhibitors is that functional groups that are protein-

reactive in some molecules can be deactivated by their chemical environment to the de-

gree that they will not be significantly reactive towards protein nucleophiles. For example,

endocyclic cyclohexadienones like piperitone,44 α-substituted acrylamides,,45,46 deactivated

sufonyl fluorides,47 and substituted aliphatic epoxides48,49 have been found to have limited

reactivity with protein nucleophiles. These present an additional challenge for classification,

because simple recognition of motifs like an epoxide or Michael acceptor would misclassify

these compounds as reactive. To test if our ML classifiers can discern when an electrophile

is deactivated, we constructed another test set of compounds that contain an electrophilic

moiety (e.g., epoxide or α-β-unsaturated ketone), but have been determined experimentally

to have slow or negligible rates of reaction with nucleophiles. This set of 49 compounds is
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evaluated separately from the external test set because these compounds served as a distinct

and more challenging test of the negative classification of these inhibitors.

Metrics

To measure the performance of our models, we employ common classification metrics such as

precision, recall, and area under receiver operating characteristic (AUROC). For the external

test set, we also review the accuracy of each prediction for each group. The classification

metrics are defined as:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Where TP, FP, FN, TN are true positive, false positive, false negative, and true negative

respectively. A model that classifies all molecules in the test set correctly will have both a

precision and recall of 1. A lower precision indicates that the model tends to falsely classify

molecules as being protein-reactive when they are not, while a lower recall indicates that the

model tends to classify molecules as being non-protein-reactive when they are. The ROC

curve is the plot of recall against false positive rate (FPR), defined as:

FPR =
FP

FP + TN
(3)

The integral of this curve provides the AUROC. This metric indicates the success of the

model for both positive and negative classification. A model with an AUROC of 1 indicates

that it classified all molecules in the test set correctly.
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Models and Features

Morgan Fingerprint Models

To establish a baseline of how effective conventional chemoinformatic methods are for this

classification task, we have trained models using Morgan fingerprints. These fingerprints will

have bits that indicate the absence or presence of a chemical fragment within a molecule. As

a result, they should in principle be capable of representing the presence of an electrophilic

group in a compound. We performed a grid hyperparameter search of logistic regression

(LR), support vector classifier (SVC),50 random forest (RF) classifier, histogram gradient

boosting (HGB),51 and multilayer perceptron (MLP)52 models in the Scikit-Learn package

(version 1.3).53 The input features of the molecules in this model were the Morgan finger-

print generated using RDKit. Models were evaluated with various bit lengths and radii. A

balanced loss function was used to train the LR, SVC, RF, and HGB classifiers. The full

details of the hyperparameter search are included in the Supporting Information.

Graph Neural Networks

The second type of classifier we investigated was Graph Neural Networks (GNNs), where

each molecule is represented as a graph where the nodes correspond to atoms and the edges

correspond to bonds connecting the atoms. In particular, graph convolutional layers were

employed. Following the definition of Kipf and Welling,54 a vanilla graph convolutional layer

can be defined as:

F l (X, A) = σ
(
D̃− 1

2 Ã D̃− 1
2F (l−1) (X, A)W l

)
(4)

Where A is the adjacency matrix, X is the node attributes of a graph with N nodes and

adjacency matrix A. The degree of matrix A is Dii =
∑

j Aij, F l is the convolutional

activations at the layer l, F0 = X, Ã = A + IN is the adjacency matrix with added

self-connections where IN is the identity matrix, W l are the trainable convolutional weights,
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D̃ii =
∑

j Ãij, and σ is the nonlinear activation function.

In this work, the GNNs were implemented using the Molgraph library55 (version 0.5.8),

which also provides a wrapper to RDKit descriptors that were used to generate atomic and

bond features. The atomic and bond features included common chemical descriptors such as

chemical symbol, total number of hydrogens, being a part of aromatic system, etc. A full list

of the atomic and bond features is presented in the Supporting Information. Additionally,

CDFT derived Fukui functions and electrophilicity indices were calculated and used as part

of the atomic features in some models. Molecules were converted into 3D structures using

RDKit and then the Fukui functions were calculated using AIMNET.56

Gradient Activation Mapping (GradCAM)

A drawback of neural networks is that it can be difficult to interpret how a classification

decision is reached. This can make it difficult to determine if the model is making a classi-

fication based on relevant, generalizable properties of the input molecules or on a spurious

correlation. As such, there has been an effort to understand their predictions better. In

particular, the field of computer vision has seen several developments to better understand

neural network predictions, with one of the more prominent techniques being gradient ac-

tivation mapping. Pope et al., have shown that GradCAM can be adapted to the graph

neural networks;57 first, we can calculate the class-specific weights for class c at layer l and

for feature k using the following expression:

αl,c
k =

1

N

N∑
n=1

∂yc

∂F l
k,n

(5)

Then, using Eqn. 4 , we can define Lc
Grad−CAM as the heatmap from layer l:

Lc
GradCAM [l, n] = ReLU(

∑
k

αl,c
k F l

k,n(X,A)) (6)

These values can be presented visually as a heatmap where the nodes are colored ac-
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cording to the magnitude of L for a node. In this work, the heatmaps were produced using

Lc
Grad−CAM [l, n] Avg, defined by

Lc
GradCAMAvg[n] =

1

L

L∑
l=1

Lc
GradCAM [l, n] (7)

Results and Discussion

Morgan Fingerprint Models

The performance of the models trained using the Morgan fingerprints of the inhibitors as

features is summarized in Table 2. The optimal models for all five classifiers performed

reasonably well on the internal test set, with AUCROCs ranging from 0.82 to 0.96; however,

the transferability of these models to the external test set was modest, with the AUCROCs

between 0.55 and 0.69. These models have very high precisions on the external test set,

ranging from 0.89 to 1, but have recalls that range from 0.11 to 0.51. This indicates that

these models are likely skewed towards the noncovalent majority class, and are prone to

classifying a candidate molecule as negative.

The HGB model had the best recall of any of these methods (0.51), although this still

indicates a high false negative rate. Further, it falsely identified 42% of the decoy set as

being protein-reactive, indicating this method has modest performance for negatively clas-

sifying molecules that contain motifs that are common in protein-reactive molecules but are

deactivated due to the broader structure of the molecule. The RF model is the opposite

extreme - it has a precision of 1.0 and a 0% false positive rate on the decoy set but had a

particularly poor recall on the external test set (0.11).

All these models showed significantly poorer performance on the external test set than

on the internal test set. In general, these models show that the approach of using Morgan

fingerprints has limited transferability to compounds outside the training set. A chemical

substructure indicated by a specific Morgan fingerprint bit can be connected to protein
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reactivity, but these models fail to generalize in cases where the specific substructure is lost

but protein-reactive activity is still present. This led us to explore more advanced methods

using molecular graphs.

Table 2: Metrics for optimal ML models for predicting protein reactivity using Morgan
fingerprint features for each classifier.

Model

Internal
Test

AUROC

External
Test

AUROC

External
Test

Precision

External
Test
Recall

Nonreactive
Decoy FPR

SVC 0.93 0.64 0.89 0.42 0.21
HGB 0.95 0.68 0.89 0.51 0.42
LR 0.96 0.69 0.93 0.45 0.15
RF 0.82 0.55 1.0 0.11 0
MLP 0.96 0.64 0.92 0.34 0.15

Graph Neural Network Models

Several variants of GNN were evaluated in this work. For each model, optimal hyperparam-

eters were found using a random search with 10-fold cross-validation. The full details of the

hyperparameter search and best hyperparameters for each type of model are described in the

Supporting Information. The performance of GNN models is summarized in Table 3. All

these GNNs performed better than the fingerprint models on classifications of compounds in

the external test set. Most significantly, these methods consistently had much higher recall

rates, which ranged from 0.68 to 0.82. These results suggest that GNNs are significantly

better at classifying protein-reactive compounds outside their training. These models all had

significant false positive rates on the decoy set (false positive rates that ranged from 0.28 to

0.61).

All graph models perform similarly for the internal test AUROC, although the Graph

Transformer (GT) model was the lowest. All models performed comparably on external

test set AUCROC, although there were some differences in the external test set recall rates,

with values ranging from 0.7 to 0.82. Models with higher recalls also had higher nonreactive

decoy FPRs, indicating these models are biased towards positive classification. For our
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immediate use, false positives are a greater concern than false negatives, so we have chosen

the Graph Convolutional via Initial residue and Identity mapping58 (GCNII) model based

on its lower FPR, while its internal testset AUROC is superior to the GT. The GCNII

model was developed to address issues with oversmoothing,58 which is an advantage in these

systems where a covalent substructure can span 3–4 bonds (edges) and deactivation of these

substructures involves even more distant atoms.

Table 3: Performance of various graph architectures, as measured by the internal and external
AUROC, and external precision and recall. Also displayed is the FPR on the nonreactive
decoy part of the external test set. The GCNII model discussed in the rest of the paper is
highlighted. The full details of each model are described in the Supporting Information.

Graph
Architecture

Internal
Test

AUROC

External
Test

AUROC

External
Test

Precision

External
Test
Recall

Nonreactive
Decoy FPR Ref.

GCN 0.96 0.84 0.90 0.71 0.49 54
GCNII 0.95 0.84 0.92 0.73 0.37 58
GraphSage 0.95 0.83 0.88 0.80 0.61 59
GAT 0.94 0.84 0.88 0.82 0.57 60
GatedGCN 0.96 0.83 0.90 0.70 0.39 61
GIN 0.97 0.81 0.90 0.72 0.49 62
GT 0.90 0.85 0.92 0.70 0.28 63
GMM 0.97 0.83 0.92 0.68 0.39 64
GATv2 0.93 0.82 0.88 0.76 0.59 65

Conceptual Density Functional Theory Features

Conceptual Density Functional Theory (CDFT) is often used to rationalize chemical reactiv-

ity.66–68 The Fukui function is one of the most significant CDFT concepts. The electrophilic

Fukui function (f+) describes the rate at which the electron density at a point in space will

change when an electron is added to the molecule. Electrophiles transfer electron density to

the molecule, so the points where this function has a high magnitude have a high propensity

for an electrophilic attack. The nucleophilic Fukui function (f−) is defined as the rate that

electron density at a point in space changes as an electron is removed from the molecule.

Nucleophiles transfer electron density from the molecule, so the points where this function
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has a high magnitude have a high propensity for nucleophilic attack. These functions can be

condensed onto individual atoms to define atomic Fukui functions by calculating the partial

atomic charges of the neutral, anionic, and cation states of a molecule and estimating the

Fukui functions by finite difference. These condensed Fukui functions can be multiplied by

the CDFT molecular electrophilicity to provide the positive (ω+) and negative (ω−) elec-

trophilicity indices, which have been noted as useful descriptors for the prediction of warhead

reactivity.69,70

CDFT features like the Fukui functions could be useful as atomic node features in GNNs

for predicting chemical reactivity, but traditionally, calculating these terms would require a

quantum chemical calculation. Isayev and coworkers have implemented CDFT predictions

into AIMNET, a message-passing neural network approach that approximates ωB97x/def2-

TZVPP minimal basis iterative stockholder charge analysis, without a quantum chemical

calculation.56 Using AIMNET, the nucleophilic and electrophilic Fukui functions can be

calculated from these data with a very small computational cost, making it practical to

include these charges as features in high-throughput GNN models.

To test whether GNNs with CDFT features perform better for predicting protein-

reactivity, we trained a second GNN classifier with AIMNET-calculated atomic charges,

positive Fukui function and negative condensed Fukui functions, and positive and negative

condensed electrophilicity indices functions included as atomic features. Calculation of the

AIMNET CDFT features requires the generation of a 3D structure, search for an optimal

conformation, optimization of the structure, and calculation of CDFT properties using a

message passing NN. The AIMNET NN currently only allows CDFT properties to be cal-

culated for neutral molecules and other failures in this workflow reduced the training set to

5875 covalent inhibitors and 43373 non-covalent inhibitors. For comparison, a second GNN

classifier was trained using this dataset but without the CDFT features. The metrics for

both models are presented in Table 4. Both GNNs used the same architecture as the GCNII

from Table 3.
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Table 4: External test data performance of GCNII architecture with and without CDFT
features,

Architecture

Internal
Test

AUROC

External
Test

AUROC

External
Test

Precision

External
Test
Recall

Nonreactive
Decoy FPR

Without CDFT 0.95 0.85 0.92 0.71 0.49
With CDFT 0.96 0.84 0.94 0.74 0.78

The CDFT model performed similarly to the non-CDFT model across classification met-

rics; however, it performed significantly worse on the decoy set (false positive rate of 0.78

compared to 0.49). This is surprising because CDFT properties like the Fukui function are

standard quantum chemical methods for quantifying the electrophilicity of an atom in a

molecule. Hughes et al. also investigated the utility of CDFT features in their Xenosite

GNN classifier for mechanisms of biomolecular reaction and metabolism and found that

they did not result in a large improvement.71 We suspect that the existing atomic features

defined based on the bonding connectivity are sufficient for the GNN to make predictions

of protein reactivity that are already near the limit of these graph architectures given the

limited training data, so CDFT features do not provide data that can improve upon this.

There are several drawbacks associated with including CDFT features vs our main GNN

classifier. Calculation of the AIMNET CDFT features requires the generation of a 3D struc-

ture, generation of an optimal conformation, optimization of the structure, and calculation

of CDFT properties. In contrast, all the features in our previous model can be calculated

from the 2D structure alone. Calculating a 3D structure is computationally intensive and oc-

casionally fails in an automated workflow, so adding these features significantly complicates

the workflow.

Gradient Activation Maps

Like with any neural network architecture, GNNs are not directly interpretable. As we have

constructed the positive and negative classes of our datasets from different sources, there is
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some risk that the trained network would make classifications based on characteristics that

are not generalizable. When adapted to graph inputs, GradCAM is capable of producing

graph heatmaps (see Eqn. 6). To assess whether the models developed here classify based

on generalizable criteria, we calculated the GradCAM heatmaps for a variety of molecules

(Table 5), allowing us to visualize which atoms in a molecule are contributing most to its

classification as a protein-reactive or non-protein-reactive molecule.
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Table 5: Selected examples of known covalent drugs, their classifier confidence score of being
of covalent as classified by GCNII model, and their gradient activation heatmaps

Name Heatmap Classifier Confidence,% Ref.

G12Si-5 87.5 72

NVP-DPP-728 78 73

Futibatinib 99.5 74

Dimethylfumarate 82 75

Ganfeborole 99.7 76

S(VI)–F 5i 99.9 47

G12Si-5 features a β-lactam warhead, which forms a covalent bond with the mutant

Serine-12 residue in KRAS G12S.77 The GNN correctly classifies it as being a covalent in-
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hibitor with a classifier confidence score of 87.5%. The heatmap highlights the β-lactam

warhead, indicating that classification is correctly based on the presence of this electrophile

in the molecule. Likewise, the covalent inhibitors NVP-DPP-728, dimethyl fumarate, futiba-

tinib, and ganfeborole are all correctly classified as being protein-reactive. The heatmaps

highlight their nitrile, acrylate, acrylamide, and cyclic borate warheads, respectively, indi-

cating that their positive classification was correctly based on the presence of these motifs.

Futibatinib is a notable example because it contains two nominally electrophilic groups:

an acrylamide and an alkyne. The heatmap indicates that the acrylamide group was the

most significant class for the positive classification. This is in keeping with the mode of

action of this inhibitor, which inhibits FGFR1–4 through the chemical modification a of

P-loop cysteine and the acrylamide, while the alkyne is unmodified.78 This demonstrates

that the GNN model can recognize that the acrylamide is activated while the reactivity of

the alkyne is muted by conjugation with two aromatic rings.

The sulfamoyl fluoride compound S(VI)–F 5i is another instance of a false-positive clas-

sification where the classifier categorizes the compound as protein-reactive with very high

confidence (99.9%). Although the compound contains a sulfonyl fluoride warhead, Gilbert

et al. found the sulfamoyl ring attenuates the reactivity to the point that its rate of mod-

ification of the CDK2 protein was negligible.47 The failure of the model in this case likely

reflects the large number of sulfonyl fluoride covalent modifiers and an insufficient number

of inert sulfonyl fluorides in the training set. This example indicates that these methods

have a significant risk of falsely classifying a compound as protein-reactive if it contains a

deactivated electrophile. Additional training data or atomic features may address this issue.

Limitations

Although the metrics of the GNN classifier are good for a chemical application of this type,

there are some areas where the performance is weaker. This is evident when the true and false

classifications of the external test set are grouped by type for the GCNII model (Figure 4)
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The compounds in the first disclosure set are non-covalent inhibitors that have been reported

in the literature recently, so they are not present in the training sets. The GCNII classifier is

generally effective in classifying them as non-covalent inhibitors but incorrectly classifies 7 of

the 97 molecules as being protein-reactive. The decoy compounds are a set of molecules that

contain electrophilic functional groups, but their reactivity has been determined to be very

slow or insignificant by experimental measurements. The classifier has mixed performance

here, indicating that it has some ability to exclude non-reactive compounds but frequently

misclassifies them.

The model shows good performance on compounds with a warhead featuring an unsat-

urated bond, which can be explained by them being well represented in training data –

CovalentInDB contains a large number of this type of Michael Acceptor warheads. It per-

formed poorer on “atypical” warhead portion of the test set, which includes novel functional

groups that have only recently been identified as protein reactive (e.g., isoxazoline-based

electrophiles79); less than half were classified correctly. This is likely due to very limited

training data and a lack of transferability. For several other groups, the model underper-

forms either because those groups are not well represented in the training data. There are

only 10 chloropyridines and 1 aziridine in the positive training set, so the network is likely

undertrained in recognizing when these structures will be protein-reactive. Further, both

epoxides and aziridines have triangular elements, which are not amenable to graph convolu-

tional methods.80 Hughes et al. introduced a special expoxide atomic feature and additional

training data to train their GCN Xenosite model to predict the reactivity of expoxides cor-

rectly, which may also be needed to improve the performance of this model on epoxides.71
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Figure 4: Performance of the GCNII model on the external test set by type of inhibitor.
Covalent inhibitors are subdivided by the warhead type

The reaction between a protein side chain and a molecule is often mediated by the en-

vironment inside the protein, such as neighboring charged residues and hydrogen bonding

networks inside the active site of an enzyme.81 While some covalent inhibitors are promis-

cuous,82,83 Kuljanin et al., found that there was a high level of selectivity for a particular

covalent inhibitor in whole-cell assays.84 Our categorization of inhibitors as either covalent

or noncovalent ignores these distinctions, so this classifier cannot predict if a compound will

covalently modify a specific protein, but rather it predicts whether the molecule could cova-

lently modify a protein provided there is a protein with a binding site that can accommodate

the ligand in an orientation that will put its warhead in contact with a reactive side chain.

Generally, the composition of our training set imposes significant limitations on our meth-

ods. All three source datasets are based on compounds where inhibition experiments have

been performed. Many highly electrophilic compounds would not be present in the training

set because they are too unstable to perform inhibition studies of. Further, novel covalent

warheads that employ unprecedented chemical motifs are still being identified. These struc-

tures are inherently absent from the training sets and these models have only limited abilities

to predict reactivity in compounds dissimilar to those in their training set. More generally,
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the labeling of the data is “noisy” because currently covalent inhibitors must be manually

separated from the non-covalent training sets and is not always apparent when an inhibitor

acts through a covalent mechanism85–87 The expansion of the training set and developments

to make these models more transferable to new chemical substrates may help address this

issue.

Protein-Reactive Molecules in the ChEMBL Database

Libraries of chemical structures are often used in high-throughput screening campaigns.

Generally, these screenings are intended to identify non-covalent inhibitors, so molecules

likely to react with proteins would create risks of off-target inhibition or toxicity. Generally,

protein- reactive molecules should be excluded from these searches. The ChEMBL database

is a widely used library of drug-like compounds collected from medicinal chemistry journals

and patents,88–90 but it is not currently separated into covalent and non-covalent inhibitors.

This led us to apply the GNN classifier developed in this work to the ChEMBL 33

database to identify how many potentially protein-reactive molecules are in this set. The

GNN classifier developed in the previous section was used with a threshold of 0.9 to minimize

false positives. 5.1% of the ChEMBL database was flagged as potentially being protein-

reactive by these criteria. Eight examples are presented in Table 6. These compounds

were confirmed to be covalent-modifier inhibitors through a literature search. Researchers

using the ChEMBL database to search for non-covalent inhibitors may consider testing if

the compounds are protein-reactive using this classifier to exclude these molecules from the

search because there is a risk that they will react with a protein other than the target.
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Table 6: Examples of compounds in the ChEMBL database that were correctly identified as
being protein-reactive. The warhead is highlighted in red. Compounds were selected using
a classifier score threshold of 0.9. The classifier score and the literature reference providing
evidence of a covalent mode of inhibition are provided.

ChEMBL ID Chemical Structure Classifier Score, % Ref.

ChEMBL8796

N

H
N

N

O 99.7 91

ChEMBL17428
Cl F

O

O
O

S

90.0 92

ChEMBL4751575 N

N
H

N
H

N

N

O

O

S

98 93

ChEMBL2086469

Br

H
N

O 99.5 94

ChEMBL4116142

B

Br

F

NH2

OH
O

O

99.5 95

ChEMBL4435627

F
O

O

S

S

99.9 96

ChEMBL4303189

NH2

N

N

N

N

N

O

O

O

99.9 97

ChEMBL144547

Br

O

OS

96.7 98

Currently, protein-reactive compounds are often identified by using PAINS criteria. These
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have been implemented by defining SMARTS patterns99 that will match specific chemical

substructures within molecules. Many of these PAINS patterns correspond to electrophilic

groups that would be chemically unstable or react promiscuously with proteins. We find

that the compounds identified by our classifier are generally distinct from those identified as

PAINS compounds, with an overlap coefficient of only 0.065 for compounds in the ChEMBL

dataset. This suggests that the PAINS patterns currently in use would not detect a large

fraction of protein-reactive compounds.

Conclusions

Machine learning methods for predicting if a molecule is protein-reactive were developed.

A new dataset, ProteinReactiveDB was constructed from public datasets of molecular in-

hibitors. These data were used to train classifiers to designate a molecule as being protein-

reactive or not protein reactive. To test the transferability of these models, an external

test set was constructed from compounds that are not present in these sets, as well as a

non-reactive decoy test set of compounds that contain functional groups that can be protein-

reactive but are not reactive in the chemical context of that molecule.

Conventional ML methods using Morgan fingerprints as features had limited transfer-

ability and performed poorly in identifying protein-reactive molecules in the external test

set. The HGB classifier was the best-performing model of this type, with an AUCROC of

0.95 on the internal test set but degraded to 0.68 on the external test set. The primary

limitation of these models is a high false negative rate; the HGB model had a precision 0.89

but a recall of only 0.51 for compounds in the external test set.

The GNNs showed improved performance over the models based on Morgan fingerprints,

with GCNII model performing the best across most metrics. This model had an AUCROC

of 0.95 for the internal test set and 0.84 for the external test set. Notably, the recall of these

models was much improved. Analysis of the GNN using the gradient activation map indicates
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that these models successfully identify the relevant reactive regions of these inhibitors and

can distinguish electrophilic groups that are made less electrophilic by their environment.

These models were effective using only basic atomic and bond properties as features and

adding more sophisticated CDFT properties did not provide a model that was systematically

improved. Analysis of the GradCAM heatmaps showed that these models can successfully

identify the electrophilic warhead of the compound, indicating the classification being made

based on chemically sensible criteria.

The GNNmodels have a small but significant false-positive rate, so when these are applied

to large databases, there will be a significant number of compounds incorrectly classified as

protein-reactive. These models also struggle with the “decoy” test set of compounds that

contain similar functional groups as covalent inhibitors but are not sufficiently reactive to

be considered a practical covalent inhibitor. This is generally more challenging because it

requires that the degree of electrophilicity is estimated rather the just the presence or absence

of a reactive motif. Likewise, these models had limited success in identifying protein-reactive

compounds with newly developed warheads that are not well-represented in the training set.

Despite these limitations, this study demonstrates the remarkable ability of GNNs to

learn to recognize reactive chemical substructures based exclusively on the classification

of compounds as covalent and noncovalent inhibitors. This suggests that the substantial

libraries of covalent and non-covalent inhibitors are an effective training set for machine

perception of electrophilicity. Currently, there are only a modest number of experimental

chemical datasets that have the quality and extent that is suitable for machine learning,

so the success of these models using these data opens new possibilities in chemical reaction

prediction.
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Data Availability

The ProteinReactiveDB, our test set, and our complete code for both the fingerprint and

graph models are all distributed on our GitHub repository: https://github.com/RowleyGroup/covalent-

classifier.
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