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Abstract

Biomolecular simulations have become an essential tool in contemporary drug dis-

covery and molecular mechanics force fields constitute its cornerstone. Developing a
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high quality and broad coverage general force field is a significant undertaking that re-

quires substantial expert knowledge and computing resources, which is beyond the scope

of general practitioners. Existing force fields originate from only a limited number of

groups and organizations, and they either suffer from limited numbers of training sets,

lower than desired quality because of oversimplified representations, or are costly for the

molecular modeling community to access. To address these issues, in this work, we de-

veloped an AMBER-consistent small molecule force field with extensive chemical space

coverage and we provide Open Access parameters for the entire modeling community.

To validate our force field, we carried out benchmarks of quantum mechanics/molecular

mechanics conformer comparison and free energy perturbation calculations on several

benchmark data sets. Our force field achieves a higher level performance at reproducing

quantum mechanics energies and geometries than two popular open-source force fields,

OpenFF2 and GAFF2. In relative binding free energy calculations for 31 protein-ligand

data sets, comprising 1079 pairs of ligands, the new force field achieves an overall root

mean square error of 1.19 kcal/mol for ∆∆G and 0.92 kcal/mol for ∆G on a subset of

463 ligands without bespoke fitting to the data sets. The results are on par with the

leading commercial series of OPLS force fields.

Introduction

Molecular mechanics force field (FF) parameters required to accurately model both biomacro-

molecules and small drug-like organic molecules has historically been one of the main topics

of interests in molecular modeling and it has drawn even more attention in recent years with

the ever increasing popularity of molecular simulations in drug discovery. One of the main

challenges in FF development is the need to cover a large and diverse chemical space for drug-

like molecules. Thanks to efforts from both the academic and industrial communities, several

general small molecule FFs have been developed and widely applied in combination with the

corresponding ones for biomacromolecules. Examples of general small molecule FFs include
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but are not limited to GAFF1 compatible with AMBER biomolecule FFs,2 CGENFF3 com-

patible with CHARMM biomolecule FFs,4 a series of OPLS FFs5,6 from either academic

or industrial research groups compatible with the corresponding OPLS biomolecule FFs,7,8

etc. These FFs adopt a similar functional form and comprise the FF parameters that include

both bonded (bond, angle, and torsion) and non-bonded (electrostatic and vdW) terms. The

bonded terms are usually parametrized over the optimized geometry, energy, or frequency

from quantum mechanics (QM) calculations and fine-tuned with experimental crystal struc-

tures from the CCDC9 database. The vdW terms are parametrized against experimentally

measured liquid density and heat of vaporization data.10 The atomic charges for electro-

static interactions are parametrized against either QM electrostatic potentials (ESPs)11,12

or molecule-water interaction energy and distance.13 In the later stages of parameter op-

timization, some FF development protocols may also include experimental measurements

such as hydration free energies14 or even protein-ligand binding affinity data6 to fine-tune

the non-bonded parameters. Recent advances in software tools have even made it possible to

automatically adjust vdW parameters.15 For a more detailed discussion of recent advances in

FF development, we refer the readers to He et al. 16 Despite many decades of FF development

efforts in academia and industry, access to more accurate FFs continues to be a challenge

for most common practitioners in the molecular simulation community.

On one hand, academically developed FFs are freely available, however they are typically

trained with data for just hundreds of model compounds, severely limiting the quality on

vast drug-like chemical space. On the other hand, commercial FFs, such as OPLS from

Schrödinger, are trained to cover a much larger chemical space, but they are only available to

users with commercial licenses. In addition, the commercial FFs cannot be typically utilized

in combination with academically developed FFs for biomolecules and cannot be employed in

widely used simulation packages like GROMACS,17 OpenMM,18 AMBER,19 CHARMM,20

etc, limiting the development of simulation tools for the broader community. Systematic

FF development to accurately cover larger chemical space is a challenging endeavor. It is a
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major undertaking that requires significant scientific expertise and manual efforts in training

set selection, in addition to access to high performance compute resources. It normally takes

many years to develop FFs anew or to upgrade an existing one to a new version. Due to

the critical role of the FF in molecular simulations, we believe it is necessary to develop

a new general FF for systematic coverage of drug-like molecules and make such FF widely

available to the research community to speed up scientific innovation. Recent progress of the

Open Force Field (OpenFF) initiative has led to the development of more accessible open-

source tools for FF development which enable wider community collaboration.15,21–24 While

OpenFF provides a new scheme, SMIRKS Native Open Force Field (SMIRNOFF),25 and a

development platform to define and build parameters to provide high coverage of chemical

space, the amount of training data set with QM energy is still relatively small.22,26

Here, we present a new FF, XtalPi force field (XFF), designed and developed to produce

higher quality and broader coverage of drug-like molecular chemical space compared to the

available FFs. XFF is trained with a large set of selected functional fragments and high qual-

ity QM energies. Moreover, the parameters of XFF are Open Access and compatible with

the AMBER biomolecule FFs and can be deployed in the widely used molecular simulation

packages including AMBER, GROMACS, OpenMM, CHARMM etc. The remainder of the

manuscript is organized as follows. In the Methods section, we describe the workflow and

protocol for the FF training, QM/MM conformer validation, and free energy perturbation

(FEP) benchmark. In the Results section, we show the performance of XFF in reproducing

QM energies and geometries, as well as in the accuracy of FEP predictions using several

benchmark sets, and we compare it with other academic and commercial FFs. In the Discus-

sion and Conclusion sections, the performance of XFF is summarized, while the remaining

problems and future developments will be discussed.
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Methods

Functional form

XFF uses the Amber functional form:

E =
∑
i

kr,i(r − req,i)
2 +

∑
i

kθ,i(θ − θeq,i)
2 +

∑
i

4∑
n=1

Vn,i

2
[1 + cos(nϕi − γn,i)]

+
∑
i<j

[
Aij

R12
ij

− Bij

R6
ij

+
qiqj
ϵRij

]

(1)

where kr,i is the bond force constant, req,i is the bond stretching equilibrium value, kθ,i is

the angle force constant, θeq,i is the angle bending equilibrium value, Vn,i is the torsion force

constant, γn,i is the torsion phase factor, Aij and Bij are Lennard-Jones (LJ) parameters, qi

and qj are partial charges on the atom i and j, and Rij is the distance between atom i and

j.

Training set selection and fragmentation

The training set for XFF was generated from the ChEMBL database.27 All molecules from

the ChEMBL database were fragmented into elementary fragments, fundamental building

blocks of a molecule that generally comprise 0-2 rotatable dihedrals. The elementary frag-

ments were then recombined into one of the two types of secondary fragments: (1) chain

secondary fragments and (2) ring secondary fragments. A chain secondary fragment con-

sists of a central chain elementary fragment that is connected with other 1-3 chain or ring

elementary fragments. Whereas, a ring secondary fragment, if defined as a substructure,

comprising a central ring elementary fragment that is also connected with other 1-3 chain

or ring elementary fragments. The details about our fragmentation method can be found in

the Supporting Information and Figure S1-S3, which illustrates the procedure to generate

elementary and secondary fragments. Our current fragmentation scheme does not explic-

itly take conjugation into account thus it may have limitations for some large conjugate
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molecules. Recently, a new fragmentation method was developed that utilizes the Wiberg

bond order to detect the minimum fragment needed to reproduce the chemical environment

of the full molecule,28 which can to some extent handle conjugation. After the fragment

recombination process was completed, a scaffold network graph method29 was used to clus-

ter all fragments. Finally, we used these clusters to select nearly 55,000 elementary and

secondary fragments as the training set for XFF, aiming to achieve an adequate balance

between computational cost and chemical space diversity.

Torsion scan

A torsion scan workflow was developed to generate training targets. QM calculations were

carried out for each model compound in the training set along the scanned torsions to obtain

the energies, Hessian, and structures of the molecules. These properties were then used in

the intra-molecular parameter fitting. The workflow comprised the following steps. First,

the RDKit package30 was used to convert the SMILES representation of a molecule to a 3D

structure. Except for a subset of selected model compounds, protonation state and tautomer

enumerations were assigned to the widely used form. Subsequently, a quick MM torsion scan

using GAFF was carried out along every flexible torsion angle of the molecule. The global

minima of every torsion angle were combined to produce a “global minimum” conformation

of the molecule. Finally, a QM optimization of this global minimum conformation was car-

ried out at B3LYP/6-31G* level of theory using Gaussian 1631 and the resulting optimized

geometry was used as input in the later procedures. The topology of each model compound

was inferred from the QM optimized geometry and no other resonance structures were con-

sidered. Each flexible torsion was classified into three distinct categories based on the type

of scan carried out around that torsion: (1) 1D, (2) pseudo 2D, or (3) 2D. Torsions in the 1D

scan category were subject to independent scan around the specified dihedral over −180◦ to

180◦ with a step size of 30◦. A geometry optimization of each intermediate conformation was

done, constraining the specified torsion angle at the specified value, while all other degrees of
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freedom (DOFs) were relaxed. Torsions in the pseudo 2D category were subjected to multiple

individual 1D scans along a given torsion, each starting from different local minima along for

the other flexible torsions. Finally, in the third full 2D category, constrained optimization of

all combinations of the two coupled torsions was performed. A fixed step size of 30◦ was used

for each of the three categories. For each torsion scan, first QM geometry optimization of

each intermediate conformations were performed at B3LYP/6-31G* (neutral and positively

charged molecules) or B3LYP/6-31+G** level of theory for negatively charged molecules

using Gaussian 16,31 followed by a single-point energy calculation at MP2/cc-pVTZ level of

theory using Psi4.32 The QM local minima of every torsion were again combined to produce

“combined” conformations of the molecule, as illustrated in Figure S4. If the number of

the “combined” conformations was too large, only 50 low-energy conformations were kept

based on their estimated energy. The estimated energy of a “combined” conformation was

calculated as the sum of the torsion strain energy over all flexible torsions. The torsion

strain energy for a given dihedral angle value in a “combined” conformation was defined as

the energy difference between the global minima conformation along the 1D PES for that

dihedral angle and the energy of the corresponding conformation from the 1D torsion scan

that has the torsion angle value corresponding to the “combined” conformation. If the QM

calculation of the resulting “combined” conformation failed due to steric clash, this conforma-

tion was then discarded. These “combined” conformations underwent the same optimization

and single-point calculation procedure as the torsion scan conformation except that all tor-

sions were allowed to relax at the optimization stage. Then, for the global minimum and

the “combined” conformations of each molecule, the Hessian (frequency) was computed at

B3LYP/6-31+G** level to serve as target data for bond and angle parameter fitting. Fi-

nally, for each molecule, multiple “combined” conformations (<=10) were selected for QM

calculation at HF/6-31G* level to generate the QM electrostatic potential for RESP11 charge

fitting.
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Atom type definition

Atom type definition is at the core of FF development. Although some recent progress in

FF development has eliminated the need for atom types by directly defining the chemical

environment of parameter terms,25,33,34 most of the widely used FFs for molecular modeling

continue to rely on atom types to optimize the number of FF parameters required for broad

chemical space coverage. To define atom types, we followed a hierarchical method that was

explicitly proposed in a general FF – TEAM35 publication, and was also actually employed

in other FFs.36 The term “hierarchical” mainly refers to the following two points: (1) during

atom type definition, the environment of an atom can be introduced hierarchically; (2) all

atom types can be organized in a tree structure. The atom typing scheme consists of default

and extension definitions, such that the default definition only considers the properties of

the atom that is being defined, while the extension definitions include additional neighbor-

ing atoms. If a more complex chemical environment is encountered and a new atom type is

needed, the existing atom types can be extended to describe a wider surrounding and the

subsequent new atom type can be added to the appropriate place in the tree as a new de-

scendant of the existing type. Figure S5 of the Supporting Information provides an example

showing how atom types are organized in a tree structure. Furthermore, to limit the number

of parameters and prevent over-fitting, an equivalence table was also introduced to reduce

an atom type to one of its ancestors in the context of certain FF term types (e.g., bond,

angle, or torsion).

Bonded and non-bonded terms fitting

The bonded terms were fitted through three consecutive steps. First, the bond and angle

equilibrium values req and θeq were parametrized by gradually approaching their QM values

using the method described in Wang et al. 37 to better reproduce QM optimized structures.

In an ideal situation, MM optimized structures should resemble the QM structures if the

corresponding QM bond and angle equilibrium values were adopted for the MM parameters.
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However, in some cases, strong 1-4 electrostatic interactions can distort a MM structure,

causing large deviations from the ideal QM geometries. To prevent such discrepancies, the

following algorithm was introduced:

1. The initial values of ri,eq and θi,eq were taken from the QM average values over all

training conformations that contain this FF term. All torsion scan and “combined”

conformations were used in this stage of parameter fitting.

2. MM geometry optimizations of these conformations were carried out, and average

QM/MM difference for each bond and angle term was calculated by

∆i =
1

Nconf,i

∑
n

(xQM,i,n − xMM,i,n) (2)

where xi is either ri or θi. The summation n is over all conformations related to this

term and Nconf,i is the total number of such conformations.

3. The bond or angle equilibrium value xeq,i was then incremented by x
′
eq,i = xeq,i + s∆i,

where s is a scaling factor which is set to 0.2.

4. Step 2 and 3 were repeated until the following objective function was converged,

Lba,equil = wb

∑
i

∆bond,i

nbond

+ wa

∑
j

∆angle,j

nangle

(3)

where nbond and nangle are the total number of bond and angle equilibrium parameters

to be fitted, wb and wa are weight factors and were empirically set, respectively, to 3.0

and 1.0 for the fitting process.

Bond and angle force constant parameters kr,i and kθ,i were then parametrized using a

modified Seminario Hessian projection method as described in Allen et al. 38 Only the global

QM minimum conformations from the torsion scan for each molecule were utilized for the
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force constant fitting, and the final value for each term was averaged over all molecules that

contain that term.

Finally, the torsion force constants V1,i, V2,i, V3,i, and V4,i were parametrized using all

conformations (including torsion scan and “combined” conformations) and energies from the

torsion scan workflow. An objective function that calculates the difference between optimized

MM energies EMM,ij and QM energies EQM,ij was introduced and was minimized by the L-

BFGS-B method,39

Ldihe =
1

Nmol

Nmol∑
i

1

Nconf,i

Nconf,i∑
j

[(EMM,ij − ĒMM,i)− (EQM,ij − ĒQM,i)]
2 (4)

where the first summation is over all the molecules in the training set and Nmol is the total

number of molecules. The second summation is over the conformations of a given molecule

and Nconf,i is the number of conformations for molecule i. ĒMM,i and ĒQM,i are the MM and

QM average energy over the given molecule, respectively.

XFF directly takes LJ parameters from GAFF1.8,1 and the electrostatic partial charges

were fitted against QM electrostatic potential (ESP) using the standard RESP charge fitting

workflow.11 However, we note that XFF can easily and quickly adapt to any non-bonded

parameter change since we have designed a particularly fast and efficient implementation of

data structure and algorithm that can handle the intra-molecular parameter fitting workflow

for an entire training set of ∼55K molecules and ∼2.8M conformations in less than two days

on a machine with 53 CPU cores, which allows us to perform inter- and intra-molecular

parameter fitting iteration efficiently.

Conformer geometry and energy validation

Molecule conformer energy is the most important and direct way to judge the quality of

the FF parameters. To validate the conformer energy, we collected three benchmark data

sets (see Table 1 for details). The first data set, referred as the Fragment Set, was derived
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from the PDB40 and Pfizer’s internal compound library and was broken down into molecular

fragments to reduce QM computation cost. This set was considered a challenging test set

for XFF because OPLS3 energies of the molecules in this set showed large discrepancy

from the corresponding QM energies. For molecules from the PDB database, an additional

criterion was applied that the complex resolution is ≤ 2.0 Å and DPI41 ≤ 0.5 Å (when the

information is available). The second data set, referred as the Full-molecule Set, represents

a subset of publicly available parent molecules from the Fragment Set as well as additional

kinase inhibitors from the PDB. The third data set was a public data set assembled by an

industrial consortium to benchmark the performance of OpenFF (OpenFF Industrial Set).21

Table 1: Summary of validation molecule sets

Data set Name Origin No. of structures No. of conformers Level
Fragment Set Pfizer & PDB 2506 fragments 64,718 conformers Fragment

Full-molecule Set PDB 1459 molecules 20,334 conformers Molecule
OpenFF Industrial Set Industry 9329 moleculesa 71448 conformers Molecule

a We note that the number of molecules and conformers downloaded was different from the number reported
in Ref 21, hence we listed the molecule and conformer ID we used in the benchmark on Github (see Data
availability section for more details).

For the Fragment Set, the same torsion scan workflow used in the training set construc-

tion was utilized for each fragment, and the validation mainly focused on torsion profile

comparison. For the Full-molecule Set, we did not carry out torsion scans due to exten-

sive QM calculations required. Instead, we only ran QM calculations at the same level of

theory as the Fragment Set on conformers generated by RDKit.30 After QM calculations,

conformers with QM energy higher than 15 kcal/mol from the minimum energy conformer

of the corresponding molecule were discarded. To compare the performance of XFF with

other FFs, we also carried out MM calculations with GAFF2 (version 2.11) and the latest

version of OpenFF (OpenFF2.0.0, FF filename “openff_unconstrained-2.0.0.offxml”, using

RDKit as the backend).26 The charge model used for XFF and GAFF2 was RESP,11 while

for OpenFF2 AM1BCC12 charges were used to maintain consistency with the original FF

development philosophy. The MM energy of the molecule was calculated by minimizing the

11

https://doi.org/10.26434/chemrxiv-2023-rf3dk-v3 ORCID: https://orcid.org/0000-0003-0928-8541 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-rf3dk-v3
https://orcid.org/0000-0003-0928-8541
https://creativecommons.org/licenses/by-nc-nd/4.0/


molecule with the corresponding FF starting from the QM optimized structures. When-

ever the conformer was from a torsion scan, a dihedral restraint was also added to the

molecule. Optimizations with all three FFs XFF, GAFF2, and OpenFF2 were performed

with OpenMM.18

For the OpenFF Industrial Set, the QM, OpenFF2, and GAFF2 optimized geometries

and their corresponding energies were downloaded from the QCPortal42 using the data set

name provided in Ref 21 and new calculations were only conducted for XFF using the same

MM energy calculation method used for the other two data sets. We point out that the

charge model used for GAFF2 in QCPortal for this data set is AM1BCC, which is different

from RESP, the desirable charge model for GAFF2.43 However, we did not re-calculate the

GAFF2 results using RESP to be consistent with the results from Ref 21. One should also

note that the QM level for the third data set is B3LYP-D3BJ/DZVP, which is consistent with

the one used in the OpenFF training set but different from our training QM level of MP2/cc-

pVTZ//B3LYP/6-31G*. This data set is a “blind” set to XFF and poses more challenges

to the FF. On one hand, XFF has an advantage with the Fragment and Full-molecule Set

since the QM level of these two data sets is consistent with the XFF training set. However,

for the OpenFF Industrial Set, this turns to a disadvantage. Most of the molecules in this

data set were not collected by us but by a few pharmaceutical companies and their focus in

chemical space may be very different from that of a public database such as ChEMBL. To

give the readers a general picture, Figure S7 and Table S5-S7 of the Supporting Information

provides histogram distributions of the molecular weight and number of rotatable bonds for

the three data sets.

The comparison was carried out to assess energetic and geometric agreement between

FFs and QM. The geometry metrics included atom-wise heavy atom root mean square devi-

ation (RMSD) and torsion fingerprint deviation (TFD)44 between MM-optimized and QM-

optimized geometry for each conformer of the molecules. The energy comparison was sum-

marized in terms of energy correlation and energy deviation metrics. For the Fragment Set,

12

https://doi.org/10.26434/chemrxiv-2023-rf3dk-v3 ORCID: https://orcid.org/0000-0003-0928-8541 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-rf3dk-v3
https://orcid.org/0000-0003-0928-8541
https://creativecommons.org/licenses/by-nc-nd/4.0/


torsion-based Pearson correlation coefficient (R) and root mean square error (RMSE) were

calculated. On the other hand, molecule-based R and conformer energy deviation (∆∆E)

described in Ref 21 were obtained for the other two molecule-level data sets. Here, the

correlation coefficient R was used instead of R2 to avoid overestimation of the results due to

negative R values. The equations to calculate the correlation and energy deviation metrics

can be found in the Supporting Information.

FEP calculations

Relative binding free energy (RBFE) calculations were carried out using the internally de-

veloped XFEP platform which has already been described elsewhere,45 hence we will only

briefly detail the simulation protocol here. All simulations were performed on graphics pro-

cessing unit (GPU) using the GPU-accelerated version of the AMBER20 code PMEMD.19

The R-group substitution, heterocycle focused, charge-change data set from Lu et al.,6 and

the Merck KGaA set from Schindler et al. 46 and their corresponding initial structures from

the original literature were used in the FEP benchmark study. The proteins and the ligands

were modeled using AMBER ff14SB47 and general XFF parameters respectively, and the

explicit solvation environment was modeled using the TIP3P water model.48 The ligand-

protein complexes and the ligands were both solvated in an octahedral simulation box with

a buffer size of 8 Å and 12 Å respectively using tLEaP. The simulation box was then neu-

tralized by adding an appropriate number of Na+ or Cl− ions. The SPLIT method from

Machado and Pantano 49 was used to add additional ions in cases where the ionic strength

of the simulation needs to match experimental conditions. Each ligand and ligand-protein

complex was initially equilibrated with the following protocol. First, a brief minimization

was conducted using 100 steps of steepest descent followed by 100 steps of conjugate gradient

with a Cartesian restraint of 4 kcal mol−1 Å−2 applied to the heavy atoms of the ligand and

the complex. Then, the system was heated to 298.15 K in 100 ps in the NV T ensemble

and was further equilibrated for 100 ps in the NPT ensemble. Finally, the restraints were
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gradually removed over 400 ps again in the NPT ensemble. The final structure of the sys-

tem was then extracted to construct the alchemical transformation topology with the aid

of an internally developed atom mapping algorithm implemented in the XFEP platform to

identify common core and softcore atoms. The hydrogen mass was increased to 3.024 amu

by repartitioning the mass from the nearest-bound heavy atom.50

The alchemical calculations were performed in a one-stage concerted lambda scheme.

During this stage, both the LJ parameters and the partial charges of the initial state were

transformed into the final state with lambda windows at 0.0, 0.0479, 0.1151, 0.2063, 0.3161,

0.4374, 0.5626, 0.6839, 0.7937, 0.8849, 0.9521, and 1.0. The alchemical topology and struc-

tures prepared as described above were utilized as the initial structure for all the lambda

windows. For each lambda window, we first performed minimization on the system fol-

lowed by heating and pressure equilibration. Heating steps were run in the NV T ensemble,

while pressure equilibration and production steps were performed in NPT with pressure

maintained at 1 atm with a Monte Carlo barostat.51 The SHAKE algorithm52 was used to

constrain the hydrogen bond length except for those bonds which connect a common core

atom and a softcore atom. The non-bonded interactions were cut at 8 Å, and the particle

mesh Ewald (PME) method53 and a long-range continuum correction54 were used for treat-

ing long-range electrostatic and LJ interactions respectively. All simulations were run using

a Langevin integrator with a friction coefficient of 2 ps−1, a timestep of 2 fs was used for

heat and pressure equilibration while a value of 4 fs was used for production.

Following the pressure equilibration step, the final structures of all lambda windows were

used to perform a Hamiltonian replica exchange molecular dynamics (HREMD)55 produc-

tion simulation, allowing all lambda windows to exchange with their neighbors. The REST2

algorithm56 was applied to enhance the sampling process. In addition, we adopted an in-

house procedure that implemented an enhanced sampling method similar to the recently

published alchemical enhanced sampling (ACES)57 to mitigate the impact of initial confor-

mation dependence of the transforming chemical group. Specifically, the “gti_add_sc=3”
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option was used to scale both the LJ and electrostatic interactions along with the alchemical

lambda variable within the softcore region. All rotatable torsions within the softcore region

and connecting common core and softcore region were also scaled with the lambda variable.

This scheme should be equivalent to the “gti_add_sc=6” option in the ACES method, which

is now readily available in AMBER22.58 The entire HREMD production phase was run for

25 ns. Finally, the free energies and the statistical uncertainties were evaluated with the

Bennett acceptance ratio (BAR) method using pymbar.59,60 For those simulations involving

a net charge change, a post-correction method was applied.61 Recently, we have developed

a new method to correct ∆∆G for hysteresis and convert ∆∆G to ∆G,62 and this method

is implemented in our XFEP platform. However, for the sake of comparison with previous

studies,6 the cycle closure correction method described in Wang et al. 63 was used throughout

this work. The corrected ∆∆G values were then converted to ∆G by the maximum like-

lihood estimation method using all experimental data.64 Three performance metrics, root

mean square error (RMSE), Pearson correlation coefficient (R2), and Kendall’s rank corre-

lation (τ), were used to compared FEP results with the experimental data. 95% confidence

intervals were esimated for each metric using 1000 bootstrap samples and are reported as

x
xhigh
xlow , where x is the value from maximum likelihood estimation using the whole data set,

while xlow and xhigh are the value of the variable at 2.5% and 97.5% of 1000 sorted samples,

respectively. To perform a fair comparison and avoid differences in details of algorithm im-

plementation, the cycle closure corrected ∆∆G, converted ∆G, and all performance metrics

for FEP+ were re-calculated using our analysis scripts. Figure S6 provides a flowchart for a

normal FEP simulation on the XFEP platform. The initial structures and results of all FEP

simulations and our analysis scripts can be found on Github (see Data availability section

for details).
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Results

Conformer geometry and energy validation

Here, we present the results of comparison with QM for XFF, OpenFF2, and GAFF2. The

results for the Fragment Set, Full-molecule Set, and OpenFF Industrial Set are shown in

Figures 1, 2, and 3 respectively. On the geometry comparison tests, XFF outperforms the

other FFs, showing the highest agreement with QM followed by OpenFF2 and GAFF2 on

all three data sets. The percentages of conformers in the Fragment Set that have RMSD less

than 0.1 Å were 61.3% for XFF, higher than the 50.6% of OpenFF2 and 40.1% of GAFF2.

This number is lower for the other two data sets, which is reasonable considering RMSD is

molecule-size dependent and the Full-molecule set and OpenFF Industrial set contain larger

molecules. XFF predicts 19.5% and 16.3% of conformers within 0.1 Å from QM-optimized

structures for the two data sets vs. 11.6% and 8.7%, respectively for OpenFF2, and 9.0%

and 5.9%, respectively for GAFF2. The relative performance of different FFs based on the

TFD metric shows a similar trend for all three data sets. XFF outperforms OpenFF2 and

GAFF2, generating 87.6%, 76.7%, and 76.0% of the conformers with TFD < 0.05 on the

three data sets. Regarding the energy metrics, XFF has a large advantage in terms of torsion-

based R and RMSE on the fragment set, demonstrating the ability to correctly reproduce

QM torsion profiles. Correctly predicting QM potential energy surfaces (PES) is critical

in biomolecular simulations as it decides the orientation of important functional groups of

molecules and thus contributes to the penalization of the host-guest interactions in the form

of conformation strain energy. In Figure S8 of the Supporting Information, we also show

three example torsion PESs that have a correlation coefficient R equal to 0.9, 0.8, and 0.6

respectively. The examples indicate that the R=0.9 torsion has a good overall QM and MM

PES shape agreement while the other two torsions do not. The ranking of FFs is XFF >

OpenFF2 > GAFF2 for this data set. XFF has 77.8% of torsions having a correlation higher

than 0.9 with QM and 65.0% of torsions with RMSE less than 1.0 kcal/mol, while these two
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numbers are only 60.9%/34.5% for OpenFF2 and 53.8%/32.4% for GAFF2. Concerning the

other two molecule-level data sets, XFF still shows excellent performance on the QM/MM

conformer energy correlation, while the energy deviations are closer for all three FFs. For

the Full-molecule set, XFF is the best among the three, containing 43.2% of molecules

having QM/MM conformer correlation larger than 0.9 and 44.3% of conformers with |∆∆E|

less than 1 kcal/mol. GAFF2 has a slightly higher percentage of conformers with ∆∆E

within the range [−1.0, 0.0) kcal/mol than XFF, but the total percentage with |∆∆E| <

1.0 kcal/mol is 42.7%, slightly smaller than XFF. The performance trend is the same for the

OpenFF Industrial set. The R > 0.9 percentage is 50.2% for XFF and is better than the

other two FFs with a large margin. The numbers for |∆∆E| < 1.0 kcal/mol are close for

three FFs, with XFF still the best at 50.2%, followed by 49.6% of OpenFF2 and 46.1% of

GAFF2. The ∆∆E distribution for XFF is slightly shifted right compared with OpenFF2

and GAFF2, probably due to the fact that the QM level of the OpenFF Industrial Set is

different from the other two sets as we have discussed earlier. We noticed that there are still

some molecules with large |∆∆E| and low Pearson R values for XFF. They will be further

investigated and will be the future direction for FF refinement. In Figure S10(A) of the

Supporting Information, we list some typical outlier molecules from the OpenFF Industrial

Set that have large QM/MM energy discrepancy and low QM/MM energy correlation.

FEP benchmark using R-group substitution data set

The R-group substitution data set consists of eight test cases from Wang et al.:65 BACE,

CDK2, Jnk1, MCL1, p38, PTP1B, Thrombin, and Tyk2. Similar to our previous work,45

we compared the RMSE, Pearson correlation coefficient (R2), and Kendall’s rank correlation

(τ) between the cycle-closure corrected FEP ∆∆G results and the experimental values from

XFF with the latest version of FEP+.6 In addition, ∆∆G values were converted to ∆G

using all experimental data and were also compared with FEP+. What differs from the

previous work is that we used the general version of XFF throughout this work instead of a
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Figure 1: Histogram of validation results for XFF, GAFF2 and OpenFF2 FFs on the Frag-
ment Set. (a) RMSD distribution between MM-optimized structures compared to QM struc-
tures. (b) Pearson correlation coefficient distribution of QM/MM potential energy surface.
(c) TFD distribution between MM-optimized structures compared to QM structures. (d)
RMSE distribution of QM/MM potential energy surface. Numerical data corresponding to
the plot can be found in Table S8, S9, S10, and S11 of the Supporting Information.

system-specific one which includes performing refinement on each test case. Such refinement

is usually not affordable for massive FEP simulations since expensive QM calculations are

required. Meanwhile, the general version of the FF is fast to obtain and reflects the true

quality of the FF. We performed FEP simulations for the same 333 pairs with the same

direction as was done by Wang et al.,65 and the results are shown in Table 2 and Figure 4.

Overall, XFF together with our XFEP platform has a comparable performance with the

latest version of FEP+ (OPLS4) on these eight test cases. The overall RMSE of XFF for
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Figure 2: Histogram of validation results for XFF, GAFF2 and OpenFF2 FFs on the Full-
molecule Set. (a) RMSD distribution between MM-optimized structures compared to QM
structures. (b) Molecule-based Pearson correlation coefficient distribution of QM/MM ener-
gies. (c) TFD distribution between MM-optimized structures compared to QM structures.
(d) Conformer-based ∆∆E distribution of QM/MM energies. Numerical data corresponding
to the plot can be found in Table S8, S9, S10, and S12 of the Supporting Information.

∆∆G is 0.941.221.01 kcal/mol, which is slightly lower than 0.971.161.00 kcal/mol of OPLS4. On

the other hand, XFF also shows a slightly higher R2 and τ value of 0.490.490.35 and 0.500.500.37

compared with 0.450.470.32 and 0.480.500.38 of OPLS4. After converting ∆∆G values to ∆G, the

total RMSE of XFF is 0.811.030.80 kcal/mol, higher than 0.760.920.73 kcal/mol of OPLS4. However,

two correlation metrics R2 and τ for XFF were on the same level as OPLS4. The system-

specific investigation shows that XFF has a much larger ∆G RMSE value of 1.221.591.07 kcal/mol

and 0.681.150.57 kcal/mol for MCL1 and PTP1B, 0.38 kcal/mol and 0.18 kcal/mol higher than
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Figure 3: Histogram of validation results for XFF, GAFF2 and OpenFF2 FFs on the OpenFF
Industrial Set. (a) RMSD distribution between MM-optimized structures compared to QM
structures. (b) Molecule-based Pearson correlation coefficient distribution of QM/MM ener-
gies. (c) TFD distribution between MM-optimized structures compared to QM structures.
(d) Conformer-based ∆∆E distribution of QM/MM energies. Numerical data corresponding
to the plot can be found in Table S8, S9, S10, and S12 of the Supporting Information.
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OPLS4, which explains XFF having an overall larger RMSE on ∆G than OPLS4. Some

typical outlier transformations from MCL1 and PTP1B test cases can be found in Figure S13

of the Supporting Information.

Table 2: Summary of the performance of XFF and OPLS4 on the R-group substitution data
set (RMSE in unit of kcal/mol). ∆∆G values are all corrected by cycle-closure correction.63

Total RMSE values were calculated by combining all data points, while total values for R2

and τ were calculated as the weighted average of all test cases by their corresponding number
of pairs/ligands to avoid metric overestimation due to different experimental ranges.

XFF ∆∆G OPLS4 ∆∆Ga

Targets Npair RMSE R2 τ RMSE R2 τ

BACE 58 0.961.220.82 0.290.450.07 0.330.470.12 1.011.260.86 0.360.520.15 0.360.510.20

CDK2 25 0.971.360.63 0.580.790.29 0.590.760.35 1.121.360.90 0.210.460.01 0.310.530.06

Jnk1 34 0.771.080.65 0.390.600.10 0.430.600.18 0.891.150.75 0.330.600.06 0.400.580.13

MCL1 71 1.321.781.27 0.310.400.10 0.390.480.20 1.171.431.03 0.230.400.07 0.340.460.17

p38 56 0.741.260.83 0.710.720.36 0.650.650.39 0.841.170.81 0.660.720.40 0.640.680.44

PTP1B 49 0.831.370.88 0.730.730.33 0.660.670.37 0.711.400.89 0.800.760.40 0.740.710.46

Thrombin 16 0.640.980.50 0.130.520.00 0.210.54−0.28 1.021.320.73 0.310.690.03 0.430.670.01

Tyk2 24 0.480.600.39 0.870.930.73 0.680.810.49 0.851.120.61 0.650.820.40 0.660.790.43

Total 333 0.941.221.01 0.490.490.35 0.500.500.37 0.971.161.00 0.450.470.32 0.480.500.38

XFF ∆G OPLS4 ∆Ga

Targets Nlig RMSE R2 τ RMSE R2 τ

BACE 36 0.871.100.74 0.590.740.29 0.560.690.34 0.871.100.68 0.510.720.23 0.460.650.24

CDK2 16 0.761.130.46 0.610.880.26 0.530.750.22 0.911.160.61 0.410.750.09 0.430.690.05

Jnk1 21 0.530.750.42 0.760.870.55 0.690.820.49 0.730.950.55 0.660.850.38 0.680.800.43

MCL1 42 1.221.591.07 0.380.540.14 0.440.570.21 0.841.140.68 0.560.690.35 0.580.680.39

p38 34 0.591.040.58 0.680.730.28 0.690.700.42 0.781.110.68 0.490.650.18 0.550.650.28

PTP1B 23 0.681.150.57 0.730.810.21 0.650.740.33 0.500.960.46 0.850.890.50 0.730.810.46

Thrombin 11 0.420.650.29 0.410.760.01 0.380.71−0.15 0.570.780.32 0.670.920.14 0.600.860.14

Tyk2 16 0.360.460.27 0.950.980.89 0.820.920.56 0.450.680.26 0.890.960.75 0.820.920.55

Total 199 0.811.030.80 0.620.640.46 0.590.610.45 0.760.920.73 0.630.690.51 0.610.640.47

a ref 6.
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Figure 4: Correlation between FEP predicted binding free energy (∆G) results and experi-
mental values for the eight test cases from Wang et al. 65 The green shaded area delimited
by the dashed lines encloses all data points that have FEP results within 1 kcal/mol from
the corresponding experimental values. The outer dashed lines correspond to y = x+ 2 and
y = x− 2 respectively.

FEP benchmark using heterocycle focused data set

Four public test cases, CHK1, FXA, BACE core, and BACE heterocycles, from Roos et al. 66

were considered for further FEP validation. This data set is more challenging than the R-

group substitution set for a general FF as it is mainly composed of heterocyclic cores with
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diverse heteroatoms and ring substitutions at different positions, and thus requires a more

accurate description of torsion profiles and electrostatic potentials. Since the number of per-

turbation pairs in each subset of these 4 test cases is relatively small and it is inappropriate

to combine data from different experimental conditions and calculate correlation metrics,

we only show the RMSE for ∆∆G pairs here. The performance of XFF on this data set is

shown in Table 3. Overall, XFF has a comparable performance with OPLS4 except for the

BACE core system where XFF has a very poor performance. One possible explanation for

the poor performance is the charge model since the BACE core test case comprises molecules

with unusual amidine cores, which pose a great challenge for the ESP description. Currently,

the charge model used in XFF is a standard RESP fitting protocol11 starting from a DFT-

optimized structure. The RESP charge model is well known for some deficiencies such as

conformation dependence and may produce non-physical charges. Thus, it may be necessary

to remove the bias of the RESP charges by introducing multiple conformations and adding

additional restraints.66,67 Another possible source of error is the protonation states of the

catalytic ASP diad. As pointed out by Roos et al.,66 the electron-rich substitution on the

bicyclic compound may shift the protonation state of ASP228 to neutral. In Ref 66, the

authors concluded that with the presence of compound 23, which has a OMe substitution,

ASP228 was in neutral form. However, there are other compounds in the series which also

have a high eletronegativity substitution, such as fluorine for compounds 19 and 20, chlorine

for compound 21, OH for compound 22, and CF3 for compound 24 (shown in Figure 5).

Thus, we calculated the pKa shift of ASP228 with all bicyclic compounds in the BACE

core system using the same method as in Ref 66. The pKa values of ASP228 with bicyclic

compounds can be found in the Table S1 of the Supporting Information. Based on our cal-

culations, the pKa values of ASP228 together with compounds 19, 20, 21, 22, 23, and 24

came closer to or larger than the experimental pH of 4.5, which means ASP228 should be

neutral or at least partially neutral. Hence, we applied the protein residue pKa correction

to the ∆∆G values as described in Ref 66. As expected, we did observe improvements for
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some pairs. For example, the ∆∆G between 21 and 23 was decreased from 1.39 kcal/mol to

−0.12 kcal/mol, which is in line with the experimental measurement of −0.1 kcal/mol. The

∆∆G between 22 and 23 was improved by more than 2 kcal/mol, from 2.36 kcal/mol to

−0.05 kcal/mol, which is closer to the experimental value of 0.1 kcal/mol. However, we found

no improvements or even deterioration for several other pairs, and the overall performance

of the BACE core system did not improve (see Table S2 from the Supporting Information).

The main reason performance didn’t improve significantly is that pKa corrections for per-

turbations involving compound 24 went in the opposite direction and severely impaired the

accuracy. This may be attributed to the fact that some ligands (especially 24) may not be

stable under the current double-deprotonated structure and further investigation is needed

to clarify the issue.

Table 3: Summary of the performance of XFF and OPLS4 on heterocycle focused data
set (RMSE in unit of kcal/mol). ∆∆G values are all corrected by cycle-closure correction
method. Total RMSE was calculated by combining pair data from all test cases.

XFF ∆∆G OPLS4 ∆∆Ga

Targets Nlig RMSE RMSE
CHK1 20 1.432.170.62 0.961.260.66

FXA 41 1.281.611.14 1.351.631.13

BACE core 23 2.052.831.82 1.211.580.99

BACE heterocycles 21 0.941.220.70 1.201.590.85

Total 105 1.451.811.35 1.241.441.12

a ref 6.

FEP benchmark using charge-change data set

Eleven test cases obtained from Lu et al.,6 which involve net charge change between per-

turbation pairs, were used to validate XFF. Since most of the perturbed pairs in this set

have a net charge change, a post-correction method61 was applied to correct for the finite

size effect. For some of the ligands that have a potential protonation center, the pKa effect

must also be taken into account during FEP simulations. Consequently, the pKa values of
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Figure 5: Compounds for BACE core system with an electron rich substitution (shown in
red) on the bicyclic ring.

these ligands were calculated by Marvin68 and are shown in Table S3 of the Supporting

Information. If one ligand has a non-negligible protonation state, either the deprotonated or

protonated form of the ligand was first used in the perturbation pair calculation depending

on the pairs designed in the previous work,6 then the RBFE between the deprotonated and

protonated forms of the ligand was also calculated. Afterwards, the cycle closure correction

was applied, and the final RBFE was calculated by applying the pKa correction method

described in Chen et al. 69 We noticed that the authors of Ref 6 did not provide their cal-

culated pKa values, thus it is unclear how to reproduce their RMSE values. To have a fair

comparison, we recalculated the RMSE value for each test case for OPLS4 using Marvin

predicted pKa and the raw RBFE values provided in Ref 6. When we were calculating the

performance metrics such as RMSE, only pKa corrected ∆∆G values were compared with

the experimental ones. As mentioned by the authors in Ref 69, the ionic strength may affect

the results for some test cases, hence we also tested adding additional salts to match the

ionic strength of the experimental condition. The results are shown in Table 4. Since the

number of ligands in each test case is also relatively small, only ∆∆G RMSE is shown here.

For the CDK2 test case, we noticed that the carboxylic group of ligand 39 is close to

residue ASP87 and may shift the pKa value of ASP87, even neutralizing it. Thus, we also

applied the protein residue pKa correction mentioned previously to the pairs involving ligand

25
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Table 4: Summary of the performance of XFF and OPLS4 on charge change data set (RMSE
in unit of kcal/mol). The column with label “salt” results from simulations with additional
salts to match the experimental buffer concentration.

XFF ∆∆G OPLS4 ∆∆Ga XFF ∆∆G (salt)
Targets Nlig Exp. pHb RMSE RMSE RMSE
CDK2 3 7.5 0.971.360.23 0.671.100.33 1.221.750.55

DLK 5 7.5 1.042.210.44 0.662.820.38 1.223.910.80

EGFR 5 7.5 1.522.450.95 1.532.340.98 1.443.901.36

EPHX2 4 7.0 0.572.160.46 1.361.900.63 1.192.750.75

IRAK4 9 7.2 1.943.401.57 1.281.900.94 2.073.781.82

ITK 4 7.2 2.003.131.09 1.111.590.71 1.722.420.93

JAK1 6 7.2 1.091.830.63 1.232.700.75 1.091.820.66

JNK1 3 7.2 0.783.060.36 0.702.070.27 0.344.780.48

PTP1B 3 7.0 1.131.580.41 1.492.560.60 0.892.090.38

Thrombin 6 7.4 1.582.811.10 1.401.860.87 1.532.180.98

TYK2 5 7.0 0.741.840.45 1.101.730.52 0.340.650.12

Total 55 1.452.191.45 1.241.681.17 1.462.511.63

a ref 6. b ref 69.

Figure 6: The carboxylic group of ligand 39 in CDK2 test case is in proximity of ASP87,
which may shift the pKa of the protein residue ASP87.

39. The uncorrected RBFE between the deprotonated form of 39 and 25 we calculated is

−3.12 kcal/mol, which is more than 1.5 kcal/mol deviation from the experimental value
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of −1.5 kcal/mol. After the pKa correction to the ligand, the ∆∆G value was improved

to −2.88 kcal/mol. The ∆∆G was further improved to −2.56 kcal/mol with the protein

residue pKa correction. Similarly, the original relative binding free energy between 39 and

34 is −3.32 kcal/mol and the experimental value is −1.5 kcal/mol. The ∆∆G value became

−2.77 kcal/mol after the ligand and residue pKa correction was applied. In both cases,

the two pKa corrections only brought about 0.3 kcal/mol improvement each to the ∆∆G

value, which does not constitute a significant difference considering the typical error of FEP

simulations, demonstrating that deprotonated forms are dominant in both ligand 39 and

ASP87.

In some other cases, the pKa correction did improve FEP predictions. For example,

in the JAK1 test case, the pKa of compounds 18 and 16 was predicted to be 8.4 and

10.4 respectively. Under the experimental pH conditions (pH=7.2), they should be both

in the protonated state. The RBFE between 18 charged and 16 charged from FEP is

−0.20 kcal/mol, about 1 kcal/mol deviation from the experimental value of 0.8 kcal/mol.

Also, the predicted ∆∆G between 18 charged and jmc_34 is −3.02 kcal/mol while its

corresponding experimental measurement is −1.8 kcal/mol. The pKa correction was applied

on both compounds 18 and 16, after which the ∆∆G between 18 and 16 was calculated

to be 0.60 kcal/mol, leaving only about 0.2 kcal/mol discrepancy from the experiment. The

∆∆G between 18 and jmc_34 was also improved by 0.8 kcal/mol to −2.23 kcal/mol. A

detailed analysis shows that the predicted ∆∆G between 18 charged and 18 neutral is

−2.28 kcal/mol, which means that the pKa of compound 18 was shifted by about 1.7 pKa

units to 6.7 upon binding thus both forms should be considered. On the other hand, the

predicted ∆∆G between 16 charged and 16 neutral is only −0.60 kcal/mol and the pKa

of 16 was only shifted by 0.4, which has a negligible effect on the RBFE. In another case,

compound 19a from the JNK1 system has a pKa value of 8.5. The RBFE between 6a and

the charged form of 19a was 2.04 kcal/mol and the experimental value is 1.6 kcal/mol. The

calculated ∆∆G between the neutral and charged form of 19a was 1.76 kcal/mol, decreasing
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Figure 7: For perturbation pair 18 to 16 and 18 to jmc_34 in JAK1 system and pair 6a to 19a
in JNK1 system, the pKa correction improves their relative binding free energy predictions.

the pKa of 19a to 7.2. After the pKa correction, the ∆∆G between 6a and 19a was predicted

to be 1.69 kcal/mol, only less than 0.1 kcal/mol higher than the experimental value.

As pointed out in Ref 69, for some test cases, adding additional salt ions to the simulation

can improve FEP predictions. Ideally, adding additional ions representing the experimental

condition can stabilize the structures compared to only neutralizing the system with counter

ions. As a result, we also tested adding Na+ and Cl− ions to match the experimental

ionic strength, and the results are shown in Table 4. Our simulations indicated that the

ITK, JNK1, PTP1B and TYK2 test cases significantly benefited from additional salts. The

RMSE for ∆∆G predictions for these test cases was improved by ∼0.3 kcal/mol. However,

in many other cases, additional salts deteriorated the simulation accuracy. For example, in
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EPHX2, the ∆∆G RMSE is increased by more than 0.6 kcal/mol. In CDK2 and DLK test

cases, the ∆∆G RMSE have a ∼0.2 kcal/mol increase. For other test systems, we did not

observe significant change. Overall, the impact of adding additional ions to the simulations

is difficult to predict, and it should be evaluated on a case-by-case basis.

FEP benchmark using Merck KGaA data set

This data set was assembled by Merck KGaA46 and contains 8 test cases representative of real

drug discovery projects. The protein and ligand input structures were directly taken from

Schindler et al. 46 except for PFKFB3 and TNKS2, and the simulations were performed on the

same 540 perturbation pairs. To be consistent with the benchmark procedure adopted in the

previous sections, the production phase of the simulation was still set to 25 ns and the results

were compared with the 20 ns simulation from Schindler et al. For the EG5 test case, the

protein structure with remodeled loop was used. For the PFKFB3 test case, we found that

the structure from Schindler et al. was not stable due to the highly charged environment near

the substrate and ATP binding pockets. Indeed, the natural substrate fructose-6-phosphate

(F6P) and ATP molecules both have negative charges which can help neutralize and stabilize

the positive charges in the pocket. Since protein structure preparation is highly important for

FEP accuracy and we want to separate its effects from the FF quality, we tried to determine

the best protein input structure for the PFKFB3 test case. Based on the description of

the experimental assay70 and other crystal structures of this system, we decided to add a

substrate molecule F6P and a phosphate anion in the FEP input structure. The coordinates

of the phosphate anion were modeled using the coordinates of the pyrophosphate anion in

the crystal structure 6HVI, while the coordinates of the F6P molecule were obtained by

aligning crystal structure 2DWP to 6HVI. To validate our modification, we ran 100 ns MD

simulations for the protein-ligand complex with and without the two co-factors. The complex

stability was improved by the presence of the two co-factors (see Figure S11(C) and (D) of

the Supporting Information). Detailed analysis and FEP results using the original structure
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from Schindler et al. for PFKFB3 can be found in Figure S11 of the Supporting Information.

For the TNKS2 test case, two series of major outliers were observed if the original struc-

ture from Schindler et al. was used. One of the two series was associated with adding a

fluorine or chlorine atom to the 6-position of 2-arylquinazolin-4-ones core. Our FEP simula-

tions underestimated the potency of compounds containing fluorine or chlorine substitutions,

meaning such substitutions were predicted to be not tolerated, which is in contradiction with

the experimental data. After careful examination, we noticed that a sulfate anion is present

near the binding pocket in the original structure (PDB code: 4UI5) used by Schindler et al.

We searched the PDB database for other TNKS2 structures and found many other structures

with a sulfate anion at the almost identical position. The sulfate anion has an interaction

with a LYS residue and may also have an indirect impact on a GLU residue that forms a salt

bridge with LYS. According to the crystallographic conditions,71 the sulfate anion probably

comes from Li2SO4 which serves as a precipitant to facilitate the crystallization process.72,73

The concentration of Li2SO4 added to the solution is 0.2 M, which is beyond the physiological

condition. It is clearly an artifact of crystallization and no reagent containing sulfate ion

was present in the experimental assay74 of the TNKS2 test case. Thus, we highly suspect

that the crystal structure 4UI5 does not accurately represent the real structure in the ex-

perimental assay conditions. As a result, we searched TNKS2 crystal structures that do not

contain sulfate anion and obtained two candidate structures (PDB code: 4PNN and 3MHK).

They both have similar structures for the LYS and GLU salt bridge and are different from

4UI5. However, these two structures still have a large structural difference for residues from

PHE1044 to MET1054 (conforming to the residue numbering in 3MHK), which may have an

impact on FEP accuracy. In the end, 3MHK was chosen as structure for FEP calculations

due to it having less interactions with other units in the crystal lattice packing in the region

named above which, in turn, points to the fact that it may better represent the ligand-bound

structure in solution. After introducing the new structure, the potency changes by adding

a fluorine or chlorine atom were mostly predicted accurately by FEP. A comparison of 4UI5
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and 3MHK shows that the GLU residue moves slightly aside in 3MHK, which makes room

for the accommodation of a fluorine or chlorine atom (shown in Figure 9). The other series

of outliers is related to transformations involving a net charge change, which was in agree-

ment with what Schindler et al. found. We hypothesized that those charged molecules are

actually in the neutral form upon binding to the protein. Consequently, we conducted the

same pKa correction method used in the charge-change data set and the results improved.

The calculations also show that the pKa of the charged ligands are indeed shifted to 5.1-7.8

in the protein-ligand complex (see Table S4 in the Supporting Information for more details),

which means the neutral form cannot be ignored considering the experimental pH of 7.7.

Comparison of results using the original structure and method from Schindler et al. and the

new ones in this work can be found in Figure S12 of the Supporting Information.

The overall results of the Merck KGaA set are shown in Table 5 and Figure 8. Overall,

XFF achieved comparable performance with the results from Schindler et al. For ∆∆G

predictions, XFF has a total RMSE value of 1.221.551.36 kcal/mol, Pearson correlation R2 of

0.500.470.35, and ranking correlation τ of 0.520.500.41, which is very close to the total results from

FEP+ (1.241.571.37, 0.440.420.30, 0.450.450.35). After converting ∆∆G to ∆G, the RMSE, R2, and τ

for XFF are, respectively, 0.991.190.98 kcal/mol, 0.500.550.36, and 0.510.540.40, which is also on the same

level as FEP+ (1.061.271.04, 0.460.510.33, 0.490.510.38). A system-specific analysis shows that XFF has a

relatively larger error for the HIF-2α and c-Met test cases. For HIF-2α, the major outliers

involve a ring-closure transformation that coverts a cyano and methyl group to a five-member

ring. Analysis of the c-Met test case shows that most FEP outliers were related to molecules

having a thiolactone structure, which is not very common and its FF parameters may not

be well trained in XFF. Some examples of typical outlier perturbations can be found in

Figure S13 of the Supporting Information.
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Table 5: Summary of the performance of XFF and FEP+ on the Merck KGaA data set
(RMSE in unit of kcal/mol). All performance metrics were obtained using the same method
as described in previous sections.

XFF ∆∆G FEP+ ∆∆Ga

Targets Npair RMSE R2 τ RMSE R2 τ

CDK8 54 1.461.801.24 0.370.520.18 0.480.600.31 1.501.921.35 0.370.500.14 0.440.570.25

Eg5 65 0.961.551.09 0.580.590.25 0.550.580.32 1.171.771.17 0.360.420.13 0.460.490.24

HIF-2α 80 1.642.201.65 0.480.550.25 0.520.560.36 1.342.091.42 0.410.450.11 0.470.490.23

c-Met 57 1.372.121.36 0.550.640.23 0.560.610.32 1.161.801.26 0.670.680.38 0.620.650.41

SYK 101 1.061.461.07 0.330.440.11 0.370.440.17 1.251.581.21 0.200.350.03 0.190.330.02

TNKS2b 60 0.951.430.92 0.580.660.27 0.580.620.35 1.011.280.87 0.530.670.30 0.490.610.32

PFKFB3b 67 1.111.331.00 0.610.710.44 0.600.670.48 1.211.501.02 0.690.780.54 0.650.730.54

SHP-2 56 0.971.611.11 0.590.580.22 0.590.590.34 1.191.881.30 0.450.510.12 0.430.510.19

Total 540 1.221.551.36 0.500.470.35 0.520.500.41 1.241.571.37 0.440.420.30 0.450.450.35

XFF ∆G FEP+ ∆Ga

Targets Nlig RMSE R2 τ RMSE R2 τ

CDK8 33 1.091.440.79 0.440.680.19 0.500.650.29 1.251.670.94 0.380.650.11 0.520.660.27

Eg5 28 0.671.040.61 0.620.770.15 0.510.630.17 0.801.190.62 0.540.710.23 0.570.680.30

HIF-2α 42 1.331.811.13 0.340.520.11 0.440.550.23 1.051.640.86 0.330.570.01 0.410.540.11

c-Met 24 1.061.550.84 0.700.840.38 0.670.780.39 0.901.270.77 0.830.900.62 0.750.840.58

SYK 44 1.051.360.88 0.310.530.06 0.350.510.14 1.111.400.93 0.260.520.02 0.270.450.05

TNKS2b 27 0.881.300.64 0.520.780.13 0.590.740.29 1.311.601.02 0.240.530.01 0.320.560.01

PFKFB3b 40 0.811.010.68 0.590.730.39 0.560.690.41 1.051.240.89 0.670.800.50 0.640.730.50

SHP-2 26 0.651.030.64 0.690.750.21 0.590.710.24 0.861.330.76 0.550.690.19 0.570.680.27

Total 264 0.991.190.98 0.500.550.36 0.510.540.40 1.061.271.04 0.460.510.33 0.490.510.38
a ref 46. b XFF results using the new structures and method from this work.

Discussion

In this study, we have completed a total number of 1079 RBFE transformations, and the

general accuracy of the pairwise affinity prediction was calculated. In addition, ∆∆G values

were converted to ∆G for the R-group substitution and Merck KGaA data sets, and their

overall ∆G RMSE was also calculated. The cumulative RMSE estimate was obtained using

results from the calculations without additional ions for the charge-change data set and

results using the new structures and method introduced in this work for the PFKFB3 and

TNKS2 test cases in the Merck KGaA data set. As can be seen from Table 6, the overall
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Figure 8: Correlation between FEP predicted binding free energy (∆G) results and ex-
perimental values for the 8 test cases of the Merck KGaA data set. The green shaded
area delimited by the dashed lines encloses all data points that have a FEP result within
1 kcal/mol from the corresponding experimental value. The outer dashed lines correspond
to y = x+ 2 and y = x− 2 respectively.

RMSE of 1079 pairs for XFF is 1.191.481.33 kcal/mol, which is comparable with 1.161.401.27 kcal/mol

for FEP+. The accuracy for 463 ∆G values is 0.921.100.94 kcal/mol and is comparable to the

value of 0.941.110.94 kcal/mol reported for FEP+. One should also note the compared FEP+

results for the Merck KGaA data set used the OPLS3e FF while OPLS4 was used for the

other data sets. As a consequence, the above results may not accurately represent the current
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Figure 9: Comparison of protein structures 4UI5 (green), 3MHK (cyan), and 4PNN (ma-
genta). The sulfate anion exists in 4UI5 but is absent in 3MHK and 4PNN. The LYS residue
interacts with the sulfate anion in 4UI5. In 3MHK and 4PNN, due to lack of such interac-
tion, the LYS residue is pointing to another direction. The position of the GLU residue in
3MHK and 4PNN is also different from 4UI5. Ligand 5m is shown in yellow to illustrate
that the fluorine substitution is no longer impeded by the GLU residue.

quality of the latest version of the commercial series of OPLS FFs. In Figure 10, we also show

the histogram distribution of ∆∆G prediction error. In comparison to FEP+, XFF has 13

more pairs with prediction error smaller than 0.5 kcal/mol, but also 14 more pairs with error

larger than 2.5 kcal/mol. In terms of ∆G error, XFF has 11 more molecules with prediction

error smaller than 0.5 kcal/mol, and 1 less molecule with an error larger than 2.5 kcal/mol.

Large outliers undermined the general performance of XFF and will be the focus of future

improvements. Recently, Hahn et al. 75 investigated the performance of several academic FFs

on 22 protein-ligand binding affinity targets, 16 of which overlap with the ones considered

in this work. This allows us to compare XFF with various academic FFs (see Figure S14 of

the Supporting Information). In general, XFF has better performance than the public FFs

in most of the 16 data sets. In the next paragraphs, we will briefly discuss some aspects that

can potentially enhance the quality of the XFF.

The vast “drug-like” chemical space is believed to be of the order of 1060 molecules.76,77
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Table 6: Total ∆∆G and ∆G RMSE in this study. ∆∆G values are corrected with the
cycle-closure correction method. (RMSE unit: kcal/mol)

Npair ∆∆G RMSE
XFF FEP+

1079 1.191.481.33 1.161.401.27

Nlig ∆G RMSE
XFF FEP+

463 0.921.100.94 0.941.110.94
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Figure 10: Histogram of the error of (a) ∆∆G and (b) ∆G for XFF and FEP+. Numerical
values corresponding to this figure can be found in Table S13 and S14 of the Supporting
Information.

The torsion term is often called a “residue-collector” term since it must remedy the inaccurate

description of the electrostatic and steric interactions of the other terms. Thus, torsional
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terms are often quite sensitive to a change in the chemical environment and their transfer-

ability can be questionable. One way to solve this problem would be to define more elaborate

torsion types. For example, in the current version of the commercial OPLS FF, the number

of torsion parameters has been expanded to ∼150K.66 In Table 7, we also listed the number

of bonded parameters for XFF and compared it with OPLS3e. However, expanding numbers

of atom types and FF parameters has several drawbacks. First, a more complicated torsion

type may not generalize very well and it may have disastrous behavior when the chemical

environment is slightly changed. Second, as one defines more atom types, the number of

torsional parameters increases combinatorially, requiring in turn a huge amount of training

data. The availability of computational resources often limits the size of the training set and

this inevitably leads to inadequate characterization of some of the torsional parameters. An

alternative approach is bespoke fitting, meaning re-parametrization of the FF parameters

for every molecule each time an FEP simulation is carried out. Many useful tools have been

developed to aid the parametrization process, such as FFBuilder,78 OpenFF BespokeFit,22

and QUBEKit,79 to name a few. However, bespoke fitting is demanding in terms of compu-

tational resources if a full QM level is used. To alleviate this problem some recent studies

have investigated the use of less costly (but potentially less accurate) methods such as QM

machine learning potential80 or semi-empirical QM;22 however the improvement to FEP ac-

curacy has not yet been widely evaluated. In addition to the general version of XFF that is

used throughout this work, we also developed an in-house bespoke fitting workflow based on

our cloud-computing platform to refine FF quality on specific sets of molecules. The torsion

scan workflow we use for the bespoke fitting is the same as the one used for the FF devel-

opment. To reduce the total waiting time, we designed a system that can schedule enough

cloud resources so that the QM calculations on all torsional conformations of a molecule can

be performed in parallel (see Figure S9 for more details). Usually, the fitting of molecules

for one batch of FEP calculations (usually tens or a few hundred molecules) can be done in

12-24 hours. Although the time required is longer than the typical FEP simulation time on
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our platform (3-4 hours), it might still be worthwhile to use this workflow in some important

instances such as confirming top molecules from FEP calculations using the general version

of FF before they are sent for synthesis. In Figure S10(B) of the Supporting Information,

we show how the QM/MM energy deviation and correlation are improved for typical outlier

molecules in the OpenFF Industrial Set after applying our bespoke fitting workflow. Addi-

tionally, in relation to torsion parameters, we note that the number of torsion parameters in

XFF related to a proper rotatable bond is only less than half of the total number of torsion

parameters. The rest are parameters for non-rotatable bonds, for example, those torsions

whose center bond is a double bond or in a ring. The force constant values of these param-

eters barely change in our current parametrization scheme and their values are very close to

the initial values, which come from GAFF1.8. We are currently investigating a new method

to parametrize non-rotatable torsions, especially those involving a saturated ring.

Table 7: Comparison of number of bonded parameters for XFF and OPLS3e. The number
in parathesis denotes the number of torsion parameters related to a rotatable bond (single
bond, not in a ring).

parameter type XFF OPLS3e22,66

bond 4,102 1,187
angle 13,892 15,235

torsion 96,098 146,669
(46,774)

As we have discussed previously, the RESP charge fitting scheme has some fundamental

deficiencies. The ESP-based charges are well known for their conformation dependency and

for being ill-defined for buried atoms, all of which is detrimental to the accuracy of molec-

ular simulations, especially RBFE calculations. Although the penalty function used in the

RESP11 method alleviates these two problems to some extent, we still found that in some

cases the charges of molecules heavily depend on the initial pose and there may be poor

transferability of charges for the same functional group between a pair of molecules. These

phenomena introduce extra noise into FEP calculations and are more severe for some polar

groups such as charged amine and sulfonamide. Two examples of issues related to RESP
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charges identified in our internal projects can be found in Figure S15 of the Supporting Infor-

mation. Roos et al.,66 tried to deal with these problems by using constrained optimization on

a bio-active conformation of a molecule and adding a bond charge correction as an additional

layer of restraint to the charge fitting procedure. Recently, Janeček et al. 67 have studied us-

ing a Hessian matrix of the objective function with respect to the charges to automatically

scale up the restraint weight of the ill-defined charges to a predefined reference charge. Other

approaches include using 10 conformers having electrostatically least-interacting functional

groups to reduce the conformation dependence of ESP-based charges.81 Currently, we are

also investigating new charge models that are more robust with respect to the input ligand

pose and more transferable for polar functional groups.

The point charge model may also not be suited to properly describe charge anisotropy.

For example, there is a depletion of electron density on the back side of a halogen bond (Cl,

Br, and I), which is often called a “sigma-hole”.82 It has positive electrostatic potential and

may have a favorable interaction with atoms bearing a lone pair. However, the point charge

model only has a negative partial charge on the halogen atom and it cannot capture the

attractive behavior between the halogen atom and an electron-donating atom. Many FFs

have implemented an off-site positive point charge along the elongated line of the C-X bond

and showed improvements in free energy calculations.78,83–85 Our force field XFF does not

currently include any off-site charges but their inclusion will also be the subject of future

investigations.

Optimization of LJ parameters is another potential direction for future improvements.

Currently, the LJ parameters of XFF are directly taken from GAFF1.8.1 Traditionally, the

LJ parameters are trained against QM86 and/or experimental pure liquid density and heat

of vaporization.10 Recently, introducing condensed-phase mixture properties to optimize LJ

parameters was proposed.87 Other advanced methods try to use atoms-in-molecule (AIM)

electron density partitioning to derive parameters.88 The progress in software tools now al-

lows, at least in principle, to adjust LJ parameters15,89 or define atom types90 in an automatic

38

https://doi.org/10.26434/chemrxiv-2023-rf3dk-v3 ORCID: https://orcid.org/0000-0003-0928-8541 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2023-rf3dk-v3
https://orcid.org/0000-0003-0928-8541
https://creativecommons.org/licenses/by-nc-nd/4.0/


fashion. All these developments have paved the way for better descriptions of non-bonded

interactions of molecules.

Finally, it has become more and more popular to evaluate the quality of small molecule

FFs by comparing FEP predicted affinities with experimentally measured ones. However,

FF quality is not the only factor contributing to FEP accuracy and we believe that it is

important for FF developers to rule out the impact from non-FF contributions when one

uses the accuracy of FEP predictions to guide the direction of FF improvements. In this

work, we have demonstrated that considering protein residue and ligand protonation state

changes, and using protein structures that better reflect experimental conditions can both

improve FEP accuracy. In the PFKFB3 and TNKS2 test cases, using the new protein struc-

tures to set up simulations significantly improved the FEP results. We point out that the

performance of other FFs may also improve using our new structures, and this renders the

current comparison not entirely fair. Due to limited time and resources, we only investigated

structure preparation for these two cases, but potential refinements may also be possible for

other cases. Selecting an appropriate protein structure for FEP simulations is far from trivial

and may require input from biochemists, structural biologists, and computational chemists.

It still remains a challenge to define appropriate best practices for protein structure selec-

tion and refinement and we think the whole community may work collaboratively towards

improving this fundamental aspect of FEP applications.

Conclusion

In this work, we developed an AMBER-consistent small molecule FF, XFF, whose parameters

are readily available and Open Access to everyone in the field. The extensive validations on

QM/MM conformer comparison and FEP calculations demonstrated the wide coverage of

chemical space and the accuracy of XFF. The results were encouraging and show that XFF

provides an alternative to the current academic and commercial FFs for molecular simulations
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in drug discovery projects. In particular, XFF has the advantages of covering a broad range of

chemical space and having its parameters freely available. Our high-throughput cloud-based

bespoke fitting workflow can bring higher accuracy to FEP simulations for specific molecules.

In the future, we will focus on improving the quality of the non-bonded parameters, including

refinement of the RESP fitting protocol, investigating the role of off-site charge centers, and

optimizing LJ parameters. We hope that our FF will prove useful for the community and

will provide improvement to the quality of biomolecular simulations.

Data availability

The input structures, XFF parameters, and results for all FEP simulations, are available on

Github https://github.com/XtalPi-XFF/2023_XFF_paper under an MIT license. The list

of molecule and conformer IDs from the OpenFF Industrial set used in this work and their

corresponding XFF parameters and results are also available on Github. For the Fragment

Set and Full-molecule Set, data is also available for molecules in the public domain. The

XFF parameters and parameter assigning tool can be accessed via a web server https:

//xff.xtalpi.com.

Associated content

The Supporting Information contains (1) detailed explanation of the fragmentation algorithm

(2) illustrations for molecule fragmentation, “combined” conformation generation, and atom

type definition; (3) the equations to calculate the correlation and energy deviation metrics

for conformer energy validation; (4) additional notes on FEP calculations and a flowchart for

an FEP calculation on the XFEP platform; (5) molecular weight and number of rotatable

bonds distribution for the Fragment Set, Full-molecule Set and OpenFF Industrial Set; (6)

Three example torsion PESs from the Fragment Set that have R equal to 0.9, 0.8, and 0.6.

(7) a flowchart showing our bespoke fitting workflow; (8) Typical outlier molecules in the
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conformer energy validation and their FF refinement with bespoke fitting workflow. (9)

pKa of ASP228 in complex with bicyclic compound in the BACE core set and its correction

to FEP ∆∆G; (10) ligand pKa predicted by Marvin for compounds in the charge-change

set; (11) comparison of FEP results using the original structure from Ref 46 and the new

structures and method from this work for the PFKFB3 and TNKS2 test cases; (12) pKa

of charged ligands in the TNKS2 test case and pKa shift upon binding to the protein;

(13) example outlier transformations; (14) comparison of XFF with academic FFs; (15) two

examples of issues with respect to the RESP charge fitting scheme; (16) numerical data for

all the histogram plots. (PDF)
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