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Abstract

Numerous researchers have documented a notable enhancement in water flow through nanotubes
While modelling, these researchers typically treated the CNTs with rigid walls. The flow rates of
water within carbon nanotubes (CNTs) are significantly influenced by the nanoconfined density,
viscosity and the slip length. Despite considering substantial slip effects, there are unresolved
findings of massive enhancements in flow rates. Recently, using a linear pressure-area relationship
for the deformable tube walls, Garg [1] derived a model for the flow rates. In contrast to that, this
paper takes a different approach, utilizing a small displacement structural mechanics framework
with a linear pressure-diameter relationship, to incorporate the deformable nature of carbon
nanotubes and derive another deformable model. We compare predicted flow rates with previous
findings. The rigid-wall model with slips accurately predicted the outcomes of numerous studies.
Nonetheless, we observed that in many studies featuring high porosity and thin-walled tubes, the
inclusion of tube elasticity or deformability is crucial for accurate modeling. In such cases, our
deformable-wall model with slips performed exceptionally well in predictions. We also compare
and contrast the flow physics and flow rate scaling of the current model with the predictions
from the Garg [1] deformable model. We also find that as the deformability 1/β increases, the
flow rate also increases. Although the scaling for how the flow rate and flow physics varies
are different than reported by Garg [1] with pressure-area model. We find that the flow rate
in deformable tubes scales as ṁdeformable ∼ 1/β0 for

(
∆p/β

√
Ao

)
� 1, ṁdeformable ∼ 1/β for(

∆p/β
√
Ao

)
∼ O(10−1) and ṁdeformable ∼ 1/β4 for

(
∆p/β

√
Ao

)
∼ O(1). Further, for a given

deformability factor β, the flow rate in the smaller diameter of the tube is much larger than the
larger diameter where the flow rate increases with D−1o followed by D−4o as diameter decreases.
We also find that for the rigid tube, the mass flow rate varies linearly with pressure, whereas for
the deformable tubes, the flow rate scales as ṁdeformable ∼ ∆p2 for

(
∆p/β

√
Ao

)
∼ O(10−1) during

transition from ṁrigid ∼ ∆p to ∼ ∆p5, and finally to ṁdeformable ∼ ∆p5 for
(

∆p/β
√
Ao

)
∼ O(1).

On the otherhand, the scaling reported by Garg [1] was ṁdeformable ∼ ∆p3 for
(

∆p/αAo

)
∼ O(1).

∗Email: ashish.garg.iisc@gmail.com, ashish@seminare.in

1

https://doi.org/10.26434/chemrxiv-2023-k7mws ORCID: https://orcid.org/0000-0003-4544-7036 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-k7mws
https://orcid.org/0000-0003-4544-7036
https://creativecommons.org/licenses/by-nc-nd/4.0/


Keywords: deformable nanotubes, CNT, lubrication approximation, linear pressure-diameter
relation, nanoconfined water

1 Introduction

The investigation into the transport behavior of water within nanopores holds great importance
both in terms of fundamental understanding and practical applications. This significance arises
from the widespread occurrence of nanopores in nature and their numerous technological uses
[2–14]. Numerous researchers have documented a notable enhancement in water flow through
nanotubes [9, 10, 15–17]. While modelling, these researchers typically treated the CNTs with
rigid walls. The flow rates of water within carbon nanotubes (CNTs) are significantly influenced
by the nanoconfined density, viscosity and the slip length. Despite considering substantial slip
effects, there are unresolved findings of massive enhancements in flow rates [15, 17–23].

Recently, using a linear pressure-area relationship for the flexible tube walls, Garg [1] derived
a model for the flow rates. In contrast to that, this paper takes a different approach, utilizing a
small displacement structural mechanics framework with a linear pressure-diameter relationship
[24], to incorporate the deformable nature of graphene-based nanotubes [25, 26]. Using similar
methodology, as used by Garg [1], In this paper, we derive another deformable model incorporat-
ing linear pressure-diameter relationship and compare predicted flow rates with previous findings
[9, 10, 15–23]. We also compare and contrast the flow physics and flow rate scaling of the current
model with the predictions from the Garg [1] deformable model.

Figure 1: Schematic diagram of the flow Q in a graphene deformable-wall nanotube with length L and
the cross-section radius R (diameter D).

We consider a slender nanotube with a length L and radius R (or diameter D), with D � L
as depicted in Figure 1 [27–30]. The tube’s wall is flexible and deformable. The flow Q is induced
by an applied pressure field along the x-direction. This flow exerts normal stresses on the tube’s
walls, causing radial deformation of the soft wall. At the reservoir (located at x = 0), a pressure
field p is applied, while the exit pressure is set as a reference with a value of zero. At this point,
we do not make specific assumptions about the magnitude of the deformable displacement, but
we assume that the magnitude |δ| � D in our problem. Here, δ represents the change in radius
due to wall deformation, expressed as R = Ro+ δ, where Ro signifies the initial or rigid wall tube
radius, and R is the radius after tube wall deformation. The structure of this paper is organized
as follows: Section 2 presents the model’s derivation. In the Section 3, we present and analyze
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the results. Finally, we present conclusions in Section 4.

2 The Axisymmetric model: Involving microstructure of confined wa-
ter

2.1 Structural small displacement mechanics: A linear pressure-area relationship

We use the relationship between local pressure and local diameter in deformable tubes, which is
defined as the second model by Sochi [24], where the β defined in equation (1) is β′/Ao of the
model. The model is

p = β(
√
A−

√
Ao), (1)

where a linear correlation between pressure p and the change in radius or diameter
√
A−√Ao.

Here, β represents the proportionality factor, which indicates the stiffness of the tube wall. A
is the tube’s cross-sectional area at the actual pressure p, and Ao is the initial tube area (or
rigid tube-wall area) at the reference pressure (assumed to be zero for convenience). The model
essentially states that the change in pressure at a specific point within the tube is directly
proportional to the change in radius (or diameter) relative to its reference state. Please note
that this model is different than what we used in our previous studies Garg [1], where we used
linear Pressure-Area relationship instead of linear Pressure-Diameter.

2.2 Axisymmetric model

Under the lubrication approximations with the same assumptions of fully developed, axisymmet-
ric, steady, incompressible laminar flow in a circular deformable tube of radius R (Diameter D)
as used by Garg [1] and governing equations, the volume flow rate in a deformable nanotube is
given by [1]

Q =

∫ R(x)

0

u 2π r dr = −∂p
∂x

πR4

8η
− λπ ∂p

∂x

R3

2η
, (2)

where λ ≥ 0, is the slip length [31]. The η and ρ are the viscosity and density of confined water,
respectively. As we know from the linear pressure-diameter relationship, i.e., from equation (1),
that

A =

(
p

β
+
√
Ao

)2

, (3)

where A = πR2, and Ao = πR2
o. Substituting equation (3) in equation (2), we get

Q = −∂p
∂x

[
1

8πη

(
p

β
+
√
Ao

)4

+ λ
1

2η
√
π

(
p

β
+
√
Ao

)3]
. (4)

We consider p(x = 0) as the relative inlet pressure in relation to the pressure at the tube outlet,
where p(x = L) = 0. In the case of nanotubes, both viscosity (η(D)) and density (ρ(D)) depend
on the tube’s diameter [1, 15, 16]. When the tube wall experiences small displacements, we
assume that the viscosity and density can be approximated as η(D) ∼ η(Do) and ρ(D) ∼ ρ(Do),
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respectively. We then perform an integration of equation (4) over the tube’s length, resulting in
the following ∫ L

x

Qdx =

∫ p(x)

0

[
1

8πη

(
p

β
+
√
Ao

)4

+ λ
1

2η
√
π

(
p

β
+
√
Ao

)3]
dp, (5)

=⇒ (L− x)Q =
β

40πη

[(
p

β
+
√
Ao

)5

−
√
Ao

5

]
+

λβ

8η
√
π

[(
p

β
+
√
Ao

)4

−
√
Ao

4

]
. (6)

As the flow rate Q is not a function of longitudinal directional. Therefore substituting x = 0 in
equation (6) gives

Q =
1

L

(
β

40πη

[(
∆p

β
+
√
Ao

)5

−
√
Ao

5

]
+

λβ

8η
√
π

[(
∆p

β
+
√
Ao

)4

−
√
Ao

4

])
, (7)

where p(x = 0) = ∆p. Therefore the mass flow rate can be written as

ṁdeformable = ρQ =
ρ(Do)

η(Do) L

(
β

40π

[(
∆p

β
+
√
Ao

)5

−
√
Ao

5

]
+

λβ

8
√
π

[(
∆p

β
+
√
Ao

)4

−
√
Ao

4

])
,

(8)
where ρ(Do), and η(Do) are the density and viscosity of nanoconfined water, which are the
function of the diameter of the tube as described in the following section 2.3.

2.3 Microstructure of confined water

We use the same density, viscosity, and slip length models as used by Garg [1] from Garg and

Bishnoi [32] where for the density
ρ(D)

ρo
= a +

b

(D − c)n ,. the ρo = 1000 kg/m3, a = 1,

b = −7.96 X 10−10 m, c = −1 X 10−10 m, and n = 1. Also, for viscosity,
η(D)

ηo
= a+

b

(D − c)n ,
at temperature 298 K as shown by Garg and Bishnoi [32] on the solid-green line, they get
ηo = 1 mPa-s, a = 0.9, b = −3.21 X 10−10 m, c = 1 X 10−10 m, and n = 1. We model for tube
diameter D ≥ 25 Å in this study, for that, the slip length is approximately constant. Although
multiple studies reported this constant to be between 50nm to 300nm Garg and Bishnoi [32].
When the tube wall undergoes minor displacements, we make the assumption that the density
and viscosity, denoted as ρ(D) and η(D), respectively, to be approximately, ρ(Do) and η(Do).
Subsequently, we employ these experimental parameters to characterize the flow rate within
deformable nanotubes, as discussed in the following section referred to as Section 3.

3 Results and discussion

Using equations (8), the mass flow rate for the deformable wall N carbon tubes using the mi-
crostructure properties of confined water can be written as
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ṁdeformable =
Nρ(Do)

η(Do) L

(
β

40π

[(
∆p

β
+
√
Ao

)5

−
√
Ao

5

]
+

λβ

8
√
π

[(
∆p

β
+
√
Ao

)4

−
√
Ao

4

])
. (9)

ṁdeformable =
Nρ(Do)

η(Do) L

(
∆pA2

o

8π

[
1

5

(
∆p

β
√
Ao

)4

+

(
∆p

β
√
Ao

)3

+ 2

(
∆p

β
√
Ao

)2

+ 2

(
∆p

β
√
Ao

)
+ 1

]

+
λ∆p

2
√
π
A3/2
o

[
1

4

(
∆p

β
√
Ao

)3

+

(
∆p

β
√
Ao

)2

+
3

2

(
∆p

β
√
Ao

)
+ 1

])
.

(10)

From equation (10), we can easily identify the following limits:

I. The mass flow rate in the rigid wall N nanotubes with and without slips, i.e.
1/β = 0: Using equation (10), the mass flow rate for the rigid tube with slips can be written as

(ṁrigid)slip = lim
1/β→0

[
Nρ(Do)

η(Do) L

(
∆pA2

o

8π

[
1

5

(
∆p

β
√
Ao

)4

+

(
∆p

β
√
Ao

)3

+ 2

(
∆p

β
√
Ao

)2

+ 2

(
∆p

β
√
Ao

)

+1

]
+
λ∆p

2
√
π
A3/2
o

[
1

4

(
∆p

β
√
Ao

)3

+

(
∆p

β
√
Ao

)2

+
3

2

(
∆p

β
√
Ao

)
+ 1

])]
,

(11)

=⇒ (ṁrigid)slip =
Nρ(Do)

η(Do) L

(
∆p A2

o

8π
+ λ∆p

A
3/2
o

2
√
π

)
= π ∆p

Nρ(Do)

η(Do) L

(
R4
o

8
+ λ

R3
o

2

)
, (12)

and the flow rate without slips is (i.e., using λ = 0), we get

(ṁrigid)no-slip = π ∆p
Nρ(Do)

η(Do) L

(
R4
o

8

)
, (13)

which from equation (12), and (13), we get the flow enhancement E as,

Erigid =
(ṁrigid)slip

(ṁrigid)no-slip
=

(
1 + 4

λ

Ro

)
(14)

the above expression (14) is well known and also described in Kannam et al. [16], Whitby et al.
[33]. Further the flow enhancement due to deformable tubes Edeformable can we written by using
equations (10) and (13) as

Edeformable =
(ṁdeformable)slip

(ṁrigid)no-slip
=

[
1

5

(
∆p

β
√
Ao

)4

+

(
∆p

β
√
Ao

)3

+ 2

(
∆p

β
√
Ao

)2

+ 2

(
∆p

β
√
Ao

)
+ 1

]

+4
λ

Ro

[
1

4

(
∆p

β
√
Ao

)3

+

(
∆p

β
√
Ao

)2

+
3

2

(
∆p

β
√
Ao

)
+ 1

]
.

(15)
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To our knowledge, we have not seen the above-derived equation (15) in the literature so far.
In equation (15), it’s evident that the presence of additional non-linear terms, expressed as(

∆p

β
√
Ao

)
, due to flexibility, results in an increase in the mass flow rate and hence the flow

enhancement.

II. The mass flow rate in the deformable wall N nanotubes without slip, and
without confined water properties, i.e. λ = 0, ρ(D) = ρo, η(D) = ηo:

(ṁdeformable)no-slip =
Nρo
ηo L

(
∆p A2

o

8π

[
1

5

(
∆p

β
√
Ao

)4

+

(
∆p

β
√
Ao

)3

+2

(
∆p

β
√
Ao

)2

+2

(
∆p

β
√
Ao

)
+1

])
.

(16)
Equation (16) is the same as the analytical model derived by Sochi [24] using the second model.

III. The mass flow rate in the rigid wall N nanotubes, without slip and without
confined water properties, i.e. 1/β = 0, λ = 0, ρ(D) = ρo, η(D) = ηo: Under these limits,
we obtain

ṁrigid = π ∆p
Nρo
ηo L

(
R4
o

8

)
, (17)

which is a classical result of Hagen-Poiseuille flow in tubes [34–37]. Now, in the following section,
we will discuss the effect of deformability and slip on flow enhancement.

3.1 Enhancement and mass flow rate as a function of tube diameter

Using the same literature data as taken by Garg [1], we compare the prediction by our flow
rate model using the linear pressure-diameter relationship with pressure p = 1 bar, viscosity and
density as the fitted confined water properties as described in previous section 2.3, for diameter
Do ≥ 25 Å , (i.e., Region II, where the slip length does not depend on the diameter and can be
assumed constant [16, 32]) as shown in figure 2.

We show the enhancement factor using the dashed red line and dotted green line for rigid wall
model at constant λ = 500 Å , and λ = 3000 Å , respectively. We further use β = 1× 1012 Pa/m
for the deformable tube, and using λ = 500 Å while keeping other parameters the same as for
the rigid wall tube, we calculated the enhancement factor (by using equation (15)) as shown with
the solid black line. Similar to Garg [1], we also find that many observations and MD predictions,
such as the results by McGinnis et al. [9], Secchi et al. [10], Thomas and McGaughey [38], Borg
et al. [39], Kim et al. [40] are well fitted with the rigid wall tube model. On the other hand, the
results and MD predictions by Majumder et al. [15], Baek et al. [17], Zhang et al. [18], Majumder
et al. [19], Majumder and Corry [20], Trivedi and Reecha [21], Lee et al. [22], Bui et al. [23] are
well fitted with the deformable wall tube model. In the later data set, researchers used thin tube
structure where deformability of the wall plays an important role to increase flow rate manifold.

Utilizing a linear pressure-diameter relationship for deformability, in contrast to the linear
pressure-area relationship used by Garg [1], we also observe a corresponding increase in flow
rate as the deformability 1/β, increases. However, it’s worth noting that the scaling of flow rate
differs from what Garg [1] reported using the linear pressure-area deformability model.

6

https://doi.org/10.26434/chemrxiv-2023-k7mws ORCID: https://orcid.org/0000-0003-4544-7036 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-k7mws
https://orcid.org/0000-0003-4544-7036
https://creativecommons.org/licenses/by-nc-nd/4.0/


1

10
1

10
2

10
3

1

10

100

1e+03

1e+04

1e+05

1e+06

Diameter Do (Å)
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FIG. 1.Figure 2: We show the enhancement factor using the rigid tube model (dashed red and dotted green
with λ = 500 Å , and λ = 3000 Å , respectively), and the deformable tube model (solid black line)
as a function of the diameter of the nano/Angstrom-sized tubes and compared with many previous
experimental results and Molecular Dynamic simulation’s predictions (shown with various symbols) on
the log-log scale. Here, for diameter Do ≥ 25 Å , i.e., Region II, the slip length does not depend on the
diameter and can be assumed constant [16, 32].

Our findings indicate that the flow rate in deformable tubes follows specific scaling behaviors:
ṁdeformable ∼ 1/β0 when

(
∆p/β

√
Ao

)
� 1, ṁdeformable ∼ 1/β when

(
∆p/β

√
Ao

)
∼ O(10−1),

and ṁdeformable ∼ 1/β4 when
(

∆p/β
√
Ao

)
∼ O(1). Additionally, we find that for a given

deformability factor β, the enhancement factor E in smaller diameter tubes is significantly higher
than in larger diameter tubes. As the tube diameter decreases under a given reservoir pressure,
the enhancement factor E first increases as D−1o and then as D−4o after surpassing a certain
threshold diameter.

3.2 Effect of deformability on mass flow rate

Using diameter Do = 30 Å , length L = 1000 Å , λ = 500 Å , and same experimental parameters
as in previous section, we show the mass flow rate as a function of varying reservoir pressure in
figure 3. The β is increasing (corresponding deformability is decreasing) from the green line to
the purple line, respectively. We find that for the large deformability parameter β = 1023, where
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FIG. 1.Figure 3: We show the mass flow rate as a function of varying reservoir pressure under varying
deformability (1/β) of the tube wall on the log-log scale. The red arrow indicates the increasing values
of β (corresponding decreasing value of deformability), respectively.

the tube act as rigid, the flow rate varies linearly, i.e., ṁrigid ∼ ∆p as shown with purple color,
whereas for the deformable tubes where the deformability parameter (β) is relatively smaller from
orange data to green color data, the flow rate scales as ṁdeformable ∼ ∆p2 for

(
∆p/β

√
Ao

)
∼

O(10−1) during transition from ṁrigid ∼ ∆p to ∼ ∆p5, and finally to ṁdeformable ∼ ∆p5 for(
∆p/β

√
Ao

)
∼ O(1) as shown with the black scaling triangles. This suggests that the mass flow

rate increases as the deformability of the tube increases. In contrast, with the linear pressure-
area relationship for deformable tubes as presented in Garg et al.’s study, the scaling was found
to be ṁdeformable ∼ ∆p3 when

(
∆p/αAo

)
∼ O(1) [1].

3.3 Effect of slip on mass flow rate

The mass flow in the deformable tube due to only slip and due to no-slip by using equation (10),
can be written as

ṁ1 =
Nρ(Do)

η(Do) L

(
λ∆p

2
√
π
A3/2
o

[
1

4

(
∆p

β
√
Ao

)3

+

(
∆p

β
√
Ao

)2

+
3

2

(
∆p

β
√
Ao

)
+ 1

])
, (18)

and

ṁ2 =
Nρ(Do)

η(Do) L

(
∆p A2

o

8π

[
1

5

(
∆p

β
√
Ao

)4

+

(
∆p

β
√
Ao

)3

+ 2

(
∆p

β
√
Ao

)2

+ 2

(
∆p

β
√
Ao

)
+ 1

])
, (19)
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Figure 4: We show the ratio of the mass flow rate in the varying deformability of the tube due to
only slip ṁ1 and the other due to no-slip ṁ2 as a function of varying reservoir pressure. The red arrow
indicates the increasing values of β (corresponding decreasing value of deformability), respectively. In
(a) and (b), the data is shown on the linear and log-log scale, respectively.

respectively. We keep the other experimental parameters as it is and show the ratio of these
mass flow rate on the linear and log-log scale as a function of varying reservoir pressure in figures
4(a), and 4(b), respectively.

Much like the observations made by Garg [1], we also note that at low values of β, such as
in the case of the green curve with β = 1013 Pa/m, where deformability is significantly higher
compared to the yellow curve with β = 1023 Pa/m, the flow rate due to slip is more prominent
in comparison to flow without slip. Furthermore, we observe that for low pressure levels, the
ratio of these flow rates remains constant regardless of the value of the deformability parameter.
As the pressure difference increases, the dependence of this ratio transitions from ṁ1/ṁ2 ∼ ∆p0

to ∆p−1. This transition initiates at an early stage of pressure rise, particularly evident in
4(b), where the green data curve is the first to undergo this change, followed by the red curve
(β = 1014 Pa/m), the orange curve (β = 1015 Pa/m), and ultimately, the yellow curve remains
constant under higher pressure conditions. In line with Garg [1]’s findings using a linear pressure-
area deformable model, this trend suggests that the impact of mass flow rate due to slip is less
significant in more deformable tubes compared to less deformable or rigid tubes.

3.4 Effect of deformability and slip of graphene sheet on the mass flow rate

Using 1/β = 0 m/Pa for rigid tubes and 1/β = 10−15 m/Pa for deformable tubes keeping
all experimental parameters as it is, we show the flow rate for the deformable tube (1/β =
10−15 m/Pa) with slip (i.e., λ = 500 Å ) in green color, with (1/β = 10−15 m/Pa) without slip
(i.e., λ = 0 Å ) in red color, and for the rigid wall tube (1/β = 0 m/Pa) without slip (i.e.,
λ = 0 Å ) in purple color in figure 5 as a function of varying pressure, respectively.

In line with the findings of Garg [1], we also observe that the wall’s deformability leads to an
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Figure 5: We show the mass flow rate in the rigid and deformable tubes with and without slips as
a function of varying reservoir pressure. In (a) and (b), the data is shown on the linear and semilog
scale, respectively. The data shown are the mass flow rate for the deformable tube (1/β = 10−15 m/Pa)
with slip (i.e., λ = 500 Å ) in green color, mass flow rate for the deformable tube (1/β = 10−15 m/Pa)
without slip (i.e., λ = 0 Å ) in red color, mass flow rate for the rigid wall tube (1/β = 0 m/Pa) without
slip (i.e., λ = 0 Å ) in purple color, respectively.

increase in the mass flow rate under varying pressure conditions when compared to deformable
walls without slip and rigid-walled tubes. For instance, when the pressure difference is ∆p =
3 kbar, the mass flow rate in the deformable tube wall without slips (depicted in red) is 2.16×
10−4 g/s, while for the rigid tube without slips (represented by purple), it is only 0.06×10−10 g/s.
This demonstrates that even a slight degree of deformability in the tube significantly enhances
the mass flow rate, on the order of approximately 107 times, which is a noteworthy increase.
Additionally, we find that the difference between the mass flow rate with slips and without slips
for deformable tubes is on the order of 101 times. This suggests that while slip does increase the
flow rate in nanotubes, deformability has a more substantial impact on increasing the mass flow
rate.

Furthermore, we observe that as the pressure increases within a deformable tube, the flow
rate experiences a substantial increase compared to that in a rigid tube. This phenomenon arises
because, in the case of a rigid tube, the mass flow rate exhibits a linear proportionality to ∆p. In
contrast, in deformable tube, the flow rate (as described in equation (10)) comprises non-linear
terms of ∆p, causing it to transition from a dependence on ∆p to ∆p5 as the pressure increases.
Conversely, in the context of a linear pressure-area deformable model, this dependency shifts
from ∆p to ∆p3 as the pressure rises as predicted by Garg [1].

4 Conclusion

In this paper, we derived a deformable model for nanotubes by using the small displacement
structural mechanics through a linear pressure-diameter relationship as presented by the second
model in Sochi [24] under the lubrication approximation. For the validation purpose, we show
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that the derived model to its limiting cases, which have been given in the literature [16, 24, 33–36].
Similar to Garg [1], we also compare the predictions of our model with the previous experimental
results and the MD simulation predictions in literatures and observe that for the studies with
high porosity and thin wall tubes, where deformability of the tube is important in modelling
were well-predicted by our deformable-wall model with slips [15, 17–23].

Using a linear pressure-diameter relationship for deformability in contrast to linear pressure-
area relationship by Garg [1], we also find that as the deformability 1/β increases, the flow rate
also increases. Although the scaling for how the flow rate and flow physics varies are different than
reported by Garg [1] with pressure-area model. We find that the flow rate in deformable tubes
scales as ṁdeformable ∼ 1/β0 for

(
∆p/β

√
Ao

)
� 1, ṁdeformable ∼ 1/β for

(
∆p/β

√
Ao

)
∼ O(10−1)

and ṁdeformable ∼ 1/β4 for
(

∆p/β
√
Ao

)
∼ O(1). We also find that, for a given deformability

factor β, the flow rate in the smaller diameter of the tube is much larger than the larger diameter.
As the tube diameter decreases for the given reservoir pressure, the flow rate increases D−1o
followed by D−4o after a threshold with the tube diameter.

We further find that for the rigid tube, where the deformability parameter 1/β = 0, the
mass flow rate varies linearly, i.e., ṁrigid ∼ ∆p, whereas for the deformable tubes, the flow rate
scales as ṁdeformable ∼ ∆p2 for

(
∆p/β

√
Ao

)
∼ O(10−1) during transition from ṁrigid ∼ ∆p to

∼ ∆p5, and finally to ṁdeformable ∼ ∆p5 for
(

∆p/β
√
Ao

)
∼ O(1). On the otherhand in case of

linear pressure-area relationship for the deformable tubes, the scaling was ṁdeformable ∼ ∆p3 for(
∆p/αAo

)
∼ O(1) [1].
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