
1 
 

ROBERT: Bridging the Gap between Machine Learning and Chemistry 

David Dalmau, Juan V. Alegre-Requena* 

Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad 

de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain. 

*Correspondence: jv.alegre@csic.es 

 

ABSTRACT 

Beyond addressing technological demands, the integration of machine learning (ML) into human societies has 

also promoted sustainability through the adoption of digitalized protocols. Despite these advantages and the 

abundance of available toolkits, a substantial implementation gap is preventing the widespread incorporation of 

ML protocols into the computational and experimental chemistry communities. In this work, we introduce 

ROBERT, a software carefully crafted to make ML more accessible to chemists of all programming skill levels, 

while achieving results comparable to those of field experts. We conducted benchmarking using six recent ML 

studies in chemistry containing 18–4,149 entries. Furthermore, we demonstrated the program’s ability to initiate 

workflows directly from SMILES strings, which simplifies the generation of ML predictors for common chemistry 

problems. To assess ROBERT’s practicality in real-life scenarios, we employed it to discover new luminescent 

Pd complexes with a modest dataset of 23 points, a frequently encountered scenario in experimental studies. 

 

INTRODUCTION 

The world is witnessing a growing interest in applying machine learning (ML) to everyday tasks, primarily driven 

by substantial savings in time, effort, and resources. Its integration not only fulfills technological needs but also 

fosters sustainability through the adoption of digitalized procedures, yielding important benefits for a more 

environmentally conscious future. In particular, the integration of ML in chemistry has opened up new avenues 

for exploring chemical space and predicting properties of molecules and reaction outcomes. This has led to 

significant advances in fields such as drug discovery,1–5 materials science,6–9 chemical synthesis,10–17 and 

catalyst discovery,18–24 among others. 
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Automated ML workflows in chemistry have also become increasingly popular, enabling researchers to predict 

outcomes efficiently and accurately.25–28 Numerous packages and tools are available, including molSimplify,29 

pycaret,30 ChemML,31 Chemprop,32 DeepChem,33 Chainer Chemistry,34 Lazy Predict,35 PREFER,36 and 

PyChemFlow37. However, despite the increasing interest in this field, there is a vast community of chemists that 

possess little experience in cheminformatics and find these ML tools impossible to include as part of their 

research.  

Another major problem that chemical ML faces is the lack of reproducibility and transparency of the studies in 

this field.38 Despite prior attempts to establish quality standards, there is an unexpectedly high rate of 

publications that lack information regarding the database used, the model parameters, or the source code.39 

The problem extends further as there are no standard protocols for most ML techniques, causing that multiple 

groups use different code and workflows to carry out the same tasks.  

All these arguments stress that there is a need for a program in chemical ML that produces expert-quality results 

and grants easy use for researchers independently on their programming experience, while meeting strict 

reproducibility and transparency standards. In this work, we present ROBERT, a free and open-source software 

that performs automated ML workflows particularly designed for supervised regression and classification 

problems in chemistry. ROBERT automates protocols commonly conducted in chemical ML (Figure 1) and 

generates results directly from a CSV file with a single command, yielding performance comparable to that 

achieved by experts in the field. 

 

Figure 1. ROBERT automated protocols and two examples of common chemical problems. 
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RESULTS 

Overview of ROBERT 

ROBERT is a Python program designed to meet the demands of predictive ML that many members of the 

computational and experimental chemistry communities have, especially those who lack experience in this field. 

The software can be used to create predictive models for supervised regression and classification problems 

related to chemistry, such as experimental yield and selectivity, activation barriers calculated with density 

functional theory (DFT), and luminescent properties, among others. Using simple databases as starting points, 

ROBERT allows users with limited or no ML expertise to generate expert-level results within timeframes that 

allow its integration into modern research workflows. 

The installation of this toolkit is performed using conda, taking less than two minutes to set up from scratch on 

a pool of nine testers with various operating systems and different levels of expertise in Python (Table S1). 

ROBERT then initiates workflows from CSV databases that contain the target values (y values) along with either 

X values or SMILES strings of compounds (Figure 2, top). In the second case, the SMILES strings undergo an 

AQME 40 workflow to automatically generate atomic and molecular descriptors, which are then used as X values.  

 

Figure 2. Overview of ROBERT: inputs required, how to run the program, and outputs generated.  
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The user only needs to execute a single command line to couple multiple protocols, including data curation, 

scikit-learn-based model screening,41,42 assessment of predictive ability, and predictor generation (Figure 2, 

middle). The resulting models can be readily used to predict the y values of new data points. The program also 

provides feature importance analyses, enabling users to identify the most influential parameters affecting the 

target values and facilitating the identification of data trends (Figure 2, bottom). Additionally, the outcomes are 

supplemented with an outlier detector, allowing chemists to recognize potential inaccuracies associated with 

data flaws, such as experimental measurement errors or imprecise computational calculations. Different ready-

to-use examples are accessible in our online documentation,43 and a comprehensive explanation of the 

protocols performed in each module is included in the Robert modules section of the ESI. 

ROBERT incorporates a range of innovative features specifically designed for challenges in chemical ML. For 

instance, the program generates a comprehensive report in PDF format that assesses the reliability of the 

resulting models’ predictive capabilities, extending beyond conventional metrics such as coefficient of 

determination (R2), mean absolute error (MAE), and root mean squared error (RMSE). This is particularly 

valuable for researchers with limited experience in the field, as these metrics may not accurately reflect the 

models’ predictive performance. The software also performs end-to-end workflows that originate from 

databases of SMILES strings, including the generation of molecular and atomic descriptors. This functionality 

offers automated discovery workflows to both experimental and computational chemists directly from routine 

laboratory data. 

This toolkit also seeks to enhance reproducibility and transparency of chemical ML protocols, addressing two 

long-standing concerns within the scientific community working in this field when publishing in peer-reviewed 

journals. Multiple authors have emphasized the critical need to establish and enforce standards in this regard38 

since, currently, a significant proportion of publications are challenging or even impossible to replicate.39 The 

generated ROBERT_report.pdf files contain a reproducibility section that guides authors on which files they 

should upload as supporting information and provides other researchers with the exact programs, versions and 

commands necessary to replicate the results (Figure 2, bottom). Furthermore, the PDF reports contain 

comprehensive information regarding the ML models employed and other pertinent details regarding ROBERT 

protocols, including the data partition scheme and the type of ML problem. 

When following the provided instructions, the results starting from databases of descriptors were correctly 

reproduced by the nine program testers across multiple operating systems.44 When repeating end-to-end 
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workflows starting from SMILES strings, it may not be possible to exactly reproduce the results due to subtle 

changes in xTB optimized geometries. Nevertheless, the resulting ROBERT scores and model accuracies are 

very similar between different ROBERT runs (Table S4). In such cases, the PDF report recommends that 

authors upload the descriptor database created (i.e., AQME-ROBERT_FILENAME.csv) to facilitate the 

reproduction of results by other researchers. 

 

ROBERT’s Performance in Real Examples 

We ensured that the program is capable of producing publication-quality results by comparing its outcomes with 

examples from recent literature in chemical ML, spanning various areas such as catalysis and photophysics. 

This benchmarking required only a single initial CSV database per example, either downloaded from the 

manuscripts or obtained directly from the authors. Despite the diversity of conditions included in the 

benchmarking, the command line used in ROBERT remained identical in all cases (i.e., python -m robert --y 

VALUE --csv_name FILENAME [--ARG], see section Benchmarking with Six Examples in the ESI). To increase 

the complexity of the challenge, the examples included models designed by research groups that are highly 

respected in the field, such as the Liu,45 Doyle,46 Sunoj,47 Kulik,48 Aspuru-Guzik and Balcells,49 and Ess50 

groups. We also introduced other parameters to make the benchmarking more demanding, including a wide 

and realistic range of data points spanning more than two orders of magnitude (from 18 to 4149 data points), 

the presence of different ML algorithms, and the inclusion of both regression and classification supervised 

problems.  

The results demonstrated that ROBERT performs similarly to experts in the field in three cases (–1.9%, +0.9% 

and +0.3% scaled error for examples C, D and E, respectively), while achieving lower errors in the other 

instances (–3.3%, –7.0% and –4.1% for examples A, B and F, respectively) (Figure 3 and Table S5). 

Furthermore, the exhaustive algorithm screening conducted by ROBERT led to models that employed similar 

training sizes (±10% of the data) in five of the examples (B-F). Another advantage of the program is its 

permutation feature importance (PFI) filter, which generates simpler and more interpretable protocols. In five 

examples, ROBERT models contained fewer descriptors than the original examples, with some noteworthy 

reductions, such as in examples A (from three to one descriptor), C (from 101 to two), and E (from 135 to 32). 

Despite the various protocols integrated into the workflows, the execution times on eight processors ranged 
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from less than a minute to a few hours (Figure 3). These execution times make it feasible to run typical ROBERT 

processes on personal computers. 

 

Figure 3. Benchmarking of scaled errors (RMSE or MAE, see the ESI for more details) obtained with ROBERT against six 

relevant examples from the chemical ML literature, along with the execution time required when using eight processors. 

Furthermore, the criteria used in ROBERT scores and the scores obtained for the six examples are also provided. 

 

Next, we pondered whether conventional metrics employed for evaluating ML algorithms, such as R2, MAE, and 

RMSE, sufficed for creating a versatile, general-purpose tool. While experienced ML users can assess whether 

an ML workflow has yielded favorable results for valid reasons, inexperienced users may encounter difficulties 

in gauging the reliability of its predictive proficiency. It is widely recognized that ML algorithms can exhibit good 

metrics in the validation set while harboring questionable predictive ability. For example, a user might assume 

that a model with good metrics is proficient at prediction, but that very model could yield comparably low errors 

when the y values are shuffled51 or when using random numbers as descriptors.52 

For this reason, we have included a section in the PDF files generated by the program that contains ROBERT 

scores. The ROBERT score is a rating out of ten, designed to offer users insights into the predictive capabilities 

of the protocols selected by ROBERT. We attempted to rank the models following guidelines in line with modern 
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ML research38 which encompass factors such as the correlation between predictions and measurements, 

human interpretability, error distribution, sensitivity to features, and avoidance of overfitting and underfitting 

(Figure 3 and section ROBERT Score of the ESI). Across the six examples examined, the scores ranged from 

seven to ten, indicating varying degrees of predictive ability from moderate to strong. 

 

Workflows from SMILES Strings 

After assessing ROBERT’s capability to generate results of a quality comparable to experts in chemical ML, we 

aimed to advance the program’s implementation in real-life scenarios. One significant challenge that chemists 

often face when integrating ML into their work routines is the limited experience in creating useful databases. 

This is important because choosing the right descriptors is much more crucial than including many irrelevant 

ones in the database. ROBERT introduces an innovative workflow enabling users to generate meaningful 

descriptors from SMILES strings.53 This 1D representation type has gained popularity in the field of chemical 

ML and is readily available in most chemical databases or easily generated using chemical drawing software 

such as ChemDraw.54 Using AQME workflows,40 the program can produce over 200 Boltzmann-weighted 

descriptors with methods significantly faster than DFT. These workflows include RDKit55 conformer samplings 

and xTB56 geometry optimizations, followed by the generation of descriptors with RDKit, xTB and DBSTEP.57 

The resulting descriptors encompass electronic and steric properties and can be calculated for the entire 

molecule and for specific relevant atoms. After the PFI filter, only the most influencing descriptors remain. 

We tested the SMILES-to-predictions workflow in two examples from fields that are particularly interesting for 

ML predictions: property calculation and catalysis. First, we employed ROBERT to create a predictor for the 

solubility of organic molecules in water. To do this, we accessed the 1124 entries of the ESOL database, which 

is available in the supporting information of the corresponding publication,58 and executed the command line 

shown in Figure 4A to generate molecular descriptors. Using eight processors, the predictor was ready in 

approximately three hours. The resulting multivariate lineal (MVL) model used 80% training size and 47 

descriptors, and can accurately predict the solubility of new organic molecules (ROBERT score of 10). 

Furthermore, the generated PDF report contains valuable information that can aid in the rational design of 

solutes. This includes feature importance analysis to understand the key molecular properties influencing 

solubility and outlier analysis to identify potential measurement errors, among other parameters. 
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Figure 4. SMILES workflows used in aqueous solubility (A) and activation energy (B) predictions. 

 

Subsequently, we employed ROBERT to predict the activation barriers of hydrogenations using different 

Vaskas’ catalysts (example E from Figure 3).49 In this case, the database contained 1901 SMILES strings of the 

catalyst-substrate complexes displayed in Figure 4B. We executed the command line depicted in the figure 

using 16 processors and the predictor was generated within nine hours. In this case, the optimal model was a 

neural network (NN) that used 80% training size and 19 descriptors. This algorithm exhibited robust predictive 

performance (ROBERT score of 10) and is ready for inclusion within a catalyst discovery workflow, where users 

can input SMILES representation of new catalyst candidates. It’s noteworthy that in this example, ROBERT 

incorporated atomic properties of the Ir metal center. This feature enables the addition of relevant local 

electronic and steric environments alongside the default molecular properties.  

Overall, these findings indicate that employing non-DFT descriptors can yield highly predictive models while 

utilizing a reasonable number of descriptors (47 and 19 descriptors for 1124 and 1901 entries, respectively). 

The use of these cost-effective descriptors enables ROBERT to generate predictors in timeframes that result 

suitable for integrating ML protocols into real-life research workflows. Even in the two examples involving over 

1,000 SMILES entries, the predictors were generated in just three and nine hours. 
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Data-driven Discovery of New Pd Luminescent Probes 

We then decided to focus on a specific research line within our group, which involves the discovery of Pd-based 

emitters.59 The synthesis and design of luminescent compounds have experienced significant growth and 

recognition in recent years, with applications spanning diverse areas such as sensors, catalysts, biomarkers 

and light-emitting devices.60 However, Pd exhibits poor photophysical properties compared to other transition 

metals due to readily available non-radiative relaxation pathways. In our previous studies,59,61–63 we were only 

able to synthesize a very limited number of oxazolone-Pd probes with good luminescence using our chemical 

intuition, as there were no clear trends in the results. Given that only five structural modifications resulted in 

quantum yields (QYs) above 10% (1a-e, Figure 5A), our objective was to employ ROBERT for the identification 

of new Pd complexes with QY values exceeding this threshold. 

First, we compiled a dataset of molecules in ChemDraw containing all the oxazolone-Pd complexes reported in 

our previous studies, albeit this database was still limited to 20 entries. Next, we generated SMILES strings of 

the compounds within minutes and executed ROBERT using one command line. The automated workflow 

generated molecular descriptors, as well as atomic features for the Pd centers. One of ROBERT’s unique 

procedures is to include an evaluation of the predictive capability of the models at the beginning of the PDF 

report, quantified as the ROBERT score. With the initial 20 data points, the model exhibited weak performance, 

primarily attributed to an imbalance resulting from the limited number of data points in the region where the QY 

exceeded 10% (ROBERT score 5, Figure S9, left). 

To address this issue, we decided to compensate the dataset with three additional molecules that were chosen 

for their rapid synthetic availability, with logical human decisions guiding the selection process (Figure S9, 

middle). For instance, we anticipated that adding a Me group in the para position of a Py ligand should maintain 

the favorable QY observed in points with more than 10% QY. Subsequently, we reran ROBERT with the 

expanded database of 23 points and observed a significant improvement in the ROBERT score, reaching 7, 

which represents a decent level of predictive ability for that dataset size (Figure 5B, top, and Figure S9, right).  
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Figure 5. (A) Previously reported examples of oxazolone-Pd complexes with QY higher than 10%. (B) Top: results of the 

ML predictor model. Middle: ligands and oxazolone cores used in the screening. Bottom: experimental validation of 

predictions. NHC = 1,3-dimesityl-1H-imidazol-3-ium-2-ide. TFA = trifluoroacetate. 

 

We then initiated the data-driven discovery of Pd probes, where the candidates featured structural modifications 

whose effects could not be reliably determined using human chemical intuition. The modifications were driven 

by the availability of ligands and oxazolone cores in our laboratory (Figure 5B, middle), which is arguably one 

of the most common practices used to expand substrate scopes in experimental chemistry studies. This 

combinatorial process generated 15 candidates with entirely unknown QYs (Figure S8). We used the SMILES 

strings of these new 15 compounds to generate descriptors and predict QY, resulting in four predictions (1f-i) 

with QY values exceeding 10%. Subsequently, we conducted experimental measurements of the QY for these 

positively predicted candidates, and also assessed the QY of a negative result (1j) for further experimental 

validation. Despite the limited number of data points in the initial training database, the predictor showed 

promising results, with four out of the five measured QYs yielding the expected range (80% accuracy, Figure 

5B, bottom). 
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This digitalized approach enabled us to discover three new luminescent emitters with QYs exceeding our 10% 

threshold (1f, 1h and 1i) from a pool of over 15 potential candidates while conducting a minimal number of 

experiments. Finding three new probes marks a significant progress in the field of oxazolone-Pd-based emitters, 

especially considering that only five such examples were previously known. These positive outcomes highlight 

the potential of ROBERT to facilitate data-driven approaches, even in situations with limited available data. 

 

CONCLUSION 

ROBERT has been designed to make ML more accessible to chemists, irrespective of their programming 

expertise, while producing results comparable to those achieved by experts in the field with just one command 

line. Another primary objective of ROBERT is to address the long-standing issues of reproducibility and 

transparency that have plagued chemical ML. Upon executing the program, users receive a comprehensive 

PDF report evaluating the reliability of the generated models, accompanied by a step-by-step guide for 

replicating the outcomes. 

To validate the effectiveness of ROBERT, we conducted benchmarking using six recent studies in chemical 

ML. These examples spanned a wide spectrum of databases, from modest datasets with just 18 entries to 

extensive ones including more than 4,000 entries. The results demonstrated ROBERT’s capacity to produce 

results on par with domain experts, all with the simplicity of a single command line. 

Furthermore, this software can initiate workflows directly from SMILES strings, bypassing complications tied to 

database generation and simplifying the generation of ML predictors for chemistry problems. We illustrated how 

databases containing only SMILES representations and target outcomes can produce precise predictions for 

properties and reactivity. 

Lastly, we sought to evaluate ROBERT’s practicality in real-life scenarios. To this end, we employed the 

program for discovering new luminescent Pd complexes. Starting with a rather limited dataset of only 23 data 

points, a situation frequently encountered in experimental studies, ROBERT demonstrated its utility by 

proposing several luminescent emitters from a pool of potential candidates. 
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DATA AND CODE AVAILABILITY 

The ROBERT program is freely available on GitHub (https://github.com/jvalegre/robert), along with 

comprehensive documentation provided on Read the Docs (https://robert.readthedocs.io) and hands-on 

tutorials on YouTube (https://www.youtube.com/@thealegregroup4964). All the ROBERT PDF reports and 

CSV databases used in the examples from the paper are provided sorted in folders along with the ESI. These 

PDF reports encompass detailed instructions for replicating the results (Reproducibility section), information 

about the models (Transparency section), ROBERT scores, R2, MAE and RMSE metrics of all datasets 

(ROBERT score section), feature importance, outlier analysis, and other relevant data (Predict section). 

Additionally, all the raw data containing the outputs of the ROBERT jobs can be accessed on Zenodo (DOI: 

10.5281/zenodo.10057934). 
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